
Approximation and homotopy in regulous geometry

Wojciech Kucharz

Compositio Math. 160 (2024), 1–20.

doi:10.1112/S0010437X23007522

https://doi.org/10.1112/S0010437X23007522 Published online by Cambridge University Press

https://orcid.org/0000-0001-7531-9495
https://doi.org/10.1112/S0010437X23007522
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1112/S0010437X23007522&domain=pdf
https://doi.org/10.1112/S0010437X23007522


Compositio Math. 160 (2024) 1–20
doi:10.1112/S0010437X23007522

Approximation and homotopy in regulous geometry
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Abstract

Let X, Y be nonsingular real algebraic sets. A map ϕ : X → Y is said to be k-regulous,
where k is a nonnegative integer, if it is of class Ck and the restriction of ϕ to some Zariski
open dense subset of X is a regular map. Assuming that Y is uniformly rational, and
k ≥ 1, we prove that a C∞ map f : X → Y can be approximated by k-regulous maps in
the Ck topology if and only if f is homotopic to a k-regulous map. The class of uniformly
rational real algebraic varieties includes spheres, Grassmannians and rational nonsin-
gular surfaces, and is stable under blowing up nonsingular centers. Furthermore, taking
Y = S

p (the unit p-dimensional sphere), we obtain several new results on approximation
of C∞ maps from X into S

p by k-regulous maps in the Ck topology, for k ≥ 0.

1. Introduction

Regulous geometry has recently emerged as a subfield of real algebraic geometry. It deals with
rational maps that admit continuous extensions or extensions satisfying certain differentiability
conditions. In the following, we develop new methods that lead to a much better understanding of
the relationship between the concepts of approximation and homotopy of maps in the framework
of regulous geometry.

Throughout this paper we use the term real algebraic variety to mean a ringed space with
the structure sheaf of R-algebras of R-valued functions, which is isomorphic to a Zariski locally
closed subset of real projective n-space P

n(R), for some n, endowed with the Zariski topology and
the sheaf of regular functions. This is compatible with [BCR98, Man20], which contain a detailed
exposition of real algebraic geometry. Recall that each real algebraic variety in the sense used
here is actually affine, that is, isomorphic to an algebraic subset of R

n for some n (see [BCR98,
Proposition 3.2.10 and Theorem 3.4.4]). Morphisms of real algebraic varieties are called regular
maps. Each real algebraic variety carries also the Euclidean topology determined by the usual
metric on R. Unless explicitly stated otherwise, all topological notions relating to real algebraic
varieties refer to the Euclidean topology.

As a matter of convention, all C∞ manifolds will be Hausdorff and second countable. The
space Ck(M,N) of Ck maps between C∞ manifolds, where k is a nonnegative integer or k = ∞,
is endowed with the Ck topology (see [Hir97, pp. 34, 36] or [Wal16, p. 311] for the definition of
this topology and note that in [Hir97] it is called the weak Ck topology; the C0 topology is just
the compact-open topology).
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Let X, Y be two nonsingular real algebraic varieties. A map f : X → Y is said to be
regulous if it is continuous on X and there exists a Zariski open dense subset U of X such
that the restriction f |U : U → Y is a regular map. Let X(f) denote the union of all such U . The
complement P (f) := X \X(f) of X(f) is the smallest Zariski closed subset of X for which the
restriction f |X\P (f) : X \ P (f) → Y is a regular map. If f(P (f)) �= Y , we say that f is a nice
regulous map. In the literature regulous maps are also called continuous rational maps [KKK18,
KN15, Kuc09, Kuc13, Kuc14a, Kuc14b, Kuc16a, KK16, KK17] or stratified-regular maps [Kuc15,
KK18a, Zie16]. The concise name ‘regulous’ was coined by Fichou, Huisman, Mangolte and
Monnier [FHMM16]. Since the publication of [Kuc09] in 2009 several mathematicians have
devoted their attention to regulous maps (see [BKVV13, Cza19, FFQU18, FHMM16, FMQ17,
FMQ20, FMQ21b, FMQ21a, KKK18, KN15, Kuc09, Kuc13, Kuc14a, Kuc14b, Kuc15, Kuc16a,
Kuc16b, Kuc20, KK16, KK17, KZ18, KK18a, KK18b, Mon18, Zie16, Zie18] and the references
therein).

A map f : X → Y is said to be k-regulous, where k is a nonnegative integer or k = ∞, if
it is both regulous and of class Ck. Thus, less formally, a k-regulous map is a Ck map that
admits a rational representation. Obviously, ‘0-regulous’ is the same as ‘regulous’. As observed
in [Kuc09, Proposition 2.1], ∞-regulous maps coincide with regular maps, and these are usually
studied separately. A standard example of a k-regulous function, with k a nonnegative integer,
is f : R

2 → R defined by

f(x, y) =
x3+k

x2 + y2
for (x, y) �= (0, 0) and f(0, 0) = 0.

Clearly, f is not of class Ck+1.
We say that a Cl map f : X → Y can be approximated by k-regulous maps in the Ck topology,

where 0 ≤ k ≤ l ≤ ∞, if for every neighborhood U of f in Ck(X,Y ) there exists a k-regulous map
that belongs to U . Investigating whether or not the map f admits approximation by k-regulous
maps in the Ck topology, we may assume without loss of generality that f is of class C∞. This
is justified since the set C∞(X,Y ) is dense in the space Ck(X,Y ).

Definition 1.1. An n-dimensional real algebraic variety Y is said to be uniformly rational if
every point in Y has a Zariski open neighborhood that is biregularly isomorphic to a Zariski
open subset of R

n.

Clearly, every uniformly rational real algebraic variety is nonsingular of pure dimension.
An intriguing open question posed by Gromov is whether every rational nonsingular variety
is uniformly rational (see [Gro89, p. 885] and [BB14] for the discussion involving complex
varieties).

One of our main results is the following theorem.

Theorem 1.2. Let k be a positive integer, X a nonsingular real algebraic variety, and Y a
uniformly rational real algebraic variety. Then, for a C∞ map f : X → Y , the following conditions
are equivalent.

(a) f can be approximated by k-regulous maps in the Ck topology.
(b) f is homotopic to a k-regulous map.

It is an open question whether Theorem 1.2 holds for k = 0 or k = ∞. We also have a more
general result, Theorem 4.2, in which the target variety Y need not be rational.

The following example illustrates the scope of applicability of Theorem 1.2.
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Example 1.3. Here are some uniformly rational real algebraic varieties.

(i) For any nonnegative integer n, the unit n-sphere

S
n := {(x0, . . . , xn) ∈ R

n+1 : x2
0 + · · · + x2

n = 1}
is uniformly rational because S

n with one point removed is biregularly isomorphic to R
n.

(ii) Let F stand for R, C or H, where H is the (skew) field of quaternions. The Grassmannian
Gd(Fn) of d-dimensional F-vector subspaces of F

n can be regarded as a real algebraic variety
(see [BCR98, pp. 72, 73, 352]) and as such is uniformly rational.

(iii) Rational nonsingular real algebraic surfaces are uniformly rational. As detailed in [Man17,
§ 2.2], this follows from Comessatti’s theorem [Com14, p. 257], whose modern proofs are
given in [Kol01, Theorem 30] and [Sil89, p. 137, Proposition 6.4].

