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Linear global and asymptotic stability analysis of
the flow past rectangular cylinders moving along
a wall
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The primary instability of the steady two-dimensional flow past rectangular cylinders
moving parallel to a solid wall is studied, as a function of the cylinder length-to-thickness
aspect ratio A = L/D and the dimensionless distance from the wall g = G/D. For
all A, two kinds of primary instability are found: a Hopf bifurcation leading to an
unsteady two-dimensional flow for g ≥ 0.5, and a regular bifurcation leading to a steady
three-dimensional flow for g < 0.5. The critical Reynolds number Rec,2-D of the Hopf
bifurcation (Re = U∞D/ν, where U∞ is the free stream velocity, D the cylinder thickness
and ν the kinematic viscosity) changes with the gap height and the aspect ratio. For
A ≤ 1, Rec,2-D increases monotonically when the gap height is reduced. For A > 1,
Rec,2-D decreases when the gap is reduced until g ≈ 1.5, and then it increases. The
critical Reynolds number Rec,3-D of the three-dimensional regular bifurcation decreases
monotonically for all A, when the gap height is reduced below g < 0.5. For small
gaps, g < 0.5, the hyperbolic/elliptic/centrifugal character of the regular instability is
investigated by means of a short-wavelength approximation considering pressureless
inviscid modes. For elongated cylinders, A > 3, the closed streamline related to the
maximum growth rate is located within the top recirculating region of the wake, and
includes the flow region with maximum structural sensitivity; the asymptotic analysis is in
very good agreement with the global stability analysis, assessing the inviscid character of
the instability. For cylinders with AR ≤ 3, however, the local analysis fails to predict the
three-dimensional regular bifurcation.
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1. Introduction

The flow past bodies moving along solid surfaces has captured the interest of scholars
over the last decades, due to its relevance from both a fundamental and an applicative
viewpoint (Thompson, Leweke & Hourigan 2021). Indeed, it is a relevant element in many
applications where an object moving in a fluid interacts with a near wall. Examples are the
industrial processes of surface manufacturing such as polishing and sand blasting, and the
flow past cars or trains, to cite just a few.

The proximity to the wall changes the structure of the flow and influences the wake
transition mechanism (Stewart et al. 2010b). In free stream, the primary instability of the
two-dimensional flow past a bluff body is a Hopf bifurcation leading a symmetric steady
state towards a time-periodic state that gives origin to the von Kármán vortex shedding
(Noack & Eckelmann 1994). Although the triggering mechanism is not fully understood
yet, it is known that it is the result of a global instability (Jackson 1987; Monkewitz &
Nguyen 1987; Monkewitz 1988). Increasing the Reynolds number Re = U∞D/ν (here
U∞ is the free stream velocity, D the cylinder thickness and ν the kinematic viscosity),
the unsteady flow undergoes a secondary instability and becomes three-dimensional. The
circular cylinder is the natural prototype of a bluff body, due to its simple geometry, and
has been extensively investigated over the years (Zdravkovich 1997). The first bifurcation
occurs at a Reynolds number of Re ≈ 47 (Provansal, Mathis & Boyer 1987). The secondary
instability occurs at Re ≈ 190 due to the so-called mode A, and a second three-dimensional
mode, i.e. mode B, becomes unstable at a slightly larger Re (Barkley & Henderson 1996;
Williamson 1996a,b). In proximity of a wall, depending on the gap height, the low-Re,
steady two-dimensional flow may bifurcate either towards an unsteady two-dimensional
state through the Hopf bifurcation or towards a steady three-dimensional state through a
regular bifurcation. In fact, when the distance from the ground is reduced, the absolute
instability causing the von Kármán instability weakens, and a steady three-dimensional
mode appears (Bearman & Zdravkovich 1978; Price et al. 2002). For the circular cylinder,
Rao et al. (2013) found that the flow bifurcates first towards a steady three-dimensional
state for g = G/D � 0.25 (here G denotes the gap height). For g � 0.25, they observed
that the flow becomes first unstable through a Hopf bifurcation, and that the shedding
frequency of the ensuing two-dimensional periodic state increases (by approximately
0.014D/U∞) when the distance from the ground is reduced from g = 4 to g ≈ 1, and
decreases for smaller g. Huang & Sung (2007) report the same dependence of the
shedding frequency on the gap height for a Reynolds number up to Re = 600. Rao
et al. (2015b) considered the flow past a rotating cylinder translating near a wall. For
small gaps, they found that forward rotations promote the onset of three-dimensionality,
namely the Reynolds number of its first onset decreases with respect to the non-rotating
cylinder, while reverse rotations produce the opposite effect, namely a delay of the onset
of three-dimensionality to higher Reynolds numbers. Similar results were obtained by
Stewart et al. (2010a,b) in the limit of null gap height, when investigating circular cylinders
and spheres rolling over a wall. For the circular cylinder translating with null rotating
velocity, Stewart et al. (2010b) found that the transition to unsteady flow is delayed to
Re ≈ 160, while the onset of three-dimensionality occurs at Re ≈ 70. Several authors
found that the proximity to the wall suppresses the wake vortex shedding also at larger
Reynolds numbers. For the non-rotating circular cylinder, Huang & Sung (2007) found that
the critical gap height below which the Hopf bifurcation is suppressed is almost invariably
g ≈ 0.25 up to Re = 600. Experimental investigations at larger Reynolds numbers showed
that the scenario does not change in the turbulent regime, and that the critical gap height
is almost independent on Re (Nishino, Roberts & Zhang 2007).
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Stability of rectangular cylinders moving along a wall

