ON REPRESENTATIONS AS A SUM OF CONSECUTIVE
INTEGERS

W. J. LEVEQUE

1. Introduction. It is the object of this paper to investigate the function
v(m), the number of representations of m in the form

1 r+1)+E+2)+... 45,

where s >7 2 0. It is shown that y(m) is always equal to the number of odd
divisors of m, so that for example v(2¥) = 1, this representation being the
number 2F itself. From this relationship the average order of v(m) is deduced;
this result is given in Theorem 2. By a method due to Kac [2], it is shown in
§3 that the number of positive integers m < # for which y(m) does not exceed
a rather complicated function of # and w, a real parameter, is asymptotically
nD(w), where D(w) is the probability integral '

@m) 7 e dx.

In §4, these theorems are extended to vy(m, s), the number of representations
of m as the sum of positive consecutive terms in any of the s arithmetic pro-
gressions having constant difference s.

2. The average order of y(m). First we prove

THEOREM 1. «y(m) = 7(m) where v(u) is the number of divisors of u and
m = 2 Ym, m odd.
For by (1) we have
2 2
m = 24+ s T + 7
2 2
Putting s — » = n, this gives
2m = n(n + 2r 4+ 1).
Since 7 and # + 27 + 1 have opposite parity, and since # < (2m)%, y(m) is'the
number of ways of writing 2m as the product of an even and an odd number.

y 2m=(s—r)(s+r+1).

That is,
ym)y= ¥ 14+ ¥ 1= % 1=1").
n|m 2m/n\m dim
n<(2m)} 2m/n>@2m)?
THEOREM 2. The average order of y(m) is 3 log m; more precisely,
I 1 2C +1log2 —1
- 2 v(m) = -logn 420 +log2-1 + 0 (nh),
n m=1 2 2
where C is Euler's constant.
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For let I be the unique integer such that 2! £ # < 2141, Then by Theorem 1,

rm)+ X rm/2)+ X rlm/4) + ...

<n m<n 1<mn
mod 2) m \2(n?od 4) m =% (mod 8)

2 (m/2Y)
1I<mEn
m =2} (mod 2l 'H)
(n—=1)/2 (n—2)/4

= > 7@2r+1) 4+ Z=:0 (2r + 1) 4+ ..

r=0

I
M

(n—2h/2l+1

+ 2z (2r + 1),

r=0

and since [ = [log n:l this is
log 2

(log ) /log 2 27ty —1

(2 2 ym= X 2 T@r+1).
m=1 t=0 r =0
We estimate the sum
(w—1)/2
> t@r+1)
r=0

by counting the ‘“‘odd” lattice points (x, ¥), i.e., those with both coordinates
odd, for which 0 < xy £ w. (For a full account of this kind of reasoning, see

Hardy and Wright, [1], p. 263). We put
u = 203wt + 1

and obtain
(w=1)/2 (u=1)/2 ( ] o
2 1) =2
rz:'oT(r_*_ ) z}=:0[ 22—}—1) + )
=iwlogw+2c+21£g2 - 1w+0(w%).

Putting this estimate in (2), we have

n (log n)/log 2 t —_ P
S oaem = x Lrlen/2) 2 Nsd L 1y ogin)
m=1 t=0 4 2t 4 2‘
_ nlc;gn +2C+102gQ -1 n + O(nd),

and this completes the proof.
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3. A density theorem concerning v (m).

THEOREM 3. Let w be a real number, and let s,(w) be the number of positive
integers m S n for which

1
'Y(m) < 2log log n+4+ » (loglog n)Z — 1 — f(n, w).

Then
sn(w) ~ nD(w).

The proof of this is quite similar to that given by Kac [2] in proving that the
number of m < 7 for which 7(m) < 2f(n, ) is asymptotic to nD(w).

4. Representations in arithmetic progressions. We now turn our attention
to v1(m, s), the number of representations of m of the form

(3) m=r+@+s)+...+{r+&—1)s}.

