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1. Introduction 

One of the big problems in stellar rotation which has been the object of much debate 
recently concerns the magnitude of the angular velocity in the central regions of the 
sun. It is a good example of our general ignorance of the distribution of angular 
momentum in the interiors of stars. There is good reason, of course, for this ignorance. 
One can't make any direct observations and from a theoretical point of view there 
are many real problems such as the lack of a good theory of convection and meridian 
circulation, and our ignorance of the structure and magnitude of magnetic fields in 
the deep stellar interior. These problems among others make it very difficult, for 
example, to specify a surface condition on the angular velocity. It was pointed out 
recently (Clement, 1969; this paper is referred to hereinafter as Paper I) that such a 
condition might enable us to estimate the magnitude of the interior stellar rotation. 

In this paper, an equilibrium model for the distribution of angular velocity in the 
sun is presented. The model has a surface distribution of velocity which is the same 
as that of the sun (by assumption) and also differs significantly in its interior properties 
from the model of Roxburgh (1964) for which the angular velocity is constant on 
spheres. In view of Roxburgh's review paper in this volume, one might ask: Why look 
for equilibrium distributions of velocity when we know they are likely to be unstable? 
It is possible that an equilibrium distribution is related in some way with the actual, 
time-dependent distribution. Also, there still appears to be some doubt as to the 
stability of distributions which differ from those with cylindrical symmetry by only 
a small amount. The equilibrium distributions for upper-main-sequence stars which 
are presented in Paper I do have approximate cylindrical symmetry with no meridian 
motions and so their stability or instability is, in fact, open to some question. 

2. Formulation 

To illustrate how this problem is solved it is necessary to show some of the basic 
equations. The mathematical formulation and notation is essentially that of Schwarz-
schild (1947) and Roxburgh (1964). Slow rotation is assumed and the dimensionless 
physical quantities are written as the sum of a spherically symmetric quantity with 
subscript u and an axisymmetric quantity with subscript d and coefficient X which is 
proportional to the square of the angular velocity at the pole. Thus, 
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where P, T, M, etc. have their usual meaning. The parameters b and e are associated 
with the assumed opacity law: 

K = K0e
e~lT~s with b = s + e + 3. (6) 

The axisymmetric quantities are expanded in a series of Legendre polynomials in the 
standard way; e.g. 

P4 = lPj(x)P2j{<x>s6). (7) 
j 

Substitution of the foregoing expressions into the standard equations of stellar 
structure and the elimination of the angular velocity from the equation of hydrostatic 
equilibrium (cf. Paper I) yields the following equations which are to be applied to the 
radiative core: 

x -fJ- = Qj + qj ~ (2j + 1) (Pj - 4>j) + UuPj - Vutj, (8) 
dx 

x^U^epj-btJ-lj, (9) 

xdp = qj, (10) 
dx 

x d
d | ' = -qj + 2/(2/ + 1) <l>j + Wu(tj - Pj), (11) 

d/; 
X dx = ~ XJj ~ 2j{2j+l) tj ~~ Y" [2Pj + (V " 2) ^ ' °2) 

where 

e^-^^r^K4-'"-3)^-!-^-!)-^-^' (13) 

Uu, Vu, Wu, and Xu are as given in Paper I, and 
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This last quantity makes allowance for the nuclear energy generation in the radiative 
core. In Equation (12), v is the temperature exponent of the energy generation law. 

The foregoing equations point out the source of difficulty inherent in this problem 
of differential rotation. Equations (8)—(12) are homogeneous except for the quantity 
Qj (x) which clearly couples equations of different Legendre orders. As the problem 
now stands, Q0 (say) is undefined. Given a function Q0(x), all the equations (in­
cluding the relatively simple ones for the convective envelope) could be integrated in 
a straightforward way. And if there were no conditions to satisfy other than the stan­
dard boundary conditions, then Q0 would be quite arbitrary. Thus, an unlimited 
number of velocity distributions could be generated by choosing different Q0. For 
example, Q0 can be chosen in quite a simple way such that the angular velocity is 
constant on spheres. This is essentially how Roxburgh obtained his model. But 
solutions found in this way are mathematical ones and have little or no physical basis. 
One should choose a Q0 which gives a velocity distribution satisfying some justi­
fiable boundary condition. This has been done for the upper-main-sequence stars 
(cf. Paper I). The particular condition applied to these stars will not be discussed here 
because it has no relevance for lower-main-sequence stars which have convective 
envelopes. However, in the case of the sun, there is an obvious boundary condition 
which is just the observed distribution of angular velocity on the surface; viz. (cf. 
Allen, 1963) 

QjQp = 1.0000 + 0.2312 sin2 6. (15) 

What has been done is to determine that unique Q0 (x) which gives this surface 
distribution. 

3. Assumptions 

A number of assumptions have been made; some of these are obvious from the fore­
going equations. 

