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1. Introduction

A liquid crystal is a transversely isotropic liquid consisting of large, relatively rigid,
elongated molecules which align more or less parallel to their neighbours. Three distinct
types of liquid crystal occur, namely nematic, cholesteric and smectic. In the absence of
any external influences, nematics tend to orientate with their anisotropic axis uniformly
aligned, whereas cholesterics prefer a characteristic helical configuration and smectics
are more highly organised in layered structures. However, it is possible to influence the
orientation of the anisotropic axis by a variety of external means. In particular, solid
surfaces affect the alignment through the action of surface torques, while electromagnetic
fields exert body torques which tend to align the anisotropic axis either parallel or
perpendicular to the applied field. Detailed descriptions of the physical properties of
liquid crystals may be found in the books by de Gennes [1] and Chandrasekhar [2]
and the review by Stephen and Straley [3].

There have been a variety of experiments to investigate the competition between the
orientational effects of electromagnetic fields and solid boundaries. One of the first,
performed by Freedericksz and Zvolina [4], involves a sample of nematic liquid crystal
at rest in a small gap between parallel plates, where suitable prior treatment of the solid
surfaces leads to an initial alignment of the anisotropic axis uniformly parallel to the
solid boundaries. Upon applying a magnetic field perpendicular to the plane of the
plates, there is no distortion of the initial configuration until the field strength exceeds a
critical value when one observes a smooth transition to a perturbed configuration in
which the anisotropic axis tilts in the direction of the field. A somewhat similar effect of
practical interest occurs by first rotating one plate in its own plane relative to the other.
This produces an initial configuration in which the anisotropic axis is everywhere
parallel to the solid boundaries, being constant in any plane parallel to the plates but
varying uniformly with distance across the gap. This uniformly twisted nematic structure
is employed in the display device described by Schadt and Helfrich [5]. When a sample
of cholesteric liquid crystal is placed between parallel plates, the initial orientation of the
anisotropic axis commonly exhibits the uniformly twisted configuration described above.
For technical reasons cholesteric materials are of importance in display devices.

Here we examine possible equilibrium configurations that are relevant to the
Freedericksz experiment in which a cholesteric liquid crystal is subjected to either a
magnetic or electric field applied perpendicular to the plane of the plates. As is common
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in calculations for nematics, one first employs the strong anchoring condition in which
the boundary alignment is prescribed. The analysis is then repeated for the case when a
particular form of weak anchoring or couple stress boundary condition is adopted. We
predict a variety of critical field strengths at which distortion may commence, and
determine possible orientation patterns once the appropriate critical value is exceeded.
The mathematical formulation of such problems result in some rather interesting
examples of bifurcation phenomena in the theory of non-linear ordinary differential
equations. At the same time it confirms in greater detail predictions made by Raynes
[6].

2. Basic equations

Continuum theory introduces a unit vector n, called the director, to represent the
orientation of the anisotropic axis, and detailed accounts of this theory are presented in
the reviews by Ericksen [7] and Leslie [8]. This paper seeks possible solutions relevant
to the Freedericksz experiment in which a thin layer of cholesteric liquid crystal
confined between parallel plates, a distance 2/ apart, is subjected to an electromagnetic
field applied perpendicular to the plane of the plates.

Considering orientation patterns of the form

nx = cos 0(z) cos (f>(z), ny - cos 6(z) sin <p(z), «2 = sin0(z), (2.1)

pertinent continuum equations describing the static isothermal behaviour of
incompressible cholesteric liquid crystals are

(dW/8e')'-dW/dd = 0, (dW/d<j>')' = 0, (2.2)

where the prime denotes differentiation with respect to z. Here

W^Wd(6,0',cj)')+Wf(e), (2.3)

where Wd represents the free energy per unit volume and is given by

2^=/(e) (0 ' ) 2 +^)(0 ' ) 2 -2 /c 2 TCOs 2 ^ ' + fe2T
2 (2.4)

with

2 2 m29). (2.5)

In equations (2.4) and (2.5) ku k2, k3 and T are constant material parameters. Wf is the
energy per unit volume associated with the electromagnetic field and for a magnetic field

2Wf= -XaH
2 sin2 e-XxH

2, (2.6)

where H is the constant magnetic field strength and %a and Xi a r e constant material
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parameters. For an electric field

2Wf= -D7(e||Sin20-£Lcos20), (2.7)

