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Growth and Device Performance of GaN Schottky Rectifiers
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Undoped, fim thick GaN layers grown by Metal Organic Chemical Vapor Deposition were used for
fabrication of high stand off voltage (356 V) Schottky diode rectifiers. The figure of m@ﬁt \%
Ron: Where \ig is the reverse breakdown voltage anghRs the on-resistance, was ~ 4.53 MW-

cm? at 25C. The reverse breakdown voltage displayed a negative temperature coefficient, due to
an increase in carrier concentration with increasing temperature. Secondary lon Mass Spectrometry
measurements showed that Si and O were the most predominant electrically active impurities present
in the GaN.

1 Introduction Schottky barrier diodes are employed as high-voltage

There is strong interest in the development of efficienfectifiers in power switching applications. They can be
switches operating in the power ranges between 10@/med-off faster than junction diodes because of the
KW-1 MW and well above 1 MW. [1] [2] In the former absgnpe of minority carrier storage effe.:cts. and there is
category the applications include improved control ovef1€gligible power dissipation during switching. [5] [7]
power distribution on the electricity grid, and electrical[8] There have been numerous reports of SiC Schottky
sub-systems in electric automobiles, advanced aircraffiode rectifiers, some employing edge termination tech-
ships and combat vehicles. An important need is foPiques to avoid field crowding at the edge of the metal
high efficiency, lightweight, ~100 kW dc-to-ac inverters contact, [16] [17] [18] [19] [20] [21] [22] [23] [24] [25]
to drive the ac induction motors for propulsion and dcWith blocking voltages up to ~3 kV. [13] The corre-
to-dc converters for storage-to-bus energy conversiorfPONding blocking voltage for the best p-n junction
[1] [2] In the latter category is improved transmissiondiode in SiCis ~5.5 kV. [24]
and control of electric power by the utilities industry. It ~Much less work has been done in GaN. Bandic et.al.
is anticipated that the packaged semiconductor switchdg6] fabricated 450 V Schottky rectifiers on 8:h0
will need to operate at temperatures in excess of@50 thick layers grown by hydride vapor phase epitaxy
without liquid cooling. [1] [2] [3] [4] For these high (HVPE). The doping in the layer was ~2x%@nis.
temperature, high power applications the wide bandgapater they reported achievement of 750 V devices on a
semiconductors offer many advantages. While SiC is thenulti-growth structure consisting ofué of HVPE
leading candidate for these switches because of its mofg@aN, [27] followed by Bm of undoped GaN grown by
mature growth and processing technology [4] [5] [6] [7]Metal Organic Chemical Vapor Deposition (MOCVD).
[8] [9] [10] [11] [12] [13] [14] [15] (A)GaN is also of A drawback of the HVPE appears to be fairly non-uni-
interest for these applications because of its larger banfierm electrical properties with the diode breakdown
gap and excellent transport properties. [1] [4] [6] voltages varying by almost a factor of two. [26]

One of the baseline devices in power switching is the In this paper we report on the MOCVD growth of
thyristor. The combination of a thyristor, power dioderelatively thick (~fum total) GaN layers for high break-
and appropriate packaging produces an inverter moduldown applications and on the elevated temperature per-
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formance of Schottky diode rectifiers fabricated on this SIMS profiles of H, O, Si and C in the GaN are
material. We find that the reverse breakdown voltagshown in Figure 3. The carbon concentration is at the
(VRrp) in our diodes has a negative temperature coeffibackground sensitivity level of the SIMS instrument

cient (i.e. decreases with increasing temperature). under these conditions (~<40cm3), while the H, O and
2 Experimental Si are above the detection limits (2)’(101017 and

The GaN sample studied in this work was grown on c3x101° Cm_s’_ respectively). The residual hydrogen pre-
plane sapphire by low-pressure metalorganic chemicgUMably originates from the growth precursors, all of
vapor deposition in a horizontal reactor. AmmoniaWhich contain hydrogen while Si and O are the typical

(NH,), trimethylgallium (TMG) and silane (Siftwere background impurities detected in epitaxial GaN. [28]
. These can originate from the precursors (oxygen is a
used as precursors and dopants, respectively. A two- : L .
. . ..common impurity in ammonia) or from quartzware
step growth method was used to obtain GaN films with . . . .
._within the reactor. The concentrations of these impuri-
smooth surfaces. A low temperature GaN nucleatlortlieS is typical of very high quality GaN. [28]
layer of about 220 nm was first grown at ABQ0after ) typ yhighg ) y ' ]

heating of the substrate at 1680in hydrogen ambient ~ Figure 4 shows a schematic of the planar diodes fab-
for 10 minutes. Then the substrate temperature wdécated on the thick GaN layers. Circular Schottky con-

raised to 1050 for the growth of the im thick Si- tacts with diameters 60-110t were employed. The

doped (3x168 cm‘3) and 4im thick undoped GaN lay- on-resistance of the diodes can be generally improved

ers. The growth rate of high temperature GaN wagy etching a mesa structure to place the ohmic contacts