(iv) Blow-ups with nonsingular centers of uniformly rational varieties remain uniformly rational,
and the proof given in [Gro89, p. 885] and [BB14] in a complex setting also works for real
algebraic varieties.

All previous results on approximation by k-regulous maps concern maps with values in
Grassmann varieties [Kuc09, KZ18, KK18a, Zie16] or unit spheres [BKVV13, Kuc09, Kuc13,
Kuc14a, Kuc16a, Kuc20, KK16, KK18a, KK18b, Zie18]. Theorem 1.2 does not provide any new
information in the former case (at least for X compact), but opens up new possibilities in the
latter.

In view of Theorem 1.2 and Example 1.3(i), we get immediately the following result on maps
into S

p.

Corollary 1.4. Let k be a positive integer, X a nonsingular real algebraic variety, and p a
nonnegative integer. Then, for a C∞ map f : X → S

p, the following conditions are equivalent.

(a) f can be approximated by k-regulous maps in the Ck topology.
(b) f is homotopic to a k-regulous map.

Up to now, Corollary 1.4 with X compact and dimX ≥ p ≥ 1 has only been known for three
special values of p, namely, p = 1, 2 or 4 [Kuc09, Corollary 3.8]. Since ∞-regulous is the same as
regular, the value k = ∞ is allowed in Corollary 1.4 according to [BK22, Corollary 1.2].

In Theorem 1.2 and Corollary 1.4 the integer k is assumed to be positive, that is, the case
k = 0 is excluded (which perhaps is not necessary). However, we have the following criterion
involving nice regulous maps, which are 0-regulous by definition.

Corollary 1.5. Let X be a compact nonsingular real algebraic variety and let k, p be two
nonnegative integers. Assume that a C∞ map f : X → S

p is homotopic to a nice regulous map.
Then f can be approximated by k-regulous maps in the Ck topology.

Proof. To deal with the case k = 0 we choose an integer l > k. Since f is homotopic to a nice
regulous map, it is also homotopic to a nice l-regulous map [Kuc09, Theorem 2.4]. Therefore,
by Corollary 1.4, f can be approximated by l-regulous maps in the Cl topology. The conclusion
follows. �

In connection with Corollary 1.5, it is natural to raise the question whether every regulous
map from X into S

p is homotopic to a nice regulous map. According to [Kuc09, Theorem 2.4], the
continuous maps into unit spheres that are homotopic to nice regulous maps are characterized
in terms of framed cobordism classes via the Pontryagin–Thom construction. Next we focus on
approximation by nice k-regulous maps.

Let X be a nonsingular real algebraic variety. If Z is a nonsingular Zariski locally closed
subset of X, then its Zariski closure V in X is of the form V = Z ∪W , where W is a Zariski
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closed subset of X with Z ∩W = ∅ and dimW < dimZ. Clearly, Z is precisely the nonsingular
locus of V , assuming that Z is closed in X (in the Euclidean topology). An illustrative example
is provided by Z = C \ {(0 : 0 : 1)}, where C is the singular cubic curve

C := {(x : y : z) ∈ P
2(R) : y2z − x3 − x2z = 0}

in the real projective plane P
2(R).

A compact C∞ submanifold M of X is said to admit a weak algebraic approximation if, for
every neighborhood U of the inclusion map M ↪→ X in the space C∞(M,X), there exists a C∞

embedding e : M → X in U such that e(M) is a nonsingular Zariski locally closed subset of X.
Assume that X is compact. A C∞ map f : X → S

p is said to be adapted (respectively, weakly
adapted) if there exists a regular value y ∈ S

p for f such that f−1(y) is a nonsingular Zariski
locally closed subset of X (respectively, the C∞ submanifold f−1(y) of X admits a weak algebraic
approximation).

Our main result on approximation of C∞ maps into unit spheres by nice k-regulous maps is
the following theorem.

Theorem 1.6. LetX be a compact nonsingular real algebraic variety and let k, p be two integers,
with k ≥ 0, p ≥ 1. Then, for a C∞ map f : X → S

p, the following conditions are equivalent.

(a) f can be approximated by nice k-regulous maps in the Ck topology.
(b) f can be approximated by adapted C∞ maps in the Ck topology.
(c) f can be approximated by weakly adapted C∞ maps in the Ck topology.

Using Theorem 1.6, we can obtain two approximation results that do not require any technical
assumptions.

Corollary 1.7. Let X be a compact nonsingular real algebraic variety of dimension p and let
k be a nonnegative integer. Then every C∞ map from X into S

p can be approximated by nice
k-regulous maps in the Ck topology.

Proof. Since dimX = p, every C∞ map from X into S
p is adapted, and hence the conclusion

follows from Theorem 1.6. �

For maps between unit spheres we have the following theorem.

Theorem 1.8. Let k be a nonnegative integer. Then, for every pair (n, p) of nonnegative integers,
every C∞ map from S

n into S
p can be approximated by nice k-regulous maps in the Ck topology.

Proof. Let M be a compact C∞ submanifold of S
n with dimM < n. Let a be a point in S

n \M
and let ρ : S

n \ {a} → R
n be the stereographic projection. By [AK92, Theorem A], the C∞ sub-

manifold ρ(M) of R
n admits a weak algebraic approximation. Since ρ is a biregular isomorphism,

M admits a weak algebraic approximation in S
n. Consequently, if p ≥ 1, then every C∞ map

S
n → S

p is weakly adapted, and hence the conclusion follows by Theorem 1.6. The case p = 0 is
trivial. �

It remains undecided whether or not for any pair (n, p) of nonnegative integers every C∞

map S
n → S

p can be approximated by regular maps in the C∞ (or C0) topology (see [BK22] for
more information).

We now turn to a different characterization of the C∞ maps into unit spheres that can be
approximated by nice k-regulous maps.

Let X be a compact nonsingular real algebraic variety and let p be an integer with 0 ≤ p ≤
n := dimX. Following [KK16, p. 19], we say that a cohomology class v ∈ Hp(X; Z/2) is adapted
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if the homology class in Hn−p(X; Z/2) Poincaré dual to v can be represented by a compact
(n− p)-dimensional C∞ submanifold Z of X, embedded with trivial normal bundle, such that
Z is a nonsingular Zariski locally closed subset of X. Denote by Ap(X; Z/2) the subgroup of
Hp(X; Z/2) generated by all adapted cohomology classes.

Theorem 1.9. Let X be a compact nonsingular real algebraic variety and let k, p be two
integers, with k ≥ 0, 2p ≥ dimX + 1. Then, for a C∞ map f : X → S

p, the following conditions
are equivalent.

(a) f can be approximated by nice k-regulous maps in the Ck topology.
(b) f can be approximated by nice regulous maps in the C0 topology.
(c) f is homotopic to a nice regulous map.
(d) f∗(σp) ∈ Ap(X; Z/2), where f∗ : Hp(Sp; Z/2) → Hp(X; Z/2) is the induced homomorphism

and σp is the unique nonzero element in Hp(Sp; Z/2) ∼= Z/2.

It is natural to wonder whether the assumption 2p ≥ dimX + 1 in Theorem 1.9 is necessary.
The following example sheds light on some relationships between regular, k-regulous, and

C∞ maps with values in unit spheres.