Rao, Thompson & Hourigan (2016) referred to the three-dimensional regular bifurcation
as mode E. They speculated that this mode is the universal primary three-dimensional
instability in the flow around two-dimensional bluff bodies, irrespective of the
flow configuration. They noticed that mode E is actually observed only when the
two-dimensional Hopf bifurcation is delayed or suppressed. For the circular cylinder, for
instance, this occurs when the isolated cylinder rotates with a non-dimensional rotation
rate α = ωD/(2U) � 5 (Rao et al. 2015a), or when it is near to a wall with g � 0.2
(Rao et al. 2015b). Rao et al. (2015b) observed this mode to be continuous across the
parameter range investigated. However, they conjectured that the mechanism triggering
this instability changes depending on the flow set-up. For a slowly rotating cylinder in
free stream, they found that mode E has some similarities with the Crow instability (Crow
1970) of a counter-rotating vortex pair. In contrast, for large rotation rates, the hyperbolic
instability plays a role in the triggering mechanism, as the base flow qualitatively changes
and the stagnation point detaches from the cylinder surface (Pralits, Giannetti & Brandt
2013). Considering a cylinder rolling over a wall, Stewart et al. (2010b) propose that
the regular three-dimensional instability is elliptic, as both the wavelength and the
perturbation fields resemble that expected by the theory (Kerswell 2002).

Most of the works present in the literature dealing with two-dimensional bluff bodies
translating near a wall have considered circular and square cylinders only. However, as
stated by Thompson et al. (2021), studies dealing with different geometries are needed
to extend the current knowledge to a broader set of applications. The effect of the wall
proximity on the flow past rectangular cylinders is expected to be more complicated, and
it is of great interest for a large number of applications, especially in the field of wind
engineering. Despite the simple geometry, the flow past rectangular cylinders presents
features of the flow past more complex geometries, such as separation induced by the
cylinder edges, several recirculating regions and, depending on the Reynolds number, a
shear layer instability and an unstable wake. In free stream, already at Reynolds numbers
less than 200, the flow dynamics changes with the aspect ratioA = L/D, where L and
D are the streamwise and vertical dimensions of the cylinder. Chiarini, Quadrio & Auteri
(2021) investigated the primary instability of the flow past isolated rectangular cylinders
and detailed its dependence on the aspect ratio. They found that the critical Reynolds
number corresponding to the first onset of the Hopf bifurcation increases withA, meaning
that a longer cylinder leads to a more stable flow. At intermediate Reynolds numbers, i.e.
Re ≈ 300–400, the flow is time-periodic and the dependence of the flow on A is even
more evident. ForA > 3, vortex shedding occurs from both the leading-edge (LE) and the
trailing-edge (TE) corners and the two phenomena lock to the same frequency (Nakamura
& Nakashima 1986; Hourigan, Thompson & Tan 2001). However, the interaction of the
LE and TE vortices changes with the length of the cylinder and depends on whether the
two phenomena are in phase or out of phase (Chiarini, Quadrio & Auteri 2022c). The
vortex shedding from the LE corners also influences the secondary instability of the flow
leading to three-dimensionality. Unlike for circular and short square cylinders and for
elongated cylinders with elliptic leading edge (Robichaux, Balachandar & Vanka 1999;
Ryan, Thompson & Hourigan 2005), for elongated rectangular cylinders, the onset of
three-dimensionality is due to an almost subharmonic mode triggered by the non-viscous
interaction of the LE vortices simultaneously placed over the longitudinal side of the
cylinder (Chiarini, Quadrio & Auteri 2022a).

In this work, a comprehensive study of the primary instability of the two-dimensional
steady flow past rectangular cylinders moving along a solid wall is provided. The
aspect ratio of the cylinder is varied in the range 0.5 ≤A ≤ 7, while the gap height
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Figure 1. Sketch of the computational domain with the geometry and the reference system.

varies in the range 0.125 ≤ g ≤ 10. The structure of the paper is as follows. In § 2, the
mathematical formulation and the numerical methods employed are briefly presented.
Section 3 describes the effect of wall proximity on the low-Re steady base flow for
different A. Then the influence of A and g on both the Hopf bifurcation and the
three-dimensional regular bifurcation is addressed in § 4. In § 5, the mechanism triggering
the three-dimensional regular bifurcation for small gaps is discussed, for both short and
elongated cylinders. For this purpose, a local asymptotic analysis on the closed streamlines
of the base flow, which relies on the short-wavelength approximation developed by Bayly
(1988), is used. In § 6, some concluding remarks are provided.

2. Problem formulation and numerical method

2.1. Flow configuration
The incompressible flow over a two-dimensional rectangular cylinder moving parallel to
a wall is considered; see the schematic representation in figure 1. A Cartesian reference
system moving with the body, with the origin set at the bottom leading-edge corner of the
rectangle, is used, with the x axis aligned with the streamwise direction, the y axis denoting
the cross-stream direction and the z axis indicating the spanwise direction. The cylinder has
streamwise length L and thickness D, and moves with velocity U∞ from right to left at a
gap height G from the wall. The Reynolds number is based on the cylinder thickness D and
U∞, and is defined as Re = U∞D/ν, where ν is the kinematic viscosity. The aspect ratio
of the cylinderA = L/D is varied in the range 0.5 ≤A ≤ 7, while the dimensionless gap
height g = G/D varies in the range 0.125 ≤ g ≤ 10. Reynolds numbers up to Re = 300 are
considered. The fluid motion is described by the unsteady incompressible Navier–Stokes
equations:

∂u
∂t

+ u · ∇u = −∇p + 1
Re

∇2u,

∇ · u = 0,

⎫⎪⎬
⎪⎭ (2.1)

where u = (u, v,w) is the velocity vector and p is the reduced pressure. In the following, if
not otherwise indicated, all quantities are made dimensionless with the cylinder thickness
D and with the free stream velocity U∞.
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Stability of rectangular cylinders moving along a wall

