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Four dimensional (4D) scanning transmission electron microscopy (STEM) has recently enabled 

discovery of symmetry-breaking distortions, internal electric and magnetic fields in complex materials, 

and atomic resolution imaging of light elements. However, 4D-STEM experiments can produce 

considerably large volumes of data, which tend to be analyzed only in post processing, therefore choice 

in where these data sets are acquired is critical. In addition, compared to ordinary high angle annular 

dark field (HAADF)-STEM imaging, the per-pixel acquisition time in 4D-STEM experiments tends to 

be roughly three orders of magnitude longer, which may impart a significant amount of electron dose to 

the specimen. To address these issues, we present a deep kernel learning [1,2] (DKL) workflow applied 

to the 4D-STEM methodology in the form of an automated experiment that chooses measurement 

locations on-the-fly guided by physics-based functions. 

Choosing where to acquire 4D-STEM and other analytical measurements has traditionally been a task of 

the experienced microscopist. While experience plays a large and important role, a degree of bias – 

perhaps even unconscious – is naturally present during traditional experiments. In 4D-STEM, since the 

data volumes are typically too large to analyze on-the-fly, it is especially critical that the 4D-STEM 

measurement location is chosen carefully. As an alternative, the DKL workflow allows active learning 

of structure-property relationships. Figure 1 shows the DKL workflow as it pertains to 4D-STEM 

methods. In short, the sample structure is obtained in the fully acquired (and fast) dark field image and is 

correlated with a diffraction pattern measurement. Hence a relationship is established between a local 

image patch and the scalarized diffraction pattern. Here, scalarized simply means reducing a diffraction 

pattern to a single scalar value by imparting intended physics, e.g., calculation of the center of mass 

shifts. DKL continues to learn and refine these relationships on-the-fly and adapts the subsequent 

measurement locations within the space defined by the dark field image 

Consideration of Figure 2 shows that different physical properties of a specimen may be used to guide 

automated experiments in 4D STEM [3]. Specifically, relative charge distribution analysis is correlated 

to local structure in Figure 2a, while differences in lattice spacing (i.e., strain) are correlated to local 

structure in Figure 2b. These two different modes of 4D STEM are each used to guide the autonomous 

searching of physics. The “acquisition” shown in blue combines maximizing the prediction and 

minimizing uncertainty, and effectively is a map in which the most intense pixel is the next 

measurement. In Figure 2a, the relative strongest CoM shift was learned to exist near and around the 

Silicon dopant atoms in graphene, which intuitively makes physical sense given the higher Z element 

having a stronger effect on the beam. In Figure 2b, it is seen that in vacuum, the model deemed there to 

be highest degree of uncertainty (no diffraction), and at vacuum-graphene interfaces, the model deemed 

there to be the largest difference in lattice spacing. This work lays the foundation for future experiments 
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in 4D STEM where expensive data acquisition can now be specifically targeted for finding physics of 

interest as well as unexpected behaviors [4]. 

 

Figure 1. DKL workflow for 4D STEM automated experiments. A full structural dark field STEM image is 

acquired, then for a small number of random points in the image space diffraction patterns are acquired, and 

scalarized according to the intended physics. These scalar quantities along with the local image patches from 

where they were measured are sent as pairs into the DKL model, such that a structure-property relationship is 

derived. The next measurement location is guided by where the model predicts that the supplied physical 

criteria is maximized, and the model actively learns and with each new measurement and image patch. 

 

Figure 2. Two different schemes for 4D STEM automated experiment with DKL applied to twisted bilayer 

graphene. Relative electric field strengths are detected by computing the center of mass shifts of the beam, as 

is done in a), whereas relative lattice changes are measured by computing the average Bragg spacing in b). 
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