Example 1.10. Let k be a nonnegative integer and let T
n = S

1 × · · · × S
1 be the n-fold prod-

uct of S
1. One readily checks that Ap(Tn; Z/2) = Hp(Tn; Z/2) for 0 ≤ p ≤ n. Hence, in view

of Theorem 1.9, if 2p ≥ n+ 1, then every C∞ map T
n → S

p can be approximated by nice
k-regulous maps in the Ck topology. On the other hand, by [BK87b, Theorem 3.2], if n is a positive
even integer, then every regular map T

n → S
n is null homotopic (of course, there are C∞ maps

T
n → S

n that are not null homotopic and they do not admit approximation by regular maps
in the C0 topology). In particular, we cannot allow k = ∞ in Theorems 1.6 and 1.9 and in
Corollaries 1.5 and 1.7. Furthermore, according to [Kuc14a, Theorem 2.8], if n > p ≥ 1, then
there exist a nonsingular real algebraic variety X and a C∞ map f : X → S

p such that X is
diffeomorphic to T

n and f is not homotopic to any regulous map.

There is ample evidence that the phenomenon exhibited in Example 1.10 is quite com-
mon: k-regulous maps, where k is a nonnegative integer, are more flexible than regular maps.
Approximation by regular maps is investigated in [BW21, BK22] and numerous earlier papers
[BK87a, BK88, BK89, BK93, BK99, BK10, BKS97, Ghi06a, Ghi06b, Ghi07, Iva82, Jog00, JM04,
Kuc99, Kuc10, Man06, Oza95, Oza02].

Theorems 1.2, 1.6 and 1.9 are proved in § 4. The methods employed in the proof of
Theorem 1.2 are developed in §§ 2 and 3. The inspiration for these methods originates from
complex geometry, especially Gromov’s article [Gro89] and the related works of Forstnerič and
others elaborated in [For17]. Of independent interest are Theorems 3.6, 3.7, 4.2 and 4.3, which
are refined versions of Theorem 1.2. We derive Theorem 1.6 by combining Corollary 4.4 with
some results of [Kuc09]. For the proof of Theorem 1.9, essential are Theorem 1.6, [KK16] and
Benoist’s paper [Ben20]. The results on maps into unit spheres announced above are significant
improvements upon [Kuc14a, Kuc16a, KK16], which deal exclusively with approximation by nice
regulous maps in the C0 topology.

2. Malleability and local malleability properties

As in [KK18a], by a stratification of a real algebraic variety V we mean a finite collection V of
pairwise disjoint Zariski locally closed subsets whose union is V . Each element of V is called a
stratum; a stratum can be empty.
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Definition 2.1. Let k be a nonnegative integer or k = ∞, X and Y nonsingular real algebraic
varieties, X a stratification of X, and Y a stratification of Y .

A map f : X → Y is said to be (k,X )-regular if it is of class Ck and for each stratum S ∈ X
the restriction f |S : S → Y is a regular map. If, in addition, f(S) is contained in a stratum
T ∈ Y, then f is said to be (k,X ,Y)-regular.

We are now in a position to give an alternative description of k-regulous maps (see also
[KN15, Proposition 8] and [FHMM16, Théorème 4.1]).

Lemma 2.2. Let k, X, Y , X , Y be as in Definition 2.1.

(i) If a map f : X → Y is (k,X )-regular, then it is k-regulous.
(ii) If a map f : X → Y is k-regulous, then there exists a stratification X ′ of X such that

X \ P (f) is a stratum of X ′ and f is (k,X ′)-regular (P (f) is the Zariski closed subset of X
defined in § 1).

(iii) If a map f : X → Y is k-regulous, then there exists a stratification X ′′ of X such that f is
(k,X ′′,Y)-regular.

Proof. The proof of (i) is straightforward, and (ii) follows from [KN15, Proposition 8 and p. 91]
([KN15] deals with Y = R, but the general case follows at once because Y can be regarded as a
subvariety of R

p, for some p). To prove (iii), we choose a stratification X ′ as in (ii), and define

X ′′ := {(f |S)−1(T ) : S ∈ X ′ and T ∈ Y}. �
For the sake of clarity, we record the following corollary (see also [FHMM16, Corollaire 4.14]).

Corollary 2.3. LetX, Y , Z be nonsingular real algebraic varieties, and k a nonnegative integer
or k = ∞. Assume that f : X → Y and g : Y → Z are k-regulous maps. Then the composite map
g ◦ f is also k-regulous.

Proof. By Lemma 2.2(ii), there exists a stratification Y of Y such that the map g is (k,Y)-regular.
In view of Lemma 2.2(iii), we can choose a stratification X of X such that the map f is (k,X ,Y)-
regular. Consequently, the map g ◦ f is (k,X )-regular, so it is k-regulous by Lemma 2.2(i). �

In what follows we work with vector bundles, which are always R-vector bundles. Let Y be
a real algebraic variety. Given a vector bundle p : E → Y over Y , with total space E and bundle
projection p, we sometimes refer to E as a vector bundle over Y . If y is a point in Y , we let
Ey := p−1(y) denote the fiber of E over y and write 0y for the zero vector in Ey. We call the set
Z(E) := {0y ∈ E : y ∈ Y } the zero section of E.

For the general theory of algebraic vector bundles over real algebraic varieties we refer the
reader to [BCR98, § 12.1]. For each algebraic vector bundle E over Y there exist a nonnegative
integer n and a surjective algebraic morphism from the product vector bundle Y × R

n onto E
[BCR98, Theorem 12.1.7].

Assuming that Y is a nonsingular real algebraic variety, we write TY for the tangent bundle
to Y , and TyY for the tangent space to Y at y ∈ Y .

The following notions will be crucial in the proofs of all our main theorems.

Definition 2.4. Let Y be a nonsingular real algebraic variety, and k a positive integer or k = ∞.

(i) A k-regulous spray for Y is a triple (E, p, s), where p : E → Y is an algebraic vector bundle
over Y and s : E → Y is a k-regulous map such that s(0y) = y for all y ∈ Y .

(ii) A k-regulous spray (E, p, s) for Y is said to be dominating if the derivative

d0ys : T0yE → TyY
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maps the subspace Ey = T0yEy of T0yE onto TyY , that is,

d0ys(Ey) = TyY for all y ∈ Y.

(iii) The variety Y is called k-malleable if it admits a dominating k-regulous spray.

For simplicity, ∞-regulous sprays, dominating ∞-regulous sprays and ∞-malleable varieties are
called sprays, dominating sprays and malleable varieties, respectively.

Since ∞-regulous maps are regular, it follows that the concepts of spray, dominating spray,
and malleable variety in Definition 2.4 above are identical with those in [BK22, Definition 2.1].

Lemma 2.5. Let Y be a nonsingular real algebraic variety, and k a positive integer or k = ∞.
If the variety Y is k-malleable, then it admits a dominating k-regulous spray (E, p, s) such that
p : E = Y × R

n → Y is the product vector bundle.

Proof. Let (Ẽ, p̃, s̃) be a dominating k-regulous spray for Y . Choose a nonnegative integer n and
a surjective algebraic morphism α : E → Ẽ from the product vector bundle p : E = Y × R

n →
Y onto p̃ : Ẽ → Y . By Corollary 2.3, the map s : E → Y , s(y, v) = s̃(α(y, v)) is k-regulous, so
(E, p, s) is a dominating k-regulous spray for Y . �

We now recall important examples of malleable real algebraic varieties.