D being related to the constant voltage V applied across the plates through the relation

i
V=D J (e,| sin2 9 + e± cos2 0) ~l dz, (2.8)

where £|| and e± are constant material parameters. It is customary to assume that

ki>0, k2>0, k3>0 and xa>0. (2.9)

We also note that, since /„ is generally small compared with x±, one assumes that the
interaction between a magnetic field and the liquid crystal is negligible and hence the
field strength is constant throughout the sample. However, as Deuling [9] discusses, sa

defined by

ea = £||-E± (2 1 0)

is not small compared with ex. Hence the interaction between an electric field and the
liquid crystal cannot be ignored and the field strength does not remain constant
throughout the layer. For this reason the problems concerning magnetic and electric
fields must be considered separately.

Employing a strong anchoring condition, where prior treatment of the bounding
surfaces dictates a prescribed orientation at the plates, one seeks solutions of equations
(2.2) subject to the boundary conditions

0(_/) = O, 0(1) = 0 or nn,
; (2.11)

<t>( - 1 ) = - (j>o, 4>{l) = <t>o o r 4>0 + m n ,

where m and n are integers. Given that a variety of solutions are possible, we follow
Dafermos [10] and assume that the solution most likely to occur in practice is that
which minimises the energy function

£= j Wdz. (2.12)
-/

His experience suggests that possible solutions in which the range of 0 exceeds n/2 are
associated with energies larger than those whose ranges do not. In addition, it can be
shown that if 0(z) is a solution then so is — 0(z). For these reasons, we simplify the
analysis throughout by assuming that 0e[O, n/2].

As an alternative to the strong anchoring condition, one might employ a weak
anchoring or couple stress boundary condition at the plates. For definiteness, we adopt
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at both surfaces the relatively simple interfacial energy

w = A(vn)2 + B, A>0, (2.13)

where A and B are constants and v is the outward unit normal, although some
generalisations are possible. With this choice, appropriate couple stress conditions are

g{0)4)'= k2x cos2 9, f (0)6'± A sin 26 = 0 on z=±l. (2.14)

We now anticipate that the solution most likely to appear is that which minimises the
energy function

E(B) = J" Wdz + 2A sin2 6~, (2.15)
-i

where B is the boundary value of 9.

3. Problem 1. Magnetic field with strong anchoring

One obvious solution of equations (2.2) which satisfies the boundary conditions (2.11)
is the uniformly twisted planar configuration

9 = 0, 4 = fa/1, (3.1)

and other similar possible configurations are

9 = 0, <j) = {(2(f>0 + mn)z + mln}/2l. (3.2)

Of these solutions, (3.1) is associated with the least energy provided

<j)0-n/4<h< <po + n/4. (3.3)

For definiteness, we select a fixed value for <p0 and given that applications employ a n/2
twist we choose <f>0 to be n/4. As a consequence of (3.3), x is taken to be positive in this
paper so that configurations of the form (3.2) may be ignored in the following analysis.

Apart from the basic initial alignment (3.1), non-parallel twisted distortions in which
both 9 and <f> vary with z are also possible. As Leslie [11] discusses, equation (2.2)2

integrates immediately to give

g(9)(j>' = k2x cos2 9 + a, (3.4)

while a suitable combination of (2.2)t and (2.2)2 readily integrates to yield

f(eW)2 +g(6M)2 + XaH
2 sin2 6 = b, (3.5)

where a and b are constants of integration. Symmetry considerations suggest that one
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examines distortions in which

0(z) = 0(-z) (3.6)

with

ff(o) = 0, d(o) = dm, (3.7)

where 0m is a positive parameter to be determined. Using (3.4) and (3.7) in (3.5) and
then integrating, one obtains z in the form

] (3.8)
o

with

F(C, 0m) = XaH
2(sin2 6m - sin2 0 + (a + k2x cos2 0m)2/g(6m)

-(a + k2z cos2 Q2/g(0. (3.9)

From (2.11), (3.4) and (3.6), it follows that

4>{z)=-4>{-z), 4>(o) = 0, (3.10)

and an integration of (3.4) now gives

<P + 4>0 = ]{f{Q/F(i:,em)}Ha + k2TCOS
20/g(0di:, -(t>o^<t>^0. (3.11)

o

Equations (3.6), (3.8), (3.10)! and (3.11) give the complete solution, provided 6m and a
satisfy the relations