2.2. Global stability analysis
The onset of the instability is studied via linear theory and a normal-mode analysis
(Theofilis 2011). The velocity and the pressure are decomposed in a two-dimensional
time-independent base flow {U,P} and a small three-dimensional unsteady perturbation
{u′, p′}:

u(x, y, z, t) = U(x, y)+ ε

2π

∫ ∞

−∞
u′(x, y, β, t) exp(iβz) dβ,

p(x, y, z, t) = P(x, y)+ ε

2π

∫ ∞

−∞
p′(x, y, β, t) exp(iβz) dβ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.2)

where the amplitude ε is assumed to be small and the Fourier transform is used to
deal with the homogeneous spanwise direction. The base flow is governed by the steady
two-dimensional incompressible Navier–Stokes equations. In a global, normal mode
stability analysis, the unsteady perturbations are assumed in the following form:

u′(x, β, t) = û(x, β) exp(γ t) and p′(x, β, t) = p̂(x, β) exp(γ t), (2.3a,b)

where γ is a complex number and {û, p̂} is the global (direct) mode. Introducing this
decomposition into the Navier–Stokes equations and collecting terms of order ε, {û, p̂} is
found to satisfy the linearised unsteady Navier–Stokes equations

γ û + Lβ{U,Re}û + ∇β p̂ = 0

∇β · û = 0,

}
(2.4)

where ∇β ≡ (∂/∂x, ∂/∂y, iβ) is the Fourier-transformed gradient operator and Lβ stands
for the Fourier-transformed linearised Navier–Stokes operator

Lβ{U,Re}û = U · ∇β û + û · ∇βU − 1
Re

∇2
β û. (2.5)

The flow stability is ascertained by the solution of the generalised eigenvalue problem
(2.4) for the complex frequency γ . When the real part of γ is negative, Re(γ ) < 0, the
flow is stable, while when Re(γ ) > 0, the associated global mode is unstable and grows
exponentially in time. When β = 0, the global mode is two-dimensional.

2.3. Asymptotic inviscid stability theory
A theory for studying local stability is used in § 5 to describe the evolution of the
three-dimensional regular instability for small gap heights. The analysis relies on the
short-wavelength approximation (WKBJ) developed by Bayly, Orszag & Herbert (1988).
This theory has been successfully used to study elliptic, hyperbolic and centrifugal
instabilities of two-dimensional base flows (Sipp, Lauga & Jacquin 1999) and to
characterise the primary three-dimensional instability of the flow past a bump (Gallaire,
Marquillie & Ehrenstein 2007) and of an open cavity flow (Citro et al. 2015), and the
secondary instability of the periodic wake past a circular cylinder (Giannetti 2015), to cite
a few. In the following, this approach is briefly presented; for a detailed description, the
reader is referred to the work of Lifschitz & Hameiri (1991). In this theory, the velocity
and pressure perturbation is the solution of the linearised Euler equations, and is sought in
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the form of a localised rapidly oscillating wavepacket evolving along a closed Lagrangian
trajectory X (t), such that

u(X (t), t) = a(X (t), t, ε) exp(iφ(X (t), t)/ε)

=
∑

n

an(X (t), t)εn exp(iφ(X (t), t)/ε),

p(X (t), t) = b(X (t), t, ε) exp(iφ(X (t), t)/ε)

=
∑

n

bn(X (t), t)εn+1 exp(iφ(X (t), t)/ε),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.6)

where k(t) = ∇φ(X (t), t) is the wave vector, a(X (t), t) and b(X (t), t) are the velocity and
pressure envelopes, and ε 	 1. Following Bayly et al. (1988), in the limit of vanishing
viscosity (Re → ∞) and large wavenumber (|k| → ∞), the leading-order term for the
growth rate associated with any closed streamline is evaluated by integrating the following
set of equations:

Dk
Dt

= −LT(X (t))k, (2.7)

Da
Dt

=
(

2kkT

|k|2 − I
)

L(X (t))a, (2.8)

where
DX
Dt

= U(X (t), t),

X (t = 0) = x0

⎫⎪⎬
⎪⎭ (2.9)

identifies the selected Lagrangian trajectory and L(X (t), t) is the velocity-gradient matrix
evaluated at the position X (t) at time t. Note that, in the present case, since the base
flow is steady, the Lagrangian trajectories correspond to the flow streamlines. Two
initial conditions have to be considered to solve the problem, i.e. k(t = 0) = k0 and
a(t = 0) = a0.

A sufficient condition for inviscid instability is that the system (2.7)–(2.8) has at least
one solution such that |a| → ∞ when t → ∞ (Lifschitz & Hameiri 1991). Since, in the
present case, the base flow is two-dimensional, the third column of L is zero and, therefore,
the transverse component of k, i.e. kz = β, remains constant as the time advances. The
in-plane components of k evolve under the action of the deformation tensor. Generally, one
has to solve first the equation for k and then the amplitude a can be found integrating the
second equation. However, Bayly (1988), Lifschitz & Hameiri (1991) and Sipp & Jacquin
(2000) have shown that centrifugal and hyperbolic instabilities reach their maximum
growth rate for purely transverse wavenumbers. Therefore, following Gallaire et al. (2007)
and Citro et al. (2015), in the following, only solutions with k orthogonal to the base flow
are considered, which are called pressureless modes (Godeferd, Cambon & Leblanc 2001).
With this assumption, (2.8) reduces to

Da
Dt

= L̃(X (t))a, (2.10)

where

L̃ =
⎡
⎣−1 0 0

0 −1 0
0 0 1

⎤
⎦ L. (2.11)
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Stability of rectangular cylinders moving along a wall

In this work, the self-excited nature of the three-dimensional regular instability is
investigated by applying this theory on closed orbits/streamlines within the flow
recirculating regions. Therefore, (2.10) reduces to a linear ordinary differential equation
(ODE) with periodic coefficients that can be solved using the Floquet theory. First, the
fundamental Floquet matrix A(T) is built by solving the system

DA
Dt

= L̃(X (t))A with A(0) = I. (2.12)