Example 2.6. Let G be a linear real algebraic group, that is, a Zariski closed subgroup of the
general linear group GLn(R), for some n. A G-space is a real algebraic variety Y on which G
acts, the action G× Y → Y , (a, y) �→ a · y being a regular map. We say that a G-space Y is good
if Y is nonsingular and for every point y ∈ Y the derivative of the map G→ Y , a �→ a · y at the
identity element of G is surjective. Clearly, if Y is homogeneous for G (that is, G acts transitively
on Y ), then Y is a good G-space. By [BK22, Proposition 2.8], each good G-space is malleable.

In particular, the unit n-sphere S
n and real projective n-space P

n(R) are malleable varieties,
being homogeneous spaces for the orthogonal group O(n+ 1) ⊂ GLn+1(R).

It is also convenient to introduce the following definition.

Definition 2.7. Let Y be a nonsingular real algebraic variety.

(i) A local spray for Y is a regular map σ : U × R
n → Y , where U is a Zariski open subset of

Y and n is a nonnegative integer, such that σ(y, 0) = y for all y ∈ U .
(ii) A local spray σ : U × R

n → Y for Y is said to be dominating if for every point y ∈ U the
derivative of the map σ(y, ·) : R

n → Y , v �→ σ(y, v) at 0 ∈ R
n is surjective.

(iii) The variety Y is called locally malleable if for every point p ∈ Y there exists a dominating
local spray σ : U × R

n → Y for Y with p ∈ U .

It follows directly from Definitions 2.4 and 2.7 that each malleable real algebraic variety is
locally malleable. It is plausible that the converse also holds, but we can only prove the following
weaker result.

Proposition 2.8. Let Y be a locally malleable nonsingular real algebraic variety. Then, for
each positive integer k, the variety Y is k-malleable.

Proof. Since the variety Y is quasi-compact in the Zariski topology, there exists a finite collection
{σi : Ui × R

ni → Y : i = 1, . . . , q} of dominating local sprays for Y such that the Zariski open
sets Ui are nonempty and cover Y . Choose a regular function ϕi : Y → R with ϕ−1

i (0) = Y \ Ui

for i = 1, . . . , q.
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Let k be a positive integer. By Lemma 2.9 below, there exists a positive integer r such that
for i = 1, . . . , q the map σ

(r)
i : Y × R

ni → Y defined by

σ
(r)
i (y, vi) =

{
σi(y, ϕi(y)rvi) for (y, vi) ∈ Ui × R

ni

y for (y, vi) ∈ (Y \ Ui) × R
ni

is k-regulous. Moreover, by construction, for every point y ∈ Ui the derivative of the map
σ

(r)
i (y, ·) : R

ni → Y , vi �→ σ
(r)
i (y, vi) at 0 ∈ R

ni is surjective. For i = 1, . . . , q, we define recursively
a map si : Y × R

n1 × · · · × R
ni → Y by

si = σ
(r)
1 for i = 1,

si(y, v1, . . . , vi−1, vi) = σ
(r)
i (si−1(y, v1, . . . , vi−1), vi) for i ≥ 2.

By Corollary 2.3, the maps si are k-regulous. We obtain a dominating k-regulous spray (E, p, s)
for Y , where

p : E = Y × R
n1 × · · · × R

nq → Y

is the product vector bundle and s = sq. Thus, the variety Y is k-malleable. �
In the proof of Proposition 2.8 we invoked the following lemma.

Lemma 2.9. Let Y be a nonsingular real algebraic variety, U a nonempty Zariski open subset
of Y , and τ : U × R

n → Y a regular map satisfying τ(y, 0) = y for all y ∈ U . Let ϕ : Y → R be
a regular function with ϕ−1(0) = Y \ U . Then, for each nonnegative integer k, there exists a
positive integer r(k) such that for every integer r ≥ r(k) the map τ (r) : Y × R

n → Y defined by

τ (r)(y, w) =

{
τ(y, ϕ(y)rw) for (y, w) ∈ U × R

n

y for (y, w) ∈ (Y \ U) × R
n

is k-regulous.

Proof. We may assume that Y is an algebraic subset of R
m. Then

τ(y, w) = (τ1(y, w), . . . , τm(y, w)) for all (y, w) ∈ U × R
n,

where the τi : U × R
n → R are regular functions for i = 1, . . . ,m. Note that

τi(y, 0) = yi for all y = (y1, . . . , ym) ∈ U.

By [BCR98, Proposition 3.2.3], there exist polynomial functions pi, qi : R
m × R

n → R such that

q−1
i (0) ∩ (U × R

n) = ∅ and τi(y, w) =
pi(y, w)
qi(y, w)

for all (y, w) ∈ U × R
n.

We get

τi(y, w) − τi(y, 0) =
pi(y, w)qi(y, 0) − pi(y, 0)qi(y, w)

qi(y, w)qi(y, 0)

and hence

τi(y, w) = yi +
n∑

j=1

τij(y, w)wj ,

where the τij : U × R
n → R are regular functions and w = (w1, . . . , wn).

Let k be a nonnegative integer and let π : Y × R
n → Y be the canonical projection. Since

(ϕ ◦ π)−1(0) = (Y × R
n) \ (U × R

n), there exists a positive integer r(k) such that for each integer
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r ≥ r(k) the functions τ (r)
ij : Y × R

n → R defined by

τ
(r)
ij (y, w) =

{
τij(y, w)ϕ(y)r for (y, w) ∈ U × R

n

0 for (y, w) ∈ (Y × R
n) \ (U × R

n)

are of class Ck for i = 1, . . . ,m, j = 1, . . . , n (see [Kuc17, Proposition 3.4], and also [FHMM16,
Lemma 5.2] for Y = R

m). Now we define a map τ (r) : Y × R
n → R

m by

τ (r)(y, w) = (τ (r)
1 (y, w), . . . , τ (r)

m (y, w)),

where

τ
(r)
i (y, w) = yi +

n∑
j=1

τ
(r)
ij (y, ϕ(y)rw)wj for i = 1, . . . ,m.

By construction, the map τ (r) is of class Ck. Furthermore,

τ (r)(y, w) =

{
τ(y, ϕ(y)rw) for (y, w) ∈ U × R

n

y for (y, w) ∈ (Y \ U) × R
n.

The proof is complete because the restrictions of τ (r) to U × R
n and (Y \ U) × R

n are regular
maps. �

Further study is needed to reveal the relationship between uniform rationality and
k-malleability.

We consider R
n endowed with the Euclidean norm ‖−‖. If A is a nonempty subset of R

n and
x ∈ R

n, we write dist(x,A) for the Euclidean distance from x to A.

Lemma 2.10. Let X be a real algebraic variety, n a nonnegative integer, and U a Zariski open
neighborhood of X × {0} in X × R

n. Then there exists a regular function ε : X → R such that

ε(x) > 0 and

(
x, ε(x)

v

1 + ‖v‖2

)
∈ U for all (x, v) ∈ X × R

n.

Proof. We may assume that X is an algebraic subset of R
m and U �= X × R

n. Then we choose
a polynomial function η : R

m × R
n → R such that η(x, v) ≥ 0 for all (x, v) ∈ R

m × R
n and the

zero set of η is the algebraic subset Z := (X × R
n) \ U of R

m × R
n. Since the distance function

R
m × R

n → R, (x, v) �→ dist((x, v), Z)

is a continuous semialgebraic function whose zero set is Z, by [BCR98, Theorem 2.6.6], there
exist a positive integer N and a continuous semialgebraic function h : R

m × R
n → R such that

η(x, v)N = h(x, v) dist((x, v), Z) for all (x, v) ∈ R
m × R

n.