(3.12)

> = T {f(d)/F(6,9J}Ha + k2x cos2 6),<g(0) d9.
o

With the change of variable (cf. Dafermos [10])

sin/l = sin0/sin0m, (3.13)

in (3.12), / and <p0 are determined by the equations

(3.14)

0o = ? {f(<S)IG{6, em)}\a + k2z cos2 0)/(g(0) cos 0) dX,
o
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G(0, OJ = F(8, 0J/(sin2 6m - sin2 6). (3.15)

Taking limits as 6m tends to zero in (3.14) now results in a critical magnetic field
strength Hc, given by

(3.16)

At this value a smooth transition from the configuration (3.1) to that described by (3.8)
and (3.11) is possible and it follows that a real Hc exists if and only if either

or <po^k2xl[l +{l+k1(2k2 — k3)/kjl x }*]/(2/c2 — k3). (3.17)

A necessary condition for the non-parallel distortion to appear as H exceeds Hc is

and differentiation of the relations (3.14) with respect to /? yields the result

2XJ2(dH2/dp)fi=0 = k3n
2/4 - {pcfr2 + 2k2(k3 - 2k2)h<t>0 + k2

2l
2x2}/k2, (3.19)

where

(3.20)

Hence it follows that (3.18) obtains if and only if

(t>0<k2(k3-2k2)h(-l+y/T+l})/p, k3>2k2,

</>0<{(7i2-2/V)/6}*, k3 = 2k2,

<j>0<k2(2k2-k3)h(l+^TTq)/p, k3<2k2,

where

(3.21)

(3.22)^p{/c37T2/4/c2/
2T2-l}/(/c3-2/c2)

2,

provided q is positive. In the special case when

<j)0 = h = n/4, (3.23)

one deduces from (2.9), (3.16) and (3.19) that a real Hc exists and (3.18) holds provided

(N/l7-3)fc3<4fe2, (3.24)

this having some relevance to applications.
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The difference between the total energies £x and £ 0 per unit area associated with the
configurations described by (3.8) and (3.11) and (3.1), respectively, is given by

= E1-E0= j
o

2co**9

\F{0,6m)]

Differentiation of the relations (3.25) and (3.14) readily yields

d{AE)

dp

and a further differentiation leads to the result

4/d2(A£)

= 0, (3.26)

(3.27)

One immediately observes that the conditions required to ensure (3.18) holds are
identical to those required to render A£ negative for values of 6m in the neighbourhood
of 6m equal zero. For fixed values of I and </>0, we therefore anticipate a smooth
transition between the two configurations as H exceeds Hc, given by (3.16), provided

k2k3n
2 - 4{p</>

2, + 2fc2(fc3 - 2*2ZT0O) + H^2} > 0- (3-28)

If H(9m), as defined by (3.14), increases monotonically with 0m, one expects the non-
parallel distortion to persist so long as A£ remains negative. Finally we note that H
tends to infinity as 9m tends to n/2.

4. Problem 2. Electric field with strong anchoring

Again we are concerned with finding solutions of (2.2) subject to the conditions (2.11)
and one such obvious solution is the configuration (3.1). In seeking non-parallel
distortions, the relevant equations are (3.4) and

f(6W)2 +g(eW)2 - O2/(£|| sin2 6 + ex cos2 9) = c, (4.1)

where c is a constant of integration. By an analysis parallel to that described in Section
3, one obtains a critical value Dc and its derivative given by

= M 7 4 + ( k 3 - 2k2)4>l + 2k2k<t>o (4.2)
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dD:

= 0
= 3ea

2/2Z)c
2/ei + k3n

2/4 - {p<j>2 + 2k2(k3 - 2k2)h<t>0 + k2
2l

2x2}/k2, (4.3)

where ea is assumed to be positive. Utilising (2.8) in (4.2) and (4.3) yields a critical
voltage Vc defined by

with

V2 = M 2 + 44>2o(k3 - 2k2) + Sk2 (4.4)

1 = 0
= e2a V2IBL + k3n

2- 4{p<l>2 + 2k2(k3 - 2k2)h<t>0 + fc2/ (4.5)

Here

where

i

-i
(4.6)

''cos2 6m cos2 0

(4.7)

and after a lengthy but straightforward calculation, one eventually obtains the results