Then the growth rate is extracted by evaluating the Floquet exponents associated with the
eigenvalues μ1(x0), μ2(x0) and μ3(x0), and eigenvectors a1(x0), a2(x0) and a3(x0) of
the A(T(x0)) matrix. Since the base flow is two-dimensional and the wave vector k is
orthogonal to the base flow, one Floquet multiplier is always μ3 = 1 and the associated
eigenvector a3 = êz. For the incompressibility constraint, the other two multipliers are
reciprocal of each other, i.e. μ1(x0) = 1/μ2(x0). Eventually, the ith Floquet exponent
σi(x0) is obtained from the ith Floquet multiplier μi(x0) by the following relation:

σi(x0) = Re(σi(x0))+ iIm(σi(x0)) = log(μi(x0))

Tx0
+ i

2nπ

T(x0)
with n = 1, 2, 3...,

(2.13)

where T(x0) indicates the revolution period of the closed orbit passing for x0. The growth
rate is given by the real part of the Floquet exponent, i.e. σi,r(x0) = Re(σi(x0)), while the
frequency is given by the imaginary part, i.e. σi,i(x0) = Im(σi(x0)).

2.4. The numerical method
The results of the global stability analysis presented in this work are obtained with the
numerical code used and validated by Chiarini et al. (2021). In the numerical set-up, a
reference frame moving with the cylinder is used. In this non-accelerating frame, the free
stream and the bottom wall move at uniform speed U∞ and the cylinder stands still. For
the base flow, therefore, the velocity field is set to U = (U∞, 0, 0) on all boundaries of the
computational domain, except for the outlet boundary, where outflow boundary conditions

Pn − 1
Re

∇U · n = 0 (2.14)

are used; n denotes the surface normal vector. Similarly, the perturbation velocity field is
set to zero on all the boundaries, except at the outlet boundary, where the same outflow
boundary condition (2.14) is used.

The base flow is obtained by solving the two-dimensional, steady version of the
Navier–Stokes equations (2.1) using Newton’s iteration. A finite-element formulation is
employed using quadratic elements (P2) for the velocity and linear elements (P1) for the
pressure. The used numerical method is implemented in the non-commercial software
FreeFem++ (Hecht 2012). The distribution and size of the triangles have been chosen to
properly refine the region close to the cylinder and close to the wall, paying particular
attention to the near-corner regions and to the wake (see figure 26 in the Appendix).
Depending on the aspect ratio and the gap height, the number of triangles varies between
5.5 × 104 and 12 × 104, with the minimum being for A = 0.5 and g = 0.125, and the
maximum forA = 7 and g = 10. Then, the generalised eigenvalue problem (2.4) is solved
using the implicitly restarted Arnoldi algorithm implemented in the ARPACK package
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Figure 2. Qualitative description of the flow bifurcation scenario in theA− g − Re parameter space. The
neutral surface of the first two-dimensional instability is depicted in red, while the neutral curve of the first
three-dimensional instability is in blue.

(Lehoucq, Sorensen & Yang 1998). The simple shift-invert power iteration method (Saad
2011) is used when only one eigenvalue is required.

The computational domain extends in the ranges −25 ≤ x ≤ 80 and −g ≤ y ≤ 80 in
the two directions corresponding to Lx = 105 and Ly = 80 + g; the cylinder is placed at
0 ≤ x ≤A and 0 ≤ y ≤ 1. (Recall that lengths are made dimensionless with the cylinder
thickness D.) These dimensions have been shown to be more than adequate to investigate
the onset of the first bifurcation for elongated cylinders up to A = 30 in free stream
(Chiarini et al. 2021; Chiarini, Quadrio & Auteri 2022b). In the Appendix, the sensitivity
of the results on both the grid resolution and domain size is assessed.

3. Base flow

The proximity to the wall modifies the low-Re, steady, two-dimensional flow and,
therefore, changes the sequence of bifurcations the flow undergoes at larger Re. Indeed,
the primary instability consists of a Hopf bifurcation towards a two-dimensional unsteady
state for g ≥ 0.5 (red surface in figure 2) and of a regular bifurcation towards a steady
three-dimensional state for smaller g (blue surface in figure 2).

The effect of the proximity to the ground on the low-Re, steady, two-dimensional flow
is detailed in figure 3 for A = 1 and A = 5 at Re = 45 and Re = 99, respectively,
which approximately correspond to the first onset of the primary instability in free stream
(Chiarini et al. 2021). These aspect ratios have been considered as they are representative
of short and elongated cylinders. As shown in figure 2 and detailed in § 4, for A = 1
and g > 2 (≤2), the critical Reynolds number corresponding to the first onset of the
primary bifurcation is Rec ≈ 45 (>45). ForA = 5 and g ≥ 1 (<1), Rec ≤ 99 (>99). Grey
diamonds are used for elliptical stagnation points, corresponding to a local maximum or
minimum of the streamfunction ψ defined as ∇2ψ = −Ωz, where Ωz = ∂V/∂x − ∂U/∂y
is the spanwise vorticity; they identify the recirculating regions of the flow. Green
diamonds refer to hyperbolic stagnation points, corresponding to saddle points of ψ .
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Figure 3. Streamlines superimposed on the vorticity map for (a,c,e)A = 1 at Re = 45 and (b,d, f )A = 5
at Re = 99. The gap height from top to bottom is g = 3, 1.5, 0.5. The blue-to-red colour map is in the range
−10 ≤ Ωz ≤ 10. Grey/green diamonds indicate elliptical/hyperbolic stagnation points. The blue dashed line is
for U = 0.

