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ABSTRACT

The use of underground geological repositories, such as in radioactive waste disposal (RWD) and in carbon
capture (widely known as Carbon Capture and Storage; CCS), constitutes a key environmental priority for
the 21 century. Based on the identification of key scientific questions relating to the geophysics,
geochemistry and geobiology of geodisposal of wastes, this paper describes the possibility of technology
transfer from high-technology areas of the space exploration sector, including astrobiology, planetary
sciences, astronomy, and also particle and nuclear physics, into geodisposal. Synergies exist between high
technology used in the space sector and in the characterization of underground environments such as
repositories, because of common objectives with respect to instrument miniaturization, low power
requirements, durability under extreme conditions (in temperature and mechanical loads) and operation in
remote or otherwise difficult to access environments.

SNV N w

0

©

Kevyworbs: carbon dioxide, CCS (Carbon Capture and Storage), climate change mitigation, geological
disposal, geological repositories, radioactive waste disposal (RWD), space sector, technology transfer.

* E-mail:C.S.Cockell@ed.ac.uk
DOI: 10.1180/minmag.2015.079.6.41

The publication of this research has been funded by the European
Union’s European Atomic Energy Community’s (Euratom) Seventh
Framework programme FP7 (2007-2013) under grant agreements

EURATOM n°249396, SeclGD, and n°323260, SeclGD2.

© 2015 The Mineralogical Society

https://doi.org/10.1180/minmag.2015.079.6.41 Published online by Cambridge University Press


mailto:C.S.Cockell@ed.ac.uk
https://doi.org/10.1180/minmag.2015.079.6.41

SUSANAO. L. DIREITO ETAL.

Introduction

Tue disposal of radioactive waste from nuclear
applications (e.g. from the nuclear power industry,
nuclear weapons, medical applications and research
programs) is currently an environmental concern
worldwide. According to the International Atomic
Energy Agency’s (IAEA) 2007 report, the world-
wide amount of spent fuel mass (of heavy metal) is
~18x 107 kg and 1 x 107 kg are produced per year
(International Atomic Energy Agency, 2007). The
leading option to address this problem is the
construction of long-term (i.e. over tens of thousands
of years) subsurface geological repositories for the
management of these wastes (Long and Ewing,
2004). According to the glossary of the U.S. Nuclear
Regulatory Commission (NRC), the definition of a
geological repository is: “An excavated, under-
ground facility that is designed, constructed, and
operated for safe and secure permanent disposal of
high-level radioactive waste. A geological repository
uses an engineered barrier system and a portion of
the site’s natural geology, hydrology, and geochem-
ical systems to isolate the radioactivity of the waste”
(NUREG-1350, 2013). For radioactive waste dis-
posal (RWD), a multiple barrier approach is
preferable given the difficulty in predicting the
performance of a geological repository over very
long time frames (Toth, 2011), and it is critical that
the engineered barriers work together with the
natural environment for isolation and containment
(Vines and Beard, 2012).

Another class of geological repositories are
those which are intended to safely and effectively
store carbon dioxide (CO,) gas (Carbon Capture
and Storage; CCS). CCS repositories can be
located in depleted gas fields (Jenkins et al.,
2012), depleted hydrocarbon fields, deep saline
aquifers and coal seams (Riitters and CGS
Europe partners, 2013). However, repositories
can also be located away from potential resources
and therefore they are less well characterized.
Depleted oil and gas reservoirs have an estimated
storage capacity of ~675-900 GtCO, (giga-
tonnes of CO,), deep saline formations
~1000 GtCO, or an order of magnitude higher and
uneconomical coal formations ~3-200 GtCO,
(Benson and Cook, 2005). These are globally
significant amounts of CO,, and highlight the
potentially important role of geological repositories
in addressing one of the major environmental
challenges of the 21% Century: climate change.

Burying waste far from populated areas
(although this is often not possible), the biosphere,
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the atmosphere and the hydrosphere in the deep
underground, confined by geological substrates/
strata/formations is thus currently the favoured
approach (Long and Ewing, 2004; Toth, 2011).
There are a number of challenges to be addressed
that relate to the physical, geochemical and
biological processes that might occur in repository
sites worldwide. These challenges apply to either or
both RWD and CCS, and any other use of the
subsurface for geodisposal. In order to evaluate
plans for geological disposal of different types of
waste, and to gather sufficient information to make
the case compelling, it is necessary that the
geophysical, geochemical and geobiological pro-
cesses that occur within the subsurface, and that
might influence the long-term fate of the waste are
understood thoroughly.