(i) The only effective forces are those of pressure, gravitation, and rotation: This 
means that there are no acceleration forces due to a solar-wind torque or to meridian 
circulation; i.e., there is steady state and no motions other than pure rotation. This 
assumption also means that there are no viscous or magnetic stresses. It is a purely 
hydrodynamic model and if it turns out that the magnetic field in the deep interior 
of the sun is very strong then the model presented here may have to be modified. 

(ii) Uniform chemical composition: A gradient in the mean molecular weight may 
affect the equilibrium distribution of angular velocity; it has already been shown to be 
important for stability. This problem will be examined at another time. 

(iii) Adiabatic convective envelope: The effect of this assumption is to make the 
angular velocity in the envelope constant on cylinders and so the velocity distribution 
at the bottom of the convective region is directly related in an obvious way to the 
observed distribution at the surface. We know that the temperature gradient near 
the surface is actually superadiabatic and what effect this will have on the velocity 
distribution at the bottom of the envelope is not clear. However, numerical experi-
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ments show that the angular velocity at the center of the sun depends only weakly on 
the actual distribution at the bottom of the convective envelope. So unless viscous 
stresses, meridian circulation, and/or a superadiabatic temperature gradient drastically 
affect the rotation law in the envelope, the assumption that these effects are negligible 
will not affect the model's central rotation rate in a significant way. 

4. Results 

As already indicated, the object of the present problem is to find that particular Q0(x) 
which gives the observed solar velocity distribution. This is essentially a matter of 
curve-fitting and to this end Q0 is written as a polynomial in x2 (there can be no linear 
term; otherwise, the pressure gradient at the origin would differ from zero as can be 
easily verified). The polynomial coefficients are determined by matching the various 
physical quantities in the radiative core with those in the convective envelope. The 
number of terms J+1 (say) in the expansion for Q0 must equal the number of Legendre 
orders to be included in the analysis. So far, terms up to and including Plo(cos0) have 
been considered and this means terms up to JC10 for Q0(x) (i.e., up to J=5). By con­
sidering solutions with a smaller number of terms, one can, of course, see how the 
model converges. In fact, Q0(x) converges quite well because the curves corresponding 
to 7=3, 4, and 5 are almost indistinguishable on the scale shown in Figure 1 (for 
clarity, only one curve has been drawn). That is, the model described by terms up to 
only order P6(cos0) is almost as accurate as one including terms up to Plo(cos0) as 
far as Q0 is concerned. Unfortunately, the central angular velocity depends not on 
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Fig. 1. The function Qo(x) for a solar model in which the radiative core extends out to xc =0.80. 
The same quantity can be found in the convective envelope with the aid of Equation (8) but there it is 

determined mainly by the assumed velocity distribution on the surface. 
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go but on the second derivative of Q0 at the origin. As with all curve-fitting problems, 
a polynomial with a finite number of terms can't represent the higher derivatives of 
a function as accurately as the function itself. Consequently, the central angular 
velocity is not as well determined as the convergence of Q0 would indicate. 

Figure 2 illustrates the velocity distribution corresponding to the Q0 (x) for J =5. 
The central angular velocity is 40% higher than that at the pole and less than 15% 
higher than the equatorial value. This relatively low angular velocity does not change 
significantly if the envelope is made to rotate rigidly or if the opacity and nuclear-
energy-generation laws are changed. It is evident from the figure that the distribution 
of velocity has no cylindrical symmetry in the radiative core and is therefore likely to 
be unstable in view of the analysis of Goldreich and Schubert (1967). If there really 
are no stable equilibrium velocity distributions then one might wonder how the time-
average of the actual velocity compares with the equilibrium distribution. The velocity 
at different points may oscillate about the equilibrium values in which case the latter 
would be representative of the actual distribution. The resolution of this problem 
must await future investigations. 

1-23 119 115113 112 1-20 130 140 

Fig. 2. The curves of constant angular velocity (Q/Qp) in a quadrant of a meridian plane. The 
equator is at the bottom left and the pole at the top right. The region between the two quarter-circles is 
the convective envelope which is governed by the Schwarzschild parameter £=5.70. The other 
parameters characterizing this model are shown at the upper left of the figure (cf. text for definitions). 
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Discussion 

Livingston: The models indicate a definite change of angular velocity (differential rotation) right to 
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the solar equator. I will just comment that, observationally, there is no differential motion seen 
through the sunspot zone. At least this seems to be the case spectroscopically, and at this part of the 
solar cycle. 

Roxburgh: I would be surprised if you got approximately cylindrical rotation. Since we know there 
are no equilibrium solutions in which this is the case and one would expect that the departures from 
cylindrical symmetry are as big as the rotation itself. 

Clement: This did not turn out to be the case for the upper main-sequence models for which the 
distribution of angular velocity is approximately constant on cylinders. In fact, in the limit of slow 
rotation, the departures from cylindrical symmetry are independent of the magnitude of the angular 
velocity and depend only on the mass, chemical composition, and boundary conditions. 

https://doi.org/10.1017/S0252921100027354 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100027354