In free stream, two shear layers with vorticity Ωz of opposite sign detach from the LE
corners and delimit the two symmetric wake recirculating regions after the TE. When
the cylinder is long enough (A > 5), after separating at the LE, the flow reattaches
over the longitudinal walls generating two symmetric recirculating regions, and eventually
separates at the TE corners. When the gap height is reduced, the flow loses its symmetry.
The bottom-wake recirculating region detaches from the cylinder and moves downstream,
while the top one remains attached to the cylinder and slightly moves upwards. This is
conveniently visualised in figure 3; see the influence of the ground proximity on the ψ = 0
line and on the elliptical stagnation points downstream the TE. Over the longitudinal sides
of the cylinder, the reattachment point xr (when present) moves downstream and upstream
over the top and bottom sides, respectively, resulting in an enlargement and contraction
of the top and bottom side recirculating regions (see figures 3 and 4b). For small g, the
bottom side recirculating region disappears and the top one encompasses the entire side
of the cylinder. In this case, the flow does not reattach over the top side. The top LE shear
layer delimits the recirculating regions over the side and in the wake, with a hyperbolic
stagnation point separating them, which is located near the TE corner (green diamond in
figure 3 f ). ForA = 5, for example, this happens for g ≤ 0.5. A boundary layer forms near
the moving wall due to the non-uniform pressure field produced by the cylinder. When the
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Figure 4. (a) Length of reverse flow region in the wake 
r as a function of g for different A. Here,

r is measured at the Reynolds number corresponding to the first onset of the instability in free
stream, being Rec = 37.44, 44.56, 63.20, 78.31, 98.79, 114.31 forA = 0.5, 1, 2, 3, 5, 7 (Chiarini et al. 2021).
(b) Streamwise coordinate xr of the reattachment point on the top side of the cylinder in the same conditions.
(c,d) Zoom of the dependence of 
r on g for (c) 0 ≤ g ≤ 2 and (d) 4 ≤ g ≤ 10.

gap height is reduced, the boundary layer thickens and the associated negative vorticity
becomes more intense. For g ≤ 1, it interacts with the shear layer separating from the
bottom LE corner, and the viscous effects become dominant in the gap; in this case, the
potential flow region with Ωz = 0 disappears (see figure 3).

The size of the wake recirculating regions changes with g in a way that depends on
A. Figure 4(a) details the length 
r of the reverse flow region in the wake, defined as
the flow region delimited by the U = 0 line downstream the TE, for differentA and g.
For large gap heights (g > 4), 
r decreases withA due to the increasing diffusion of the
separating shear layers (Chiarini et al. 2021). In contrast, for smaller gaps, 
r increases
with A. For A ≤ 3, 
r has a non-monotonic dependence on g. Indeed, when the gap
height is reduced, 
r decreases for intermediate and large g, but increases for small g,
with a maximum attained for g ≈ 0.25. The decrease of 
r is only marginal forA = 2
andA = 3 (see figure 4d) with a minimum attained for g ≈ 4 − 6, while it is stronger
for A = 0.5 and A = 1 with a minimum for g ≈ 0.5 − 1. In contrast, for A ≥ 5, 
r
increases monotonically when g is reduced, with a slope that grows withA. As shown
in the following discussion, this non-monotonic dependence of 
r on both A and g is
explained with the different influence of the ground proximity on the gap flow, i.e. the flow
in the gap between the wall and the bottom cylinder side (0 ≤ x ≤A and −g ≤ y ≤ 0).

When the gap height is reduced and the flow loses its symmetry, the front stagnation
point moves downwards, towards the bottom LE corner for allA. The curvature of the
streamlines passing over the top LE corner increases and the flow acceleration becomes
stronger; see figures 5 and 6(b,d). As a result, for both short and elongated cylinders,
Umax,t(x) = maxy>0.5 U(x, y), i.e. the maximum streamwise velocity over the top side at a
given x-position, which is representative of the flow velocity along the top LE shear layer,
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Figure 5. Dependence of the map of U on the gap height for short and elongated cylinders, using (a,c,e)
A = 1 at Re = 45 and (b,d, f )A = 5 at Re = 99 as examples. From top to bottom, the gap height is g = 3, 1.5
and 0.5. The blue-to-red colour map is for U in the range −1.5 ≤ U ≤ 1.5, black lines indicate isovalues of U,
with an increase of 0.1. The blue dashed line is for U = 0 and delimits the reverse flow regions. Grey/green
diamonds indicate elliptical/hyperbolic stagnation points. The flow goes from left to right.

increases when the gap height is reduced. (Here and in the following, the ·t/·b subscript
refers to quantities in the regions above/below the top/bottom side of the cylinder.) To be
quantitative, for A = 1 and A = 5, the percentage increase is respectively 5.8 % and
7.6 % at x =A/2, and 5.9 % and 6.5 % at x =A+ 1. The x-position where Umax,t
is maximum changes with g and follows the enlargement/contraction of the top wake
recirculating bubble. For A = 1, it moves upstream as the gap height is reduced in
the range 1.5 ≤ g ≤ 10, and then moves downstream for smaller gaps. For A = 5, it
consistently moves downstream as g decreases.

The influence of the ground proximity on the gap flow changes with the aspect ratio.
ForA ≤ 1, the velocity in the gap increases when the gap height is reduced in the range
1 ≤ g ≤ 10, due to blockage. In fact, the streamlines are constricted by the wall and the
cylinder themselves. For smaller gap heights, the velocity in the gap decreases and, for the
smallest g, the maximum speed in the gap Umax,b(x) = maxy<0.5 U(x, y) is only marginally
larger than the U = 1 value at the ground (see figures 5a,c,e and 6a). For these gaps,
the shear layer separating from the bottom LE corner interacts with the boundary layer
developing on the ground and the viscous effects dominate; see the above discussion.
For g ≥ 0.5, the velocity in the region below the bottom cylinder side is larger than that
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Figure 6. Effect of the ground proximity on U. (a,b) Dependence of (a) Umax,b(x) = maxy<0.5 U(x, y) and
(b) Umax,t = maxy>0.5 U(x, y) on g forA = 1 at Re = 45. (c,d) Dependence of (c) Umax,b(x) and (d) Umax,t(x)
on g forA = 5 at Re = 99.

in the region over the top side at all x-positions (see the evolution with x of Umax,t and
Umax,b): the shear layer separating from the bottom LE corner is more accelerated than
that separating from the top TE corner. Overall, forA ≤ 1 and g ≥ 1, a decrease of the
gap height results into a stronger acceleration of both the top and bottom LE shear layers
(although in a non-symmetric way). As a result, as g decreases, the vorticity increases in
the shear layers yielding a shorter reverse flow region in the wake, i.e. a decrease of 
r, by
self-induction (see figure 4a,c). For smaller gaps, the bottom LE shear layer progressively
weakens as the viscous effect becomes dominant in the gap. In this case, the flow topology
changes and the presence of the wall straightens the flow streamlines, resulting into a large
increase of 
r.