Thus, according to [BCR98, Proposition 2.6.2], there exist a real constant c > 0 and a positive
integer r such that

|h(x, v)| ≤ c(1 + ‖(x, v)‖2)r for all (x, v) ∈ R
m × R

n.

Consequently,
η(x, 0)N ≤ c(1 + ‖x‖2)r dist((x, 0), Z) for all x ∈ X.

It follows that the function ε : X → R defined by

ε(x) =
η(x, 0)N

2c(1 + ‖x‖2)r
for all x ∈ X

has the required properties. �
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Proposition 2.11. Let Y be a malleable nonsingular real algebraic variety. Then every Zariski
open subset Y0 of Y is a malleable variety.

Proof. By Lemma 2.5, there exists a spray (E, p, s) for Y such that p : E = Y × R
n → Y is the

product vector bundle. Let p0 : E0 = Y0 × R
n → Y0 be the product vector bundle over Y0. Note

that the set U := E0 ∩ s−1(Y0) is a Zariski open neighborhood of Y0 × {0} in E0. By Lemma 2.10,
there exists a regular function ε : Y0 → R such that

ε(y) > 0 and
(
y, ε(y)

v

1 + ‖v‖2

)
∈ U for all (y, v) ∈ E0.

Obviously, the map

s0 : Y0 × R
n → Y0, (y, v) �→ s

(
y, ε(y)

v

1 + ‖v‖2

)
is regular. Since the derivative of the map

R
n → R

n, v �→ v

1 + ‖v‖2

at 0 ∈ R
n is an isomorphism, it follows that (E0, p0, s0) is a dominating spray for Y0. Thus, Y0

is a malleable variety. �
Proposition 2.11 is a rich source of new examples of malleable real algebraic varieties.

Example 2.12. Let Y be a real algebraic variety that is a homogeneous space for some linear real
algebraic group. As recalled in Example 2.6, Y is a malleable variety. Thus, by Proposition 2.11,
every Zariski open subset of Y is a malleable variety.

Proposition 2.13. Every uniformly rational real algebraic variety is locally malleable.

Proof. According to Definition 1.1, it suffices to prove that every Zariski open subset of R
n is

a malleable variety. This follows immediately from Proposition 2.11 because R
n is a malleable

variety (to see that R
n is malleable, consider the map R

n × R
n → R

n, (y, v) �→ y + v). �
Corollary 2.14. Let k be a positive integer. Every uniformly rational real algebraic variety is
k-malleable.

Proof. It suffices to combine Propositions 2.8 and 2.13. �

3. Sections of malleable submersions

We will use freely terminology and notation introduced in § 2.

Notation 3.1. Let X, Z be nonsingular real algebraic varieties, and let h : Z → X be a regular
map that is a surjective submersion. Furthermore, let V (h) denote the algebraic vector subbundle
of the tangent bundle TZ to Z defined by

V (h)z = Ker(dzh : TzZ → Th(z)X) for all z ∈ Z,

where dzh is the derivative of h at z. Clearly, V (h)z is the tangent space to the fiber h−1(h(z)).

Let k be a nonnegative integer or k = ∞, U an open subset of X, and X a stratification of X.
A map f : U → Z is called a section (over U) of h : Z → X if h(f(x)) = x for all x ∈ U . A section
that is a Ck map is called a Ck section. By a homotopy of Ck sections we mean a continuous
map F : U × [0, 1] → Z such that Ft : U → Z, x �→ F (x, t) is a Ck section for every t ∈ [0, 1].
Two Ck sections f0, f1 : U → Z are said to be homotopic through Ck sections if there exists a
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homotopy F : U × [0, 1] → Z of Ck sections with F0 = f0 and F1 = f1. A global section g : X → Z
that is a k-regulous (respectively, (k,X )-regular) map is called a k-regulous (respectively,
(k,X )-regular) section. We say that a Ck section f : U → Z can be approximated by global
k-regulous (respectively, global (k,X )-regular) sections in the Ck topology if for every neighbor-
hood U of f in the space Ck(U,Z) of all Ck maps there exists a global k-regulous (respectively,
global (k,X )-regular) section g : X → Z such that g|U belongs to U . To study approximation by
global k-regulous or global (k,X )-regular sections, we need several notions and auxiliary results.

Definition 3.2. Let h : Z → X be the submersion of Notation 3.1, and k a positive integer or
k = ∞.

(i) A k-regulous spray for h : Z → X is a triple (E, p, s), where p : E → Z is an algebraic vector
bundle over Z and s : E → Z is a k-regulous map such that

s(Ez) ⊆ h−1(h(z)) and s(0z) = z for all z ∈ Z.

(ii) A k-regulous spray (E, p, s) for h : Z → X is said to be dominating if the derivative
d0zs : T0zE → TzZ maps the subspace Ez = T0zEz of T0zE onto V (h)z, that is,

d0zs(Ez) = V (h)z for all z ∈ Z.

(iii) The submersion h : Z → X is called k-malleable if it admits a dominating k-regulous spray.

For simplicity, ∞-regulous sprays, dominating ∞-regulous sprays and ∞-malleable submersions
are called sprays, dominating sprays and malleable submersions, respectively.

Note that if X is reduced to a point, then Definition 3.2 coincides with Definition 2.4.
Since ∞-regulous maps are regular, it follows that the concepts of spray, dominating spray, and
malleable submersion in Definition 3.2 above are identical with those in [BK22, Definition 3.2].
Basic properties of dominating sprays for h : Z → X are established in [BK22, § 3]. Taking into
account all the necessary modifications, in the next lemmas we prove analogous results for
k-regulous sprays.

Lemma 3.3. Let h : Z → X be the submersion of Notation 3.1, and k a positive integer or
k = ∞. If the submersion h : Z → X is k-malleable, then it admits a dominating k-regulous
spray (E, p, s) such that p : E = Z × R

n → Z is the product vector bundle.

Proof. Let (Ẽ, p̃, s̃) be a dominating k-regulous spray for h : Z → X. Choose a nonnegative
integer n and a surjective algebraic morphism α : E → Ẽ from the product vector bundle
p : E = Z × R

n → Z onto p̃ : Ẽ → Z. By Corollary 2.3, the map s : E → Z, s(z, v) = s̃(α(z, v))
is regulous, so (E, p, s) is a dominating k-regulous spray for h : Z → X. �
Lemma 3.4. Let h : Z → X be the submersion of Notation 3.1, and k a positive integer or
k = ∞. Suppose that (E, p, s) is a dominating k-regulous spray for h : Z → X. Let U be an open
subset of X and let F : U × [0, 1] → Z be a homotopy of Ck sections of h : Z → X. Let U0 be an
open subset of X whose closure U0 is compact and contained in U . Let t0 be a point in [0, 1].
Then there exist a neighborhood I0 of t0 in [0, 1] and a continuous map ξ : U0 × I0 → E such
that

(3.4.1) p(ξ(x, t)) = F (x, t0) for all (x, t) ∈ U0 × I0,
(3.4.2) ξ(x, t0) = 0F (x,t0) for all x ∈ U0,
(3.4.3) s(ξ(x, t)) = F (x, t) for all (x, t) ∈ U0 × I0,
(3.4.4) for every t ∈ I0 the map U0 → E, x �→ ξ(x, t) is of class Ck.
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Proof. Consider the Ck−1 morphism