One of the important challenges is to identify
technology transfer areas that could facilitate
geological repository site selection, construction
and monitoring. Many of the problems faced in
building and maintaining such facilities have
similarities to technology requirements in studying
the physics, chemistry and biology of any extreme
environment, and in particular environments
encountered during space exploration.

Repository monitoring is one need, which
could potentially benefit significantly from tech-
nology transfer. Monitoring could provide rele-
vant information during all stages of repository
development and maintenance, including during:
(1) surface exploration of the repository site; (2)
access just prior to construction or exploratory
drilling and underground exploration; (3) con-
struction or expansion of the repository; (4)
emplacement (for RWD) or injection (for CCS)
of the waste; (5) disposal tunnel backfilling (for
RWD) or injection well plugging (for CCS); (6)
backfilling and the sealing of the repository; and
possibly (7) the long post-closure period. In the
case of RWD, monitoring is required to ensure
the stability of nuclear safeguards. The European
Commission has funded a collaborative project
(MoDeRn — Monitoring Developments for safe
Repository operation and staged closure; Solente
et al, 2013), for developing and possibly
implementing monitoring activities during rele-
vant phases of the RWD process (site character-
ization, construction, operation and staged
closure, and post-closure control phase).
Therefore, it is timely to review the potentially
promising areas of technology transfer from space
exploration and particle and nuclear physics
sectors.
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Science priorities and technology transfer
opportunities

repositories in environments where synergies
between both applications can be developed.

The establishment of geological repositories is a
huge area in which a vast concentration of research
and technology development has occurred (e.g.
Benson and Cook, 2005; Birkholzer et al., 2012;
Scott et al., 2013). In order to evaluate how
technologies developed for the space sector can
advance the scientific understanding needed for
geological repository siting and operation, it is first
necessary to identify some of the key science
questions that need to be answered. This paper does
not attempt to provide an exhaustive list of science
questions, but instead identifies some of the high
priority areas in geological disposal that could
benefit from tools and approaches developed in
high-technology areas such as the space sector.
Science questions under the themes of geophysics,
geochemistry and geobiology are reviewed, and
potential technology transfer options are consid-
ered, noting that many of them could promote
scientific advances under all three themes. These
science areas and their potential for technology
transfer were identified by GeoRepNet (Geological
Repositories Network), a three year UK Science
and Technology Facilities Council (STFC) network
set up to investigate potential high-technology
transfer into geological repositories.

The focus of this paper is on technologies that
can be transferred from the particle and nuclear
physics sector and, in particular, from the space
sector to tackle the prioritized science questions
(Table 1). Space instrument engineers are dedicated
to a number of specific aims in instrument
development including miniaturization, low
energy requirements, long-term operation and
operation under extreme conditions and in difficult
to access locations (e.g. on the surfaces of other
planetary bodies). Similar conditions and con-
straints are encountered in geological repository
environments and thus it seems likely that some of
these technologies and instrument strategies could
be adapted with appropriate modifications, for use
in the monitoring of geological repositories during
construction and post-closure.

There are also a range of facilities, such as
synchrotron sources and deep underground labora-
tories that could potentially play a role in testing
technology transfer in all three areas discussed. The
access to deep subsurface environments, such as
underground laboratories, offers the potential to test
technology appropriate for both planetary explor-
ation/high-technology physics and geological
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Geophysics

Robust knowledge of the geophysical and/or of
the geomechanical context of a repository site is
essential to understanding mechanical, hydraulic,
thermal and other physical processes (e.g.
formation and propagation of fractures, tempera-
ture-induced effects in relation to heat-generating
waste, swelling/sealing of clays) and other related
facets like geochemistry and geobiology. Indeed,
the geochemistry of a repository site and the way
in which the chemistry interacts with the
subsurface biota are constrained by the physical
characteristics of the environment. Key questions
specific to geological repository siting and
monitoring include:

(1) How can we accurately understand and monitor
stress fields, before, during and after repository
construction? This work is important for
understanding how the geological repository
environment will evolve over time and potentially
identifying, and even forecasting, points of
weakness. Examples of techniques currently used
in carbon capture include the measurement of
subsurface pressure, time-lapse 3D  seismic
imaging, vertical seismic profiling and crosswell
seismic imaging, passive seismic monitoring, land
surface deformation using interferometry and GPS,
visible and infrared imaging from satellite or planes
(Benson and Cook, 2005). Most of these techniques
require periodic mobilization of resources for repeat
surveys. Such episodic surveys conducted over time
scales of tens of years are expensive (especially on-
shore seismic surveys) and their results are affected
by environmental conditions not necessarily linked
to the monitored parameters.