ForA ≥ 2, the influence of the ground proximity on the gap flow is different. Indeed,
close to the LE, a decrease of the gap height produces a weaker flow acceleration for
all g. The curvature of the streamlines passing over the bottom LE corners progressively
decreases and, in this case, the confinement effect results into a stronger acceleration of
the the gap flow in the aft part of the cylinder side only (see figure 6c). In fact, a local
maximum of Umax,b is detected close to the TE, with a value that increases as g is reduced
in the range 1 < g ≤ 10. For smaller gaps, g ≤ 1, the flow acceleration is weaker due
to the viscous effects. As the the gap height is reduced, the maximum of Umax,b moves
closer to the TE. This flow acceleration is due to the streamline constriction that increases
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Figure 7. Influence of g on the flow rate within the gap for differentA. Here, q is the gap flow rate per unit
gap height.

in the aft side of the cylinder as a result of the contraction of the potential flow region
delimited by the bottom LE shear layer and the ground boundary layer. Because of this
acceleration, for g > 0.5 and close to the TE, the flow velocity is larger over the bottom
side than over the top one, like for shorter cylinders. As shown in the following, this flow
asymmetry is responsible for the asymmetric triggering mechanism of the first unsteady
two-dimensional flow instability described in § 4. The decrease of U close to the LE and
the increase of U close to the TE over the bottom side of the cylinder explain, at least
partially, the absence of the strong decrease of 
r observed in figure 4 forA ≥ 2. In fact,
the lower U close to the LE results into a weaker shear layer that, therefore, undergoes
a weaker self-induction, while the presence of the wall straightens the flow streamlines
enlarging the wake reverse flow region. Owing to the above-described different influence
of the ground proximity on the gap flow, the dependence of the gap flow rate per unit gap
height q, i.e.

q = 1
g

∫ 0

−g
U(0, y) dy, (3.1)

on g changes withA; see figure 7. ForA < 3, q slightly increases when the gap height
is reduced in the range 1.5 < g ≤ 10, before decreasing for smaller gaps when the viscous
effects dominate the flow in the gap; forA = 0.5, the gap flow rate is q ≈ 1.04, 1.05 and
0.55 for g = 10, 2 and 0.0625, respectively. ForA ≥ 3, q monotonically decreases when
the gap height is reduced; forA = 5, q ≈ 1.03, 0.97 and 0.51 for g = 10, 2 and 0.0625,
respectively.

Figure 8(a,b) shows the dependence on g of the drag and lift coefficients

Cd = 2Fx

ρD
and C
 = 2Fy

ρD
, (3.2a,b)

where Fx and Fy are the aerodynamic forces in the x and y directions, and ρ is the fluid
density. For all g, the drag monotonically decreases asA increases, though the variation is
very small at the largestA tested. Drag monotonically decreases also when g is increased,
with a slope which is steep for low g and decreases as g is increased. ForA = 0.5 and
A = 1, the lift coefficient increases according to a power law for g < 1, and the data are
well approximated by a curve of the form C
 ∼ (g)b, where b ≈ −0.165. A power law, but
with different coefficients, was also observed by Stewart et al. (2010b) for a cylinder rolling
on a wall at different rotation rates for very small gap heights g ≈ 5 × 10−3. The rise of
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Figure 8. Effect of g on the drag and lift coefficients for different A measured at the Reynolds number
corresponding to the first onset of the primary instability in free stream: (a) drag coefficient Cd; (b) lift
coefficient C
.

the drag for small g is mainly due to the increase of the pressure at the LE, rather than
due to the decrease of the base pressure behind the TE. To be quantitative, forA = 5 at
the LE, we measure a maximum pressure of 0.55, 0.66, 0.80 and 1.03 for g = 1, 0.5, 0.25
and 0.125, respectively, while at the TE, we measure a local minimum pressure of −0.21,
−0.24, −0.26 and −0.27 for the same gap heights. Due to the flow symmetry, in free
stream, the lift is null for allA for Reynolds numbers below the first bifurcation. When
the gap height is reduced, the lift nonlinearly grows with a rate that increases withA.

4. The global modes

The global stability of the two-dimensional base flow is investigated studying the
leading global mode {û, p̂}, which is the global mode with largest growth rate Re(γ ).
Figure 9 depicts the evolution with g andA of the critical Reynolds number of the first
two-dimensional (Rec,2-D) and three-dimensional (Rec,3-D) instabilities, i.e. the Reynolds
numbers corresponding to the first onset of the instabilities or, equivalently, the Reynolds
numbers at which γ crosses the imaginary axis.