α : E → V (h), v �→ d0p(v)
s(v)

of algebraic vector bundles (by convention, ∞− 1 = ∞). Since α is a surjective morphism, its
kernel K is a Ck−1 vector subbundle of E. Hence, E can be written as the direct sum E =
E′ ⊕K for some Ck−1 vector subbundle E′ of E. The restriction α|E′ : E′ → V (h) is a Ck−1

isomorphism of vector bundles, so we can choose a Ck−1 morphism β : V (h) → E that induces
an isomorphism of V (h) onto E′. Let ϕ be the global Ck−1 section of the algebraic vector bundle
Hom(V (h), E) that is determined by β. If ψ is a Ck section of Hom(V (h), E) sufficiently close
to ϕ in the strong C0 topology (see [Hir97, p. 35] for the definition of the strong C0 topology),
then the Ck morphism γ : V (h) → E corresponding to ψ is injective and the image of γ is a Ck

vector subbundle p̂ : Ê → Z of p : E → Z such that E = Ê ⊕K. By construction, the restriction
α|Ê : Ê → V (h) is a Ck−1 isomorphism.

Let f : U → Z be a Ck section of h : Z → X defined by f(x) = F (x, t0) for all x ∈ U . Denote
by pf : Êf → U the pullback of the vector bundle p̂ : Ê → Z under the map f . Recall that
pf : Êf → U is a Ck vector bundle, where

Êf := {(x, v) ∈ U × Ê : f(x) = p̂(v)}, pf (x, v) = x.

Note that

sf : Êf → Z, sf (x, v) = s(v)

is a Ck map.
Let x ∈ U . The zero vector in the fiber (Êf )x is (x, 0f(x)), where 0f(x) is the zero vector in the

fiber Êf(x). Since sf (x, 0f(x)) = s(0f(x)) = f(x), it follows that sf induces a Ck diffeomorphism
between the zero section Z(Êf ) and f(U). Moreover, the derivative

d(x,0f(x))sf : T(x,0f(x))Êf → Tf(x)Z

is an isomorphism because

d0zs|Êz
= α|Êz

: Êz → V (h)z

is an isomorphism for all z ∈ Z. Consequently, sf is a local diffeomorphism at the point (x, 0f(x)).
Thus, by [BJ82, (12.7)], there exist an open neighborhood M ⊆ Êf of the zero section Z(Êf )
and an open neighborhood N ⊆ Z of f(U) such that the restriction σ : M → N of sf : Êf → Z
is a Ck diffeomorphism.

Since U0 is a compact subset of U , we can choose an open neighborhood I0 of t0 in [0, 1] such
that Ft(U0) ⊆ N for all t ∈ I0. Therefore, for each t ∈ I0, there exists a unique Ck map ζt : U0 →
Êf satisfying ζt(U0) ⊆M and Ft(x) = σ(ζt(x)) for all x ∈ U0. We have ζt(x) = (αt(x), ξt(x)),
where αt : U0 → U and ξt : U0 → Ê ⊆ E are Ck maps with

f(αt(x)) = p̂(ξt(x)) = p(ξt(x)) and s(ξt(x)) = Ft(x).

By Definition 3.2(i), s(ξt(x)) ∈ h−1(h(p(ξt(x)))), and hence

h(s(ξt(x))) = h(f(αt(x))) = αt(x).

On the other hand,

h(s(ξt(x))) = h(Ft(x)) = x.
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Consequently, αt(x) = x. It follows that ζt : U0 → Êf is a Ck section, over U0, of the vector bundle
pf : Êf → U . Clearly, ζt0(U0) ⊆ Z(Êf ). Furthermore, the map

ζ : U0 × I0 → Êf , (x, t) �→ ζt(x)

is continuous. Note that ζ(x, t) = (x, ξ(x, t)), where

ξ : U0 × I0 → Ê ⊆ E, (x, t) �→ ξt(x)

is a continuous map with p(ξ(x, t)) = f(x) = F (x, t0) for all (x, t) ∈ U0 × I0. By construction,
the map ξ satisfies conditions (3.4.1)–(3.4.4). �

We now state the following key lemma.

Lemma 3.5. Assume that the submersion h : Z → X of Notation 3.1 is k-malleable, where k is
a nonnegative integer or k = ∞. Let U be an open subset of X and let F : U × [0, 1] → Z be a
homotopy of Ck sections of h : Z → X. Let U0 be an open subset ofX whose closure U0 is compact
and contained in U . Then there exist a dominating k-regulous spray (E, p, s) for h : Z → X
and a continuous map ξ : U0 × [0, 1] → E such that p : E = Z × R

n → Z is the product vector
bundle and ξ(x, t) = (F (x, 0), η(x, t)) for all (x, t) ∈ U0 × [0, 1], where the map η : U0 × [0, 1] →
R

n satisfies

(3.5.1) η(x, 0) = 0 for all x ∈ U0,
(3.5.2) s(F (x, 0), η(x, t)) = F (x, t) for all (x, t) ∈ U0 × [0, 1],
(3.5.3) for every t ∈ [0, 1] the map U0 → R

n, x �→ η(x, t) is of class Ck.

Proof. By Lemma 3.3, the submersion h : Z → X admits a dominating k-regulous spray (Ẽ, p̃, s̃)
such that p̃ : Ẽ = Z × R

m → Z is the product vector bundle. In view of Lemma 3.4 and the
compactness of the interval [0, 1] (see the Lebesgue lemma for compact metric spaces [Bre93,
p. 28, Lemma 9.11]), there exists a partition 0 = t0 < t1 < · · · < tr = 1 of [0, 1] such that for each
i = 1, . . . , r there exists a continuous map ξi : U0 × [ti−1, ti] → Ẽ with the following properties:

• ξi(x, t) = (F (x, ti−1), ηi(x, t)) for all (x, t) ∈ U0 × [ti−1, ti],
• ηi(x, ti−1) = 0 for all x ∈ U0,
• s̃(F (x, ti−1), ηi(x, t)) = F (x, t) for all (x, t) ∈ U0 × [ti−1, ti],
• for every t ∈ [ti−1, ti] the map U0 → R

m, x �→ ηi(x, t) is of class Ck.

For i = 1, . . . , r we define recursively a dominating k-regulous spray (E(i), p(i), s(i)) for h : Z → X
by

(E(i), p(i), s(i)) = (Ẽ, p̃, s̃) if i = 1,

while for i ≥ 2 we require

p(i) : E(i) = Z × (Rm)i → Z

to be the product vector bundle and set

s(i) : E(i) → Z, s(i)(z, v1, . . . , vi) = s(1)(s(i−1)(z, v1, . . . , vi−1), vi),

where z ∈ Z and v1, . . . , vi ∈ R
m (the map s(i) is k-regulous by Corollary 2.3).

In particular, (E, p, s) := (E(r), p(r), s(r)) is a dominating k-regulous spray for h : Z → X.
Note that p : E = Z × R

n → Z is the product vector bundle with R
n = (Rm)r. Now, consider
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a map

ξ : U0 × [0, 1] → E, ξ(x, t) = (F (x, 0), η(x, t)),

where η : U0 × [0, 1] → R
n = (Rm)r is defined by

η(x, t) = (η1(x, t), 0, . . . , 0)

for all (x, t) ∈ U0 × [t0, t1], and

η(x, t) = (η1(x, t1), . . . , ηi−1(x, ti−1), ηi(x, t), 0, . . . , 0)

for all (x, t) ∈ U0 × [ti−1, ti] with i = 2, . . . , r. One readily checks that η is a well-defined
continuous map satisfying (3.5.1)–(3.5.3). �

Now we are ready to prove the following approximation result for sections.