1.5um/hr, while that for the nucleation layer was aboutO” the f buffer layers, but this has also been reported to
0.3um/hr. decrease Mg through introduction of dry etch damage

The samples were characterized by cross-section@n the mesa sidewalls. [26] In our case we found mesa
Transmission Electron Microscopy (TEM) and Second-structures showed similar reverse breakdown voltages to
ary lon Mass Spectrometry (SIMS) to examine crystalPlanar diodes if we annealed the samples at *750
line quality and impurity background, respectively. Theunder N after dry etching in order to remove the etch
surface roughness was measured by tapping modkmage.

Atomic Force Microscopy (AFM). Lateral, planar  Figure 5 shows a typical current-voltage (I-V) char-
diodes were fabricated using lift-off of e-beam deposacteristic at 25C from one of the diodes. Theg¥ is

ited Ni (500A)/Au (2000A) for rectifying contacts and _356 v/ at this temperature. The barrier heights were
Ti (500A)/Au (2000A) for ohmic contacts. ~1eV for the Ni contracts, with ideality factors typically

3 Results and Discussion of 1.4-1.6. Capacitance-voltage measurements con-

. . - _3
Figure 1 shows some cross-section TEM pictures of thgrme? the free electron concentration of ~2¥16m°. _
as-grown structure taken in different contrast conditioné\ 22°C thezon-vqltgge was ~3.5V for a current d_ensny
to show the various defects present. In the top part off 1QOA-cm - This is slightly lower than that achieved
the figure it is seen that the average spacing betwedieviously on thicker epi layers. The figure-of-merit
threading dislocations at the surface is roughiynl Vre/Ron had a value ~4.53 MW-¢R1 The best
corresponding to a density of £16m2. In the lower reported high breakdown diodes in SiC have values in
part of the figure we show a higher magnification viewine range 265-528 MW-cfn[11] [13]

of the GaN/A)O5 interfacial region. The arrows indi- To place our results in context, Figure 6 shows a plot

cate defects that bend and do not propagate to the Sy cajculated avalanche breakdown voltages in GaN

face. Note that there is no visible demarcation betweeg notky diodes, as a function of epi thickness and dop-

the Si-doped and undoped GaN regions. ing. It is clear that both in this current work and that
Figure 2 shows AFM scans taken over Ix and  from the Caltech group. [26] [27] the breakdown volt-

10x10,1m2 areas. The root-mean-square (RMS) roughades are still well below the expected theoretical values.
nesses are very good in both cases (0.22 and 1.6n#Provements in both materials and processing, espe-
respectively). On HVPE material of similar thickness,cially surface passivation and edge termination tech-
we typically observe RMS values 5-10 times larger tharliques are needed to fully realize the capabilities of
on MOCVD material. This may have important conse-GaN high power electronics.

guences for other power devices such as Metal-Oxide- Several groups have reported measurements of the
Semiconductor Field Effect Transistors (MOSFETs)temperature dependence of the breakdown field in GaN
where carrier transport is strongly influenced by thedevices. In GaN/AIGaN heterostructure field effect
quality of the oxide-semiconductor interface. transistors, Dyakonova et.al. [29] found a positive tem-
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perature coefficient for the breakdown of ~0.33 ¥.K In our diodes the breakdown voltage decreases with

Dmitriev et.al. [30] also found a positive temperatureincreasing temperature, due primarily to an increase in

coefficient for breakdown in*pri* diodes, with a value carrier concenyratlon. It is expected that S|gn|f|c_ant
1 ) improvements in breakdown voltage can be obtained

0.02V-K*. Olsmsky etal. [31] reported a value of it petter edge termination and surface passivation

+0.0008 V-K™in p-i-n diodes. In these cases the breakieihods, and by the use of implantation to prodice n

down mechanism is avalanche due to impact ionizationy,tace contact regions.

[32] In some SiC Schottky diodes, a negative tempera-

ture coefficient is found. [5] In these cases, the breakACKNOWLEDGMENTS
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FIGURES

Figure 1. Cross-sectional TEM micrographs of MOCVD grown GaN g@Asubstrates.
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Figure 4. Schematic of GaN planar Schottky diode.
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Figure 6. Calculated breakdown voltage as a function of doping
and epi thickness in GaN Schottky diodes. Experimental points
from Caltech work [26] and this work are also shown.
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Figure 8. Measurement temperature dependence of reverse
saturation current density measured at —100 V bias.
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