For all A, the primary instability consists of a regular steady three-dimensional
bifurcation for g � 0.5 and of a Hopf bifurcation for larger gaps, as in the circular cylinder
case (Thompson et al. 2021). In fact, the former bifurcation is associated with a real
eigenvalue changing sign, while the latter with a couple of complex conjugate eigenvalues
crossing the imaginary axis. For g � 0.5, therefore, the wake undergoes a Hopf bifurcation
while it is still two-dimensional and the three-dimensionality develops at larger Reynolds
numbers from the resulting unsteady periodic flow. For smaller g, the three-dimensional
transition occurs before the flow becomes unsteady. The limiting gap height for which the
primary instability switches from the steady, three-dimensional bifurcation to the unsteady,
two-dimensional one slightly increases withA, being in the range 0.25 < g < 0.5 for the
considered A; note in figures 2 and 9 that for larger A, the intersection between the
neutral curves moves towards larger g. This is similar to what is observed for the circular
cylinder case, for which the limiting gap is g ≈ 0.28 (Rao et al. 2015b), and agrees with
the earlier works by Durão, Gouveia & Pereira (1991) and Bosch & Rodi (1996) that, at
larger Reynolds numbers, for the square cylinder, reported a limiting gap height between
g = 0.35 and g = 0.5. For all g, the two critical Reynolds numbers Rec,2-D and Rec,3-D are
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Figure 9. Neutral curves of the first two-dimensional and three-dimensional instability in the g–Re plane for
different A. Each panel is a two-dimensional slice of the three-dimensional visualisation in figure 2. Red
circles, Rec,2-D(g) of the first two-dimensional instability. Blue circles, Rec,3-D(g) of the first three-dimensional
instability. (a)A = 0.5, (b)A = 1, (c)A = 2, (d)A = 3, (e)A = 5 and ( f )A = 7.

increasing functions ofA, meaning that a longer cylinder yields invariably a more stable
flow.

4.1. The Hopf bifurcation
For g > 0.25 − 0.5, the flow becomes first unstable through a Hopf bifurcation towards
an unsteady two-dimensional periodic regime. As shown in figure 9, for large gaps, the
two-dimensional critical Reynolds number Rec,2-D asymptotically approaches Rec,2-D of
the primary instability measured in free stream (Chiarini et al. 2021). For validation
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Figure 10. (a) Evolution of R̂e = Urev
r/ν with g for different A, measured at a Reynolds number
corresponding to the first onset of the instability in free stream. (b) Evolution of fs = Im(γ )/2π with g for
differentA at Re = Rec,2-D.

purposes, note that Rec,2-D ≈ 44.6 forA = 1 and g = 10 is in good agreement with other
existing results for the square cylinder in free stream: for example, Yoon, Yang & Choi
(2010) report Rec,2-D ≈ 45, Park & Yang (2016) Rec,2-D = 44.7 and Jiang & Cheng (2018)
Rec = 46.

4.1.1. The critical Reynolds number and the frequency
The dependence of the two-dimensional critical Reynolds number Rec,2-D on the gap
height changes with A (see the red circles in figure 9). For A ≤ 1, Rec,2-D increases
monotonically when the gap height is reduced. The Rec,2-D remains almost constant for
g � 2, while rapidly increases for smaller gap heights. In contrast, Rec,2-D does not have
a monotonic dependence on g for A ≥ 2. Starting from the free stream case, Rec,2-D
first decreases when g is reduced, with the most unstable flow configuration (minimum of
Rec,2-D) attained for g ≈ 1.5 − 2, before largely increasing for smaller gap heights.

For all A, the increase of Rec,2-D when g reaches small values is due to the viscous
effects that reduce the flow velocity in the gap and weaken the shear layer detaching from
the bottom LE. The decrease of Rec,2-D forA ≥ 2 and intermediate g is due to the local
increase of U in the aft part of the gap flow (see § 3). This local increase of the flow velocity
destabilises the bottom shear layer, and leads to a decrease of the critical Reynolds number.
As shown later, this is confirmed by the structural sensitivity map (Giannetti & Luchini
2007) that, for these gaps, localises the main pocket of the instability in the lower side of
the wake reverse-flow region. For A ≥ 2, Rec,2-D is minimum for 1.5 ≤ g ≤ 2, that is,
close to the gap at which Umax,b is maximum (see § 3).

Recently, Chiarini et al. (2022b) observed that the primary Hopf instability in the steady
flow past two-dimensional symmetric bluff bodies is well described using some measure
of the length of the wake recirculating region and of the backflow within it. The former
dictates the spatial extent of the absolute instability pocket (Chomaz 2005), while the
latter directly impacts the local amplification of the unstable wave packets (Hammond &
Redekopp 1997). Using 
r as the length scale and the largest reverse-flow speed (Urev) as
the velocity scale, the resulting Reynolds number (R̂e = Urev
r/ν) evaluated at the onset
of the bifurcation collapses to approximately the same value for bodies of different shape
and aspect ratio, even in the presence of small flow asymmetries (Chiarini et al. 2022b).
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Figure 10(a) plots R̂e, measured at Re = Rec,2-D for the free stream case, for differentA
and g. To account for small flow asymmetries, only gap heights in the range 1.5 ≤ g ≤ 10
are considered. ForA ≤ 1, R̂e decreases when the gap height is reduced, in agreement
with the flow stabilisation and the increase of Rec,2-D. In contrast, forA ≥ 2, a decrease
of g corresponds to an increase of R̂e, consistent with the decrease of Rec,2-D and the flow
destabilisation. Note that forA = 2 and 3, when the gap is reduced, R̂e slightly decreases
at large g before increasing. This is consistent with a marginal increase of Rec,2-D before
the decreasing trend dominates, which is hardly visible in figure 9. Overall, this indicates
that an inspection of the two-dimensional steady base flow is sufficient to determine the
effect of the ground proximity on the two-dimensional Hopf bifurcation, and whether it
stabilises or destabilises the flow.

Figure 10(b) plots the dependence of the frequency fs = Im(γ )/2π, measured at
criticality, on g andA; here, Im(γ ) is the imaginary part of the eigenvalue γ . For large gap
heights g � 6, fs approaches a horizontal asymptote that identifies the free stream value.
For this range of g, the frequency does not have a monotonic dependence on the aspect
ratio (Chiarini et al. 2021). It generally decreases withA, but increases for 1 ≤A ≤ 3.5.
Therefore, for g = 10, the largest frequency is found forA = 3, while the smallest one
corresponds to A = 1. In contrast, when the gap height is reduced below g ≤ 3, the
frequency shows a monotonically decreasing trend withA: the frequency of the resulting
periodic regime is lower for longer cylinders. The evolution of the frequency with the gap
strongly depends onA. ForA ≤ 3, fs increases monotonically when g is reduced in the
range 1 ≤ g ≤ 10, before decreasing for smaller gaps when the viscous effects dominate
in the gap. A similar dependence of the shedding frequency on g has been observed with
nonlinear time-dependent simulations in the flow past a circular cylinder, although at larger
Reynolds numbers (Huang & Sung 2007). It is worth noting that this dependence of fs on
g is consistent with the dependence of the size of the wake recirculating region and of the
maximum of Umax,b on g. ForA > 3, a further slightly decreasing trend is observed for
intermediate gaps 2 ≤ g ≤ 6. ForA = 5, this slight decrease has been detected also at
larger Reynolds numbers with two-dimensional, unsteady simulations (not shown).

4.1.2. Direct and adjoint modes
The shape of the leading direct global mode {û, p̂} is qualitatively similar for all the
consideredA. Figure 11 shows the evolution of the real part of the vertical component
v̂ of the direct mode with g for A = 5 at Re = Rec,2-D. The global mode propagates
downstream, like for the circular cylinder case (Giannetti & Luchini 2007; Marquet, Sipp
& Jacquin 2008). In free stream, it is antisymmetric about the horizontal axis of symmetry,
i.e. {û, v̂, p̂}(x, ỹ) = {−û, v̂,−p̂}(x,−ỹ), where ỹ is the vertical coordinate of a reference
system placed on the symmetry plane of the cylinder, i.e. ỹ = y − 0.5. When the gap height
is reduced, the symmetry is broken and the mode progressively moves upwards due to the
v̂ = 0 boundary condition at the sliding wall. At the smallest gaps, g � 1, the unstable
mode depicts a one-sided vortex shedding, consistent with what was observed by several
authors for the circular cylinder case at larger Reynolds numbers with unsteady simulations
(Huang & Sung 2007; Mahir 2009; Rao et al. 2013, 2015b; Houdroge et al. 2017) (in their
simulations, a roll up of the shear layers, due to the nonlinear effects, is also observed).

Figure 12 shows the evolution of the real part of the vertical component of the adjoint
velocity field f + with g. The adjoint field { f +,m+}, obtained by solving the adjoint of
the linearised Navier–Stokes equations (2.4), is commonly used to study the receptivity of
the modes to an external forcing, i.e. the process with which the mode incorporates the
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Figure 11. Evolution of the real part of the vertical component of the direct eigenmode Re(v̂) associated with
the Hopf bifurcation for A = 5 at Re = Rec,2-D. The panels are for (a) g = 4, (b) g = 3, (c) g = 1.5 and
(d) g = 0.5. The flow goes from left to right.

–0.5–1.0

0

2

4

6

8

0

2

4

0

2

4

6

y

y

0–5–10 105

x
0–5–10 105

0–5

–2

0

2

4

–2

–4
–10 1050–5–10 105

x

0 0.5

Re( f +
y)/|Re( f +

y)|max

1.0

(b)(a)

(c) (d )

Figure 12. As in figure 11, but for the real part of the vertical component of the adjoint eigenmode Re( f +
y ).

The flow goes from left to right.

external disturbances that trigger its amplification. Here, f + and m+ represent the vector
and scalar adjoint fields, respectively, counterparts of the velocity and pressure fields in the
adjoint equations. In fact, the receptivity of a mode to a periodic forcing in the momentum
and/or continuity equation is proportional to f + and m+ (Luchini & Bottaro 2014). The
aim of this paragraph is to investigate how the mode receptivity is modified by the presence
of the ground. Unlike the direct mode, the adjoint mode propagates upstream, due to the
opposite transport of perturbations by the base flow in the direct and adjoint operators
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(Chomaz 2005). In free stream, the adjoint mode is antisymmetric like the direct one,
with the largest value detected close to the TE corners (Chiarini et al. 2021). When the
gap height is reduced, the symmetry is broken. For large and intermediate gaps, large
receptivity is observed close to the TE, with the largest values located close to the bottom
TE corner. This is consistent with the destabilisation of the shear layer separating from the
bottom leading-edge corner, as is discussed above. Moreover, the receptivity of the mode
over the bottom longitudinal side progressively decreases as g is reduced, until it becomes
negligible for small gaps g ≤ 1 when the viscous effects dominate (see in figure 12 the
decrease of Re( f +

y ) as g is reduced). For these gaps, the receptivity is larger over the top
side of the cylinder and the maximum is placed close to the top LE corner.

4.1.3. Structural sensitivity
The structural sensitivity of the leading global mode is used to identify the core of the
global instability. It has been proposed by Giannetti & Luchini (2007) as a way to locate the
so-called wave-maker region (Monkewitz, Huerre & Chomaz 1993), i.e. the flow region
where the instability mechanism arises to produce the self-sustained oscillations. The
structural sensitivity S identifies where in space a modification in the structure of the
problem leads to the largest drift of the eigenvalue γ , by putting together the information
provided by the direct and adjoint perturbation modes. Following Giannetti & Luchini
(2007), S is defined as

S(x) = ‖f̂ +(x)‖ ‖û+(x)‖
(f̂ +, û+)

, (4.1)

where (uA,uB) = ∫
Ω
(u∗

A · uB) dΩ is the inner product of L2(Ω), with uA and uB being
two complex vector fields and ∗ denoting the complex conjugate; ‖·‖ is the R

2 vector
norm. Large values of S identify the region of the flow where the amplification of the
perturbations and receptivity combine to trigger the instability.

Figure 13 plots the dependence of the structural sensitivity forA = 5 at