Although it was natural in the case s = 1 to restrict attention to positive
representations (i.e., with > 0), it turns out in the general case that this con-
dition introduces complications. For this reason we shall consider separately
the quantity v1(m, s) and the quantity y(m, s), the number of positive represen-
tations of m in the form (3). In either case it is required that

(4) 2m = k{2r + (k — 1) s}.
THEOREM 4. vi(m, s) = v(m) if s = 0(mod 2), and vi(m,s) = 2 v(m) if
- s =1 (mod 2).
For if s is even, say s = 2s1, then y1(m, s) is the number of solutions k&,
r (k> 0) of

m = k(r + (k — 1)s1),

and k can clearly be any divisor of m. If sis odd, then & and 2r 4+ (& — 1)s
are of opposite parity, so that

im,s) = 2 1+ ¥ 1=2r(m).

klm 2m/k\m

For example,
v1(6,1) =4: 6=1+243

(=8 +(—H+...+4+5+6
=04+142+43;

and
762 =4 6=2+4=0+2+4=(—4)+ (-2 +0+2+4+6

As an immediate consequence of Theorems 2 and 4, and the fact that the
average order of 7(m) is logm 4+ 2C — 1 + O(m™%) ([1], loc. cit.), we have

THEOREM 5.
1> )_1%n+@c-n+omﬁ if s = 0 (mod 2)
w2 S = i L 12C—1410g 2) + Oy if s = 1 (mod 2).
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We now put on the restriction » > 0. Then by (4), k must be chosen so

that
E(E —1)s < 2m,
or
b < 14+ (1 + 8m/s)z.
2
But

() B < ()

so that we will make an error of not more than 1 if, in computing y(m, s), we
count the number of suitable &’s which do not exceed (2m/s):. Thus by the
argument used in proving Theorem 4, we find that if s = 25, is even,

y(m, s) = kIZ_ 1 4 e(m, s) = 7(m, 2m/s)}) + e(m, s),
k<(2m1;s)‘}

where 7(m, x) is the number of divisors of m which do not exceed x, and e(m, s)
is either 0 or 1. We put

A(n, x) = m,;;:l v(m, s).

Then all those lattice points on the hyperbola xy = m for which x < (2m/s)}
are counted in the sum Y7 7(m, (2m/s)?), and by considering all positive 7 not
exceeding n, we see that this sum is exactly the number of lattice points in
the region 0 < xy < 7,y 2 % sx. Counting along vertical lines, we have

Z 7(m, (2m/s)*)

T m e} oo R ()]
= n{log< ) +Cc+ O(n—f)} {[(i”) ] + [(i") }} + O(n?)

_n _ 1 S 1 1
_2—logn+n<C glogé 2)—I—O(n).
As for the sum X7 €(m, s), it does not exceed the number of lattice points on
the curves xy = m < 7 for which
@m/s)t < x< 2m/s)t + 1,

i.e., the number of lattice points in the bounded region enclosed by the hyper-
bolas xy = n, (x — 1) = 2xy and the line /;:y = }sx. But the second of
these hyperbolas is asymptotic to the line ly:y = 3s(x — 1). Let the inter-
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sections of /; and /; with xy = 7 be (x1, y1) and (x,, vs) respectively, and let the
chord joining these points be /5. Then the sum in question is less than the
number of lattice points in the triangle with vertices at (0, 0), (x1, ¥1) and (xs,
¥2), plus the number of lattice points in the triangle with vertices at (0, 0),
(x2 y2) and the intersection of J; with the x-axis. This follows since /; is always
above the curve xy = n. But it is easy to see that the number of lattice points
in a triangle does not exceed one more than the sum of its area and perimeter.

Hence
n X1 Y1 1 1 0 0
> oelmys) <3100 1[4+3|1 0 20/s|+ (2 + y2)}
m=1 %y y2 1 1 %2

+ 2(x? 4+ y)F + {02 — 21)? + (32 — 0}t + 200/
+ {(xz - 260/8)2 + y22}%.