Theorem 3.6. Assume that the submersion h : Z → X of Notation 3.1 is k-malleable, where k
is a nonnegative integer or k = ∞. Let U be an open subset of X and let f : U → Z be a Ck

section of h : Z → X that is homotopic through Ck sections to the restriction f0|U of a global
k-regulous section f0 : X → Z. Then f can be approximated by global k-regulous sections.

Proof. Let F : U × [0, 1] → Z be a homotopy of Ck sections such that F0 = f0|U and F1 = f .
Let U0 be an open subset of X whose closure U0 is compact and contained in U , and let
(E, p, s), ξ : U0 × [0, 1] → E, ξ(x, t) = (F (x, 0), η(x, t)), η : U0 × [0, 1] → R

n, be as in Lemma 3.5.
In particular, we have

s(f0(x), η(x, 1)) = s(F (x, 0), η(x, 1)) = F (x, 1) = f(x) for all x ∈ U0.

By the Weierstrass approximation theorem, there exists a regular map β : X → R
n such that the

restriction β|U0 is arbitrarily close to the Ck map η1 : U0 → R
n, x �→ η(x, 1) in the Ck topology.

Then

g : X → Z, x �→ s(f0(x), β(x))

is a k-regulous map (by Corollary 2.3) such that g|U0 is close to f |U0 in the Ck topology. Moreover,
in view of Definition 3.2(i), g : X → Z is a section of h : Z → X. The proof is complete because
U0 is chosen in an arbitrary way. �

We also have the following variant of Theorem 3.6.

Theorem 3.7. Assume that the submersion h : Z → X of Notation 3.1 is malleable. Let X
be a stratification of X, and k a positive integer or k = ∞. Let U be an open subset of X
and let f : U → Z be a Ck section of h : Z → X that is homotopic through Ck sections to the
restriction f0|U of a global (k,X )-regular section f0 : X → Z. Then f can be approximated by
global (k,X )-regular sections in the Ck topology.

Proof. Let F : U × [0, 1] → Z be a homotopy of Ck sections such that F0 = f0|U and F1 = f .
Let U0 be an open subset of X whose closure U0 is compact and contained in U , and let
(E, p, s), ξ : U0 × [0, 1] → E, ξ(x, t) = (F (x, 0), η(x, t)), η : U0 × [0, 1] → R

n be as in Lemma 3.5
(with k = ∞, in which case s : E → X is a regular map). In particular, we have

s(f0(x), η(x, 1)) = s(F (x, 0), η(x, 1)) = F (x, 1) = f(x) for all x ∈ U0.

By the Weierstrass approximation theorem, there exists a regular map β : X → R
n such that the

restriction β|U0 is arbitrarily close to the Ck map η1 : U0 → R
n, x �→ η(x, 1) in the Ck topology.
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Then

g : X → Z, x �→ s(f0(x), β(x))

is a (k,X )-regular map such that g|U0 is close to f |U0 in the Ck topology. Moreover, in view
of Definition 3.2(i), g : X → Z is a section of h : Z → X. The proof is complete because U0 is
chosen in an arbitrary way. �

The most important special cases of Theorems 3.6 and 3.7 are obtained by taking U = X.

4. Applications

To discuss applications of Theorems 3.6 and 3.7 we need the following observation.

Lemma 4.1. Let X, Y be nonsingular real algebraic varieties, and k a positive integer or k = ∞.
Assume that the variety Y is k-malleable. Then the canonical projection

h : X × Y → X, (x, y) �→ x

is a k-malleable submersion.

Proof. Let (E, p, s) be a dominating k-regulous spray for Y . We obtain a dominating k-regulous
spray (Ẽ, p̃, s̃) for h : X × Y → X setting

Ẽ = {((x, y), v) ∈ (X × Y ) × E : y = p(v)},
p̃ : Ẽ → X × Y, ((x, y), v) �→ (x, y),

s̃ : Ẽ → X × Y, ((x, y), v) �→ (x, s(v)). �
Theorem 4.2. Let X, Y be nonsingular real algebraic varieties, and k a positive integer or
k = ∞. Assume that the variety Y is k-malleable. Then, for a Ck map f : X → Y , the following
conditions are equivalent.

(a) f can be approximated by k-regulous maps in the Ck topology.
(b) f is homotopic to a k-regulous map.

Proof. The implication (a)⇒ (b) holds because X deformation retracts to some compact subset
K ⊂ X [BCR98, Corollary 9.3.7], and any two continuous maps from K into Y that are suffi-
ciently close in the compact-open topology are homotopic (the latter assertion is valid if Y is an
arbitrary C∞ manifold).

It remains to prove (b)⇒ (a). To this end let Φ: X × [0, 1] → Y be a homotopy such that Φ0 is
a k-regulous map and Φ1 = f . We may assume that Φ is a Ck map (see [Lee03, Proposition 10.22
and its proof]). By Lemma 4.1, the canonical projection h : X × Y → X is k-malleable. Since

F : X × [0, 1] → X × Y, (x, t) �→ (x,Φ(x, t))

is a homotopy of Ck sections of h : X × Y → X, it follows from Theorem 3.6 that the Ck section

X → X × Y, x �→ (x, f(x))

can be approximated by k-regulous sections in the Ck topology, hence (a) holds. �
Proof of Theorem 1.2. By Corollary 2.14, the variety Y is k-malleable, so it suffices to apply
Theorem 4.2. �

Theorem 4.2 not only implies Theorem 1.2, but is in fact more general. Indeed, as
recalled in Example 2.6, if G is a linear real algebraic group, then any good G-space Y is a
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malleable variety. However, it may be the case that Y is not rational. This latter fact was
communicated to me independently by Olivier Benoist and Olivier Wittenberg.

Theorem 4.3. Let X, Y be nonsingular real algebraic varieties, X a stratification of X, and
k a positive integer or k = ∞. Assume that the variety Y is malleable. Then, for a Ck map
f : X → Y , the following conditions are equivalent.

(a) f can be approximated by (k,X )-regular maps.
(b) f is homotopic to a (k,X )-regular map.

Proof. We proceed as in the proof of Theorem 4.2, using Theorem 3.7 instead of Theorem 3.6. �
As recalled in Example 2.6, unit spheres are malleable varieties, so Theorem 4.3 immediately

implies the following corollary.

Corollary 4.4. Let X be a nonsingular real algebraic variety, X a stratification of X, p a non-
negative integer, and k a positive integer or k = ∞. Then, for a Ck map f : X → S

p, the following
conditions are equivalent.

(a) f can be approximated by (k,X )-regular maps.
(b) f is homotopic to a (k,X )-regular map.

Next we prove our results on approximation by nice k-regulous maps announced in § 1.