= 0, - ^
t = o

(4.8)

One notes that the condition for V to be a monotonic increasing function of 9m in the
neighbourhood of 0m equal zero is identical to the condition for the energy associated
with the non-parallel distortion to be less than that associated with the initial
configuration (3.1). Hence for given values of I and 4>0, we expect a smooth transition
between the two configurations as V exceeds Vc, given by (4.4), provided

k2k3n
2 - 4{p<t>2 + 2k2(k3 - 2k2)h4>0 + k2r2l2}+ k2e

2
a V

2/sL > 0. (4.9)

This condition is obviously less or more restrictive than (3.28) depending on whether s±

is positive or negative.
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5. Problem 3. Magnetic field with weak anchoring

The uniformly twisted planar configuration

0 = 0 , <f>' = z (5.1)

is one obvious solution of (2.2) subject to the conditions (2.14). In addition, non-parallel
distortions of the form described by (3.6), (3.7) and (3.10) are also possible. Assuming

0(±/) = 0~ and <£( + /)= ± & (5.2)

it can be shown that 0m and B are related through the equation

fc2T2{cos4 9Jg(6m) - cos4 B/g(B)} + xaH
2(sm2 dm - sin2 B) = A2 sin2 2B/f(B) (5.3)

and for small values of 0m

S2 = (XaH2 - k3z
2)62J(XaH

2 - k3x
2 + A A2/k,) + O(0J). (5.4)

Two distinct types of solution must be investigated. In one

XaH
2-k3z

2>0 and n/2^6m^B^0, (5.5)

while in the other

k3t
2-xaH

2-4A2/kl>0 and n/2^B^9m^0. (5.6)

If (5.5) holds, a possible solution is again determined by (3.6), (3.8), (3.10) and (3.11)
provided one sets a identically equal to zero and replaces the lower limit in the integrals
by B. With the change of variable (3.13), one finds

= 'I? [ M l +"h ls in 2 A)(l + m2p^sin2 A)(l+w2j8)|* dX
\ \ xaH

2(l+m2Psm2W+mJ)-k3z
2 j (l-/?sin2A)*' ( ' '

where

sinl=sin9/sin0m;m,=fe3//c1-l, (i= 1,2). (5.8)

Taking the limit as P tends to zero in (5.7) yields a critical magnetic field strength Hu

defined by

laH
2

u = k3x
2 + ̂ (71/2 -1,)2//2, Jc = sin" l {(XaH

2
c - k^y^A'/k, + XaH

2
c - /C3T

2)}*.

(5.9)
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Differentiation of (5.7) with respect to /? leads to the result that (3.18) is valid if and only
if

sin2Xc(k3 3k3T
2m2

c
sin2 2Xr //c-, k3x

2m2

k3m2x
2

2 V*i XaH\c-k3x
2J\4 2)' 8

(k3m2x
2-4k3A

2/k2)(XaH
2
c-k3x

2)2

(4A2/ki+XaH
2
c-k3x

2r

The energy difference per unit area AE between the two solutions is now

>0. (5.10)

and differentiating this equation twice with respect to /? yields the results

d(AE)
= 0 and

d\AE)
dp2 2(

dQldX

\dp dp
+ 2A

in2 B)

dp2

where

1 = 0

(5.12)

{{.laH\\ + m2p)(l + m2psin2 A) - / C 3 T 2 ] COS 2X

lP {

+ k3m2z
2p sin2 A}(1 + mip sin2 A/2)(l + p sin21/2)

2 A)* ' ( J+ m2p)(l + m2psin2 X)- sin2

For fixed /, one thus expects a smooth transition between configurations as H exceeds
Hlc provided (5.5) and (5.10) are satisfied and the right-hand side of (5.12)2 is negative,
these results agreeing with those of Leslie [11] in the limit as A tends to infinity. If H
increases monotonically with 9m, the non-parallel distortion persists so long as AE
remains negative and (5.3) yields the result

lim (cos B/cos 6J = {(XaH
2 - k2z2/k3y(XaH

2 -k2x2- 4A2/k3)}\
/2

H2= lim H(9J, (5.14)

where B tends to n/2 with 0m. Obviously a necessary condition for this to happen is

(5.15)
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Employing the change of variable

cosh X = cos 0/cos 6m (5.16)

in the appropriate form of (3.12)!, one can show that H2 is defined by

k* l^-kl-z2-AA2)}\ (5.17)

Thus the director becomes everywhere perpendicular to the plates as H exceeds the
finite value H2, provided the appropriate conditions are satisfied. This phenomenon is of
interest, since it is clearly impossible when there is strong anchoring at the plates, as
first noted in a simpler context by Nehring, Kmetz and Scheffer [12].