Substituting the values x; = (2n/s)}, y1 =(sn/2)}, x, = H®n/s + 1 4+ 1}
Yy = n/%,, it is easily verified that this upper bound is O(n?).
We have thus shown that in case s is even,

(5) Am,s) = glogn + g<2c - 1og-52- - 1) + O(nt).

On the other hand, if s = 1 (mod 2), then in (4) either & is even, in which
case it contains the highest power 2% of 2 which divides 2m and is such that r
is positive, or k is odd, with 7 again positive. Hence
2 14+ X 14 em,s)

k|m kilm
ES@m/)Y  20m(@2m/s)}

¥(m, s)

I

r(m, 2°m/s)}) + 7(m, 2~°m/s)}) + e(m, s),

where e(m, s), as before, is the error made in assuming that for 7 to be positive
k must not exceed (2m/s)}, rather than the actual upper bound. Since the
bound for Y7 €(m, s) which we just computed did not depend on the parity of
s, it holds also for odd s:

n

(6) 3 e(m, s) = O(nd).

m=1

We have

Aln,s) = X o @/ + T o0, @/ + E elm, )

=41+ 4.+ A,

say. Summing over m’s containing the same power of 2, we get
(log n)/log2 2 Ap—3

Ai= % > @+ 1, {2V 4+ 1)/s}h).

A=1 r=1

https://doi.org/10.4153/CJM-1950-036-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1950-036-3

404 W. J. LEVEQUE

The sum
(z—1)/2 . .
2 t(@2r + 1,2 + 1)%)
r=0
is the number of lattice points on the hyperbolas

xy =2r 4+ 1, r=01,...,3z—-1)

for which x < ¢t (2r + 1)}, i.e., for which x < ¢y. This is the number of odd
lattice points in this region, which is

G -BEE )] ep

where 6(x) is 0 or 1 and

BCEE] ) -9

But this sum is equal to

™

z 3 1 ¢
5 xgo %% T 1 xZ=0 (2x + 1) + 0(%)
2 z—1 LI 1 12
=3 10g{6 (2[ 3 :l + 1)} +3 (C + log 2) + O(z%) — 5 T o,
so that
G-n/2 zlogz | 2
(7) 7@ +1,¢@ + D) = —F=+ 7 (C+log 2 + log ch)
r=0
2 3
-_ g + O(Z ).
Hence
(log n)/log 2 n 1 p\
4, = R {—)\—_lg gz—)\_—1+——(C+log2+log—)

_nlogn'¥r 1 m gr N —1 logn
ST T Tk e T Ol K o
nlog 218" A\ nlogs 8" 1 nl%E* 1

LA - _Z — 4+ 0
+ 8 a=12M1 8 xz=:1 M1 8 ; M1 )

_nlogn+n<_C_ log2_logs> _r_L_nlogZ
4 2 2 4 4 4

n log 2

+ + 0 (n}),

https://doi.org/10.4153/CJM-1950-036-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1950-036-3

SUMS OF CONSECUTIVE INTEGERS

and finally

) Al=nlzgn+n<c+log2_i__lois>+0( .

2

Turning now to 43, we have

(log m)/log 2 27*n—1% 1
A; = % v T(zy_i_l,(z"_"'l)f),

A=1 r =0

and using (7) with z = /227, ¢ = 5/2", we have

(log n)/log 2 n -
4, = )‘Z;,l {82"1 ngi_l_ 2)‘1(C—}-log2—l—log(2s) )

Combining this with (5), (6) and (8), we have
THEOREM 6. For every s,

N

12 _1 1 1 .
ﬁgly(m,s) ——2—logn+(C—§log§— §>+O(n ).

Theorem 2 is, of course, the special case of Theorem 6 with s = 1.
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