(2) Have we identified and understood the
uncertainties and do we have confidence in the
results? Mapping subsurface geology and its
geophysical/geomechanical properties has inherent
uncertainties. Characterizing these uncertainties is
essential to predicting the behaviour of a repository,
particularly in the long-term post-closure and yet
carrying out this characterization of uncertainties
remains in its infancy. The level of uncertainty
varies between different locations, classes and type
of repository (RWD or CCS), for example there is
only limited experience in identifying and locating
sites suitable for CCS beyond the regional scale
(e.g. for saline aquifers) (Wilkinson et al., 2013).
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(3) What are the transport characteristics, fluxes
and speciation of gases in environments with less
than 1 km depth of relevance to geological
repositories? This question relates to the natural
environment in and around geological repositories,
but also the influence of perturbation during
construction, operation and closure. In particular,
the way the subsurface structural characteristics
either facilitate or mitigate against the transport of
gases within the repository is relevant.

(4) Is the aim detection or quantification? For
example, in CCS, technologies that are sensitive to
detecting the presence of CO, are not necessarily the
best technologies for quantifying spatially variable
saturation. In practice, early detection of unintended
migration of CO, may enable mitigating activities to
be undertaken, whereas quantification is important
for calculating a mass balance and imposing financial
penalties that are dependent upon the amount of CO,
that escapes. While for RWD in almost any geology/
geological environment, no leakage is achievable
with appropriate, often costly, engineering.

Geophysics: technology transfer opportunities

A fundamental requirement for improving model
capabilities, confidence in the results and in
particular improving the modelling of gas flow
through the subsurface is high-resolution data to
categorize rock mass heterogeneities. Miniaturized,
portable, low-power sensor technologies developed
for space applications, which include X-ray
diffraction (XRD), Raman spectroscopy and
Fourier transform infrared spectroscopy (FT-IR)
offer particular promise for on-site characterization
of mineralogical heterogeneity of representative
samples of the stratigraphy comprising and sur-
rounding the repository, which might provide data
and understanding to underpin models. Examples
of possible technology transfer from space tech-
nology are given in Table 1.

Non-intrusive techniques can also be developed
to allow characterization of the underlying geology.
A promising technique belonging to the particle
and nuclear physics sector (muon tomography), is
based on the observation of cosmic-ray muons,
sub-atomic particles produced in collisions of high-
energy primary cosmic radiation with nuclei in the
atmosphere, in the deep subsurface (Kudryavtsev
et al., 2012). This method allows for the mapping
of geological structures. Muon detectors can be
emplaced in the subsurface at different sites to
monitor geological repositories. Although they
may not be able to fully replace more conventional

1659

techniques, they have a clear advantage of
providing a continuous monitoring capability and
possibly a significant saving on resources over a
long time period.

Another non-intrusive technique used in the space
exploration sector but with potential for use in
geological repositories is Ground Penetrating Radar
(GPR). Depth of penetration is strongly influenced
by the subsurface substrate and presence of ice/water
and salinity levels, but typically can be tens of
metres. An example of a GPR system applied in
space exploration is the WISDOM (Water Ice and
Subsurface Deposit Observation On Mars) instru-
ment on the planned ExoMars rover (ESA and
Roscosmos) (Ciarletti et al., 2011), which can
penetrate up to 3 metres with cm-scale resolution.
Such high-resolution subsurface analysis can be
applied to monitoring the near-surface environment
above a repository, particularly within terrains that
would benefit from a miniaturized, low-power GPR.
The MARSIS (Mars Advanced Radar for
Subsurface and Ionosphere Sounding) instrument
on ESA’s Mars Express orbiter (Mouginot et al.,
2012) (Table 1) also employs GPR technology and
was originally designed to probe the ice-rich polar
layered deposits up to four kilometres and up to
several hundred metres in other lithic environments
of Mars. Therefore this technology can also be
applied in the identification of deep repositories.

Geochemistry

During the establishment of geological repositories,
the local geochemical environment is perturbed.
Some changes may be transient, but there may be
long-term effects of the intervention of humans within
the geological environment. For example, permanent
changes to subsurface hydrology/groundwater flow
regimes associated with repository construction (e.g.
installation of low permeability walls) may lead to
changes in redox states of subsurface fluids and
minerals, most likely on a local scale. Questions
related to geochemistry that may be particularly
pertinent to geological repositories include:

(1) How can we successfully obtain data that can be
used to support the development of improved models
such as the modelling of pore space chemical and
physical processes and translate them to large-scale
fate and transport models? To understand the likely
fate of radionuclides or supercritical CO, in the
subsurface, we require simulation approaches
supported by in situ geochemical monitoring and

mapping.
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(2) What are the effects of impurities in the injected
CO; streams (e.g. SOx, NOx, Hg in flue gas) on the
nature and rates of chemical reactions during
transport and injection, which would lead to
mineralization and geologic sequestration of
carbon? We require better parameterization of
interactions of impurities with other molecules,
which is important to fully understand the
groundwater chemistry and flow in deep systems
(at repository depths).