If (5.6) obtains, a possible non-parallel solution is

z=Uf(Q/F(t,0m)}idZ, O^z^l, (5.18)

with

(5.19)

where (j> and $ are found by using (5.18) in (3.4) together with the conditions (2.14)!.
With the change of variable

= sin0/sin0m, (5.20)

(5.19) becomes

i= $~±{-xaH
2+k2

2k3z
2 cos* e cos* ejg(e)g(em)}-i

Xj = cosh"1 (sin B/sinOJ, (5.21)

and hence the critical relationship between / and H is found to be

However, since one can show here that

d
>0, (5.23)

0 = 0

the non-parallel configuration is not expected to appear in preference to the initial
alignment (5.1) and so such solutions may be ignored.
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6. Problem 4. Electric field with weak anchoring

The initial alignment (5.1) is obviously one solution of (2.2) subject to (2.14). In
seeking non-parallel solutions of the form described above, it follows from the field
equations (3.4) and (5.1) and the boundary conditions that B and 9m must satisfy the
relationship

fcos4flm cos4ff| D2ea(sm26m-sm2B) = A2sin22B
2l(d) (G) i (eL + SaSm

2B)(e1 + easm2em) f(B) "

Again two types of configuration must be considered. If

eaD
2/el-k3T

2>0 and n/2^6m^B^0, (6.2)

a parallel analysis to that in Section 5 leads to a critical voltage Vlc given by

ea Vlc/4- = k3T
2l2 + M*/2 - I2c)

2, (6-3)

where

c in /(/") c Ic Is T \ l( T} c /p If T —1- A. ji /h" W^ 7") ^^ ~\/ c IA.1 ((\ /*1̂
2c — S i l l 11 i-J l e a / _L — 3 ) / \ 1 cof J. 3 *̂  " / I . / /v i I c y LJ\Q — V i r S_f * \ /

One also finds that

'AA^

+-

i / AA2U n2 F2\ /n2 F

— k m T2 3 U a I I U

where

2 2 2k1. (6.6)
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The energy difference per unit area is now given by

'IJ= J Q2P dl+ 2A sin2 E,

where

and

g(em) g{6)

D2

p —
sin

Al2

+ w2j8)(l + mjsin2

331

(6.7)

(6.8)

[cos 0[D2£a( 1 + m2P)( 1 + m2 sin2 Aj?) - fc3T
2(ex + ej)(e± + ea sin2 A)?)]

Differentiating (6.7) twice with respect to /? now yields (5.12)j and

(6.9)

d2(AE)

dp2 =T D2
cejel-k3x

2

2k1 \
D2

ueJel-k3T
2J

dl2 (6.10)

We therefore expect a smooth transition to occur as V exceeds Vu provided the right-
hand sides of (6.4) and (6.10) are positive and negative, respectively. If V increases
monotonically with 6m and AE remains negative, one can show that the liquid crystal
aligns everywhere perpendicular to the plates as V exceeds V2 defined by

2k\
-cosh" £flF

2-4/c2T2/2//c3 (6.11)

Of course a necessary condition for this to occur is

(6.12)

(6.13)

If

k3T
2-eaD

2/e2
±-4A2/kl>0 and n/2^B^6m^0,

the condition (5.23) again results and so we disregard this case.

7. Concluding remarks

This paper presents analyses for several bifurcation problems that are of interest in
the theory of cholesteric liquid crystals. Although one must admit that only a restricted
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class of non-parallel distortions are considered, we note that results obtained by similar
analyses in the theory of nematic liquid crystals are found to agree well with
experimental observations. While an examination of more general types of solution is
clearly desirable, such an investigation is beyond the scope of this paper.

In common with other investigations, we employ a static stability criterion to
discriminate between several possible equilibrium configurations. Apart from a
preliminary analysis in a simpler context by Straughan [13], no attempt has been made
to solve such stability problems using the dynamic equations. While it is clearly
desirable to have the dynamic results, one would equally want the above results for
comparison.
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