Proof of Theorem 1.6. (a)⇒ (b). It is sufficient to prove that any nice k-regulous map g : X → S
p

can be approximated by adapted C∞ maps in the Ck topology. By Sard’s theorem, there exists a
regular value y ∈ S

p \ g(P (g)) for the map g|X\P (g) : X \ P (g) → S
p. Using partition of unity and

radial projection R
p+1 \ {0} → S

p, we readily construct a C∞ map g̃ : X → S
p, arbitrarily close

to g in the Ck topology, such that g̃−1(y) = g−1(y) and g̃ = g in a neighborhood of g−1(y). By
construction, g̃−1(y) is a nonsingular Zariski locally closed subset of X, so the map g̃ is adapted.

(b)⇒ (a). Our argument is based on Corollary 4.4, so to handle the case k = 0 we choose
an integer l > k. We may assume without loss of generality that the C∞ map f is adapted.
Let y0 ∈ S

p be a regular value for f such that f−1(y0) is a nonsingular Zariski locally closed
subset of X. By [Kuc09, Theorems 2.4 and 2.5], there exists a nice l-regulous map ϕ : X → S

p,
homotopic to f , such that ϕ−1(y0) = f−1(y0) and ϕ(P (ϕ)) ⊆ {−y0}. Clearly,

f(P (ϕ)) ⊂ S
p \ {y0}.

Using Lemma 2.2(ii), we choose a stratification X of X such that X \ P (ϕ) is a stratum in X and
the map ϕ is (l,X )-regular. By Corollary 4.4, f can be approximated by (l,X )-regular maps in
the Cl topology. Consequently, f can be approximated by (k,X )-regular maps in the Ck topology.
If f̃ : X → S

p is a (k,X )-regular map close to f in the Ck topology, then f̃(P (ϕ)) ⊂ S
p \ {y0}.

Since P (f̃) ⊆ P (ϕ), the map f̃ is k-regulous and nice, hence (a) holds.
(c)⇒ (b). For the proof we may assume that the map f is weakly adapted. Let z0 ∈ S

p

be a regular value for f such that the C∞ submanifold f−1(z0) of X admits a weak algebraic
approximation. It follows that f−1(z0) is isotopic in X, via an arbitrarily small C∞ isotopy, to
a nonsingular Zariski locally closed subset Z of X. Such an isotopy can be extended to a C∞

ambient isotopy of X, close to the identity map of X in the space C∞(X,X) (see [Hir97, pp. 179,
180]). Thus, there exists a C∞ diffeomorphism σ : X → X such that σ(f−1(z0)) = Z and the
composite map f ◦ σ−1 is close to f in the Ck topology. By construction, z0 is a regular value
for the C∞ map f ◦ σ−1, and (f ◦ σ−1)−1(z0) = Z. Consequently, the map f ◦ σ−1 is adapted, as
required.

The proof is complete since the implication (b)⇒ (c) is obvious. �
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Proof of Theorem 1.9. (d)⇒ (a). Let M be a compact C∞ submanifold of X, with

2 dimM + 1 ≤ dimX,

such that the unoriented bordism class of the inclusion map i : M ↪→ X is algebraic, that is,
representable by a regular map from a compact nonsingular real algebraic variety into X. By
Benoist’s theorem [Ben20, Theorem 2.7], M admits an algebraic approximation in X, that is,
for every neighborhood U of i in the space C∞(M,X) there exists a C∞ embedding e : M → X
in U such that e(M) is a nonsingular Zariski closed subset of X (in particular, M admits a weak
algebraic approximation in X).

Now suppose that (d) holds. By Sard’s theorem, there exists a regular value y ∈ S
p for f .

It is well known that the Z/2-homology class represented by the C∞ submanifold f−1(y) of X
is Poincaré dual to the cohomology class f∗(σp) ∈ Hp(X; Z/2) (see [BH61, Proposition 2.15].
Therefore, by [KK16, Lemma 2.3], the unoriented bordism class of the inclusion map f−1(y) ↪→ X
is algebraic. Consequently, by the Benoist theorem mentioned above, the C∞ submanifold f−1(y)
admits an algebraic approximation in X. Thus, the C∞ map f is weakly adapted, so, in view of
Theorem 1.6, condition (a) holds.

(c)⇒ (d). Let g : X → S
p be a nice regulous map homotopic to f . Choose a regular value

z ∈ S
p \ g(P (g)) of the map g|X\P (g) : X \ P (g) → S

p. Clearly, the compact C∞ submanifold
g−1(z) of X is a nonsingular Zariski locally closed subset. The Z/2-homology class represented by
g−1(z) is Poincaré dual to the cohomology class g∗(σp) ∈ Hp(X; Z/2). We have f∗(σp) = g∗(σp),
the maps f, g being homotopic. It follows that the cohomology class f∗(σp) is adapted, and hence
(d) holds.

The proof is complete since the implications (a)⇒ (b) and (b)⇒ (c) are obvious. �

Acknowledgements

The author was partially supported by the National Science Center (Poland) under grant number
2018/31/B/ST1/01059.

Conflicts of Interest

None.

References

AK92 S. Akbulut and H. King, On approximating submanifolds by algebraic sets and a solution to
the Nash conjecture, Invent. Math. 107 (1992), 87–97.

Ben20 O. Benoist, On the subvarieties with nonsingular real loci of a real algebraic variety, Geom.
Topol., to appear. Preprint (2020), arXiv:2005.06424.

BW21 O. Benoist and O. Wittenberg, The tight approximation property, J. Reine Angew. Math.
776 (2021), 151–200.

BKVV13 M. Bilski, W. Kucharz, A. Valette and G. Valette, Vector bundles and regulous maps,
Math. Z. 275 (2013), 403–418.

BCR98 J. Bochnak, M. Coste and M.-F. Roy, Real algebraic geometry, Ergebnisse der Mathematik
und ihrer Grenzgebiete, vol. 36 (Springer, 1998).

BK87a J. Bochnak and W. Kucharz, Algebraic approximation of mappings into spheres, Michigan
Math. J. 34 (1987), 119–125.

BK87b J. Bochnak and W. Kucharz, Realization of homotopy classes by algebraic mappings, J. Reine
Angew. Math. 377 (1987), 159–169.

17

https://doi.org/10.1112/S0010437X23007522 Published online by Cambridge University Press

https://arxiv.org/abs/2005.06424
https://doi.org/10.1112/S0010437X23007522


W. Kucharz

BK88 J. Bochnak and W. Kucharz, On real algebraic morphisms into even-dimensional spheres,
Ann. of Math. (2) 128 (1988), 415–433.

BK89 J. Bochnak and W. Kucharz, Algebraic models of smooth manifolds, Invent. Math. 97 (1989),
585–611.

BK93 J. Bochnak and W. Kucharz, Elliptic curves and real algebraic morphisms, J. Algebraic Geom.
2 (1993), 635–666.

BK99 J. Bochnak and W. Kucharz, The Weierstrass approximation theorem for maps between real
algebraic varieties, Math. Ann. 314 (1999), 601–612.

BK10 J. Bochnak and W. Kucharz, Algebraic approximation of smooth maps, Univ. Iagel. Acta
Math. 48 (2010), 9–40.

BK22 J. Bochnak and W. Kucharz, On approximation of maps into real homogeneous spaces, with
Appendix by J. Kollár, J. Math. Pures Appl. 161 (2022), 111–134.

BKS97 J. Bochnak, W. Kucharz and R. Silhol, Morphisms, line bundles and moduli spaces in real
algebraic geometry, Publ. Math. Inst. Hautes Études Sci. 86 (1997), 5–65; Erratum in Publ.
Math. Inst. Hautes Études Sci. 92 (2000), 195.
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