(3) In terms of storage security, what chemical
reactions mobilize and immobilize CO, (including
dissolution, residual saturation and mineralization
as well as microbial effects)? Once waste is
contained it is necessary to monitor, long-term, the
environment to determine whether waste is escaping
and what geochemical reactions determine the rate
of escape. This requires a more in depth
investigation of geochemical reactions occurring in
natural geological repository environments.

(4) Can we identify potential geochemical
signatures that could be used to indirectly
indicate CO; leakage (i.e. other than measuring
CO, itself) or the leakage of radionuclides into the
environment? During leakage of radioactive waste
or CO,, these substrates are likely to geochemically
modify the surrounding environment. Both small-
scale and large-scale monitoring methods can be
used to detect potential geochemical alterations.

Geochemistry: technology transfer
opportunities

Technology transfer areas include methods for
detecting the migration of radionuclides, CO, and
other gases that could be indicative of subsurface
repository change or leakage, although time scale
may be an issue. Of particular interest are spectro-
scopy techniques (e.g. infrared spectroscopy, gas
chromatography coupled with mass spectrometry
(GC-MS), X-ray diffraction (XRD)) developed for
planetary exploration and astronomy. Both of these
communities seek to develop small, low-energy,
robust instruments with very high sensitivity, particu-
larly when this instrumentation is being used to search
for trace gases such as methane at the ppt/ppb/ppm
level (e.g. Formisano et al., 2004; Korablev et al.,
2013). An example of such technology is the Tunable
Laser Spectrometer (TLS) of the Sample Analysis at
Mars (SAM) suite of Curiosity rover used for the
recent in situ methane detection on Mars (Webster
et al., 2015). Other examples include technologies to
measure low concentrations of elements and impur-
ities in the groundwater and in materials around a
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geological repository during construction and poten-
tially post-closure, such as X-ray fluorescence (XRF)
(see Table 1 for examples of possible technology
transfer).

Geobiology

Microorganisms are pervasive in the environment,
including the deep subsurface (e.g. Wouters et al.,
2013). Near geological repositories, a variety of
microbial metabolisms may be involved in chan-
ging the chemical speciation of elements and their
mobility through the subsurface (Lloyd and
Renshaw, 2005; Krawczyk-Barsch et al., 2012),
or in affecting the performance engineered barriers,
or in enhancing canister corrosion, concrete
deterioration and the structure and performance of
bentonite buffer materials used in nuclear waste
disposal scenarios (Masurat et al., 2010; Pedersen,
2010), thereby affecting the performance of the
engineered barriers and their functions (isolation
and containment). Microorganisms and their activ-
ity can also change the transport properties of the
host rocks of interest e.g. formation of biofilms can
effect porosity (Coombs et al., 2010). Despite the
growing and impressive understanding of micro-
biology in the deep subsurface and microbial
interactions with radionuclides, several key ques-
tions for biological science related to geological
repositories can be identified:

(1) What are the main processes by which the
microbial communities associated with different
lithologies can influence RWD and CCS? We need
to know more about subsurface microbial
communities of geological materials at depth, and
their dominant and potential metabolic pathways and
how these respond to the changes imposed in and
around a geological disposal facility. One way is to
link the study of geological repository environments
more directly with international continental and
oceanic deep drilling programmes and especially
permanent deep subsurface laboratories where long-
term analysis of deep microbial communities can be
accomplished.

(2) How do activities during excavation,
construction and operation inhibit or promote
specific microbial processes? During different
phases of the development of a repository, new
microbial inocula, interfaces and chemical species
are likely to be introduced, which are expected to
affect the resident microbial communities and their
metabolic pathways. For instance, the introduction
of oxygen during drilling or excavation is expected
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to affect subsurface microbial consortia that were
previously based on anaerobic metabolisms such as
anaerobic respiration (iron and sulfate), fermentation
or methanogenesis. There is a need to better
understand the impact of the disturbance
associated with reservoir or repository construction
and active operation on the long term ecology of
deep repository environments and associated
implications for safe waste isolation.

Related to point (2) is a priority to better
understand how communities change after the
closure of the facility. Ideally one would monitor
the evolving microbial community over time,
linking back to changes in geochemical and
geophysical properties. Although permanent deep
subsurface laboratories make such monitoring
possible, such laboratory facilities are limited to
specific sites for logistics and cost reasons.
Therefore, one obvious priority would be to
advance our capacity to quantify and predict
microbial dynamics across temporal and spatial
scales, which is itself directly linked to improved
capacities for geochemical modelling.

(3) What are the effects of microbial presence and
activity on local geochemistry, integrity of the
repository and radionuclide transport? What are the
exact roles of local microbial consortia in corrosion,
as well as on microbial interactions with ground-
water chemistry or radionuclides? For example, there
is knowledge on the capacity of deep microbial
communities to produce or metabolize gases
(including those that are relevant for RWD safety
assessments e.g. methane and hydrogen), but not
much is known on intermediate and final gas mass
balances in a repository system and on the subsequent
effects on the local chemical processes. Also the
biodegradation of naturally occurring or introduced
organic material and the organic matter derived from
dead microorganisms (Bassil ez al., 2014) is expected
to influence the local geochemistry.

(4) What is the role of microbial biofilms in disposal
systems? In RWD, microbial biofilms on engineered
interfaces such as concrete and metal can harbour
strong chemical gradients which increase material
deterioration rates, and can interact with
radionuclides, changing geochemistry in a micro-
environment. In CCS scenarios, extensive biofilms
may interact with supercritical fluids. It is also not
clear how microbial biofilm development is
triggered and maintained in undisturbed and
perturbed deep subsurface environments.

(5) How can our current experiment-based
understanding of microbial processes and their
effects be abstracted and up-scaled, both in time
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and in space? Microbial influences can be studied in
the laboratory or, in cases where the subsurface can
be directly accessed, either by sample collection
during initial drilling, in deep subsurface
laboratories, or during the construction of the
geological repository itself. However, a crucial
objective must be to understand possible future
interactions using improved modelling supported by
empirical microbiological data. For example, there
is a need to establish input values such as rates of
metabolism for different redox couples for a given
environment, and the rate of dispersal or transport of
metabolic products and organic matter throughout
the subsurface medium.

(6) Can analogue environments be found that are
representative  of a  geological  repository
environment? The use of modelling, laboratory
studies and in situ investigations will advance our
understanding of microbial interactions in
geological repositories. However, one means to
achieve improved modelling and real-world data is
to find easily accessible and representative analogue
environments. One such environment is the Boulby
International Subsurface Astrobiology Laboratory
(BISAL) dedicated to astrobiology analogue
research in the deep subsurface and for the testing
of' space technology and technology transfer into the
mining environment at 1.1 km depth in the Boulby
Mine (Yorkshire, UK) (Cockell et al., 2013).

Geobiology: technology transfer opportunities

These identified challenges can be consolidated
under technological innovation objectives that can
be accomplished with technology transfer from a
variety of areas, including molecular biology
approaches, such as methodologies for the produc-
tion of metagenomic libraries and their archiving and
analysis. One promising area of research from the
space sector that may find application to geological
repositories is the ‘lab on a chip’ technology such as
the Life Marker Chip (see Table 1), an instrument
capable of recognizing small biomarker molecules
by the use of an antibody-based detection system
and developed for use on spacecraft (Sephton et al.,
2013). This approach is a good example of a
portable/low-power microfluidics technology that is
transferrable to the deep subsurface. In general, this
technology allows rapid identification of individual
microbes and screening for specific metabolisms and
metabolites that would allow for in situ analysis of
microbial dynamics.

Other technologies, such as synchrotron spectro-
scopies offer the chance to better understand the
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interactions of microorganisms with radionuclides
and the secondary mineral products formed follow-
ing these interactions. The possibility of examining
these effects at small spatial scales, e.g. using new
techniques such as STXM (scanning transmission
X-ray microscope), allows for improved mechan-
istic understandings of these interactions that could
be applied at the larger scale. Computational
resources (possibly including all aspects of mod-
elling and data analysis, processors, etc) from space
physics and other areas could be mobilized to
improve the ability to model microbial-ground-
water interactions over time, and predict the effects
of geological repository construction on geochem-
ical and geobiological processes.

Concluding remarks

This paper concludes with the observation that
there are strong synergies between high-technology
areas such as space sciences and particle physics
and the development of geological repositories.
These synergies primarily arise because: (1) all
these groups seek to build miniature, reliable, low
energy, rugged instruments and (2) the scientific
questions they address have similar technological
solutions. Some concrete examples of these links
are summarized in Table 1. We recommend that a
stronger effort be made to link science and
technology requirements in the development of
geological repositories to these high-technology
communities and ultimately to pool expertise and
resources in the development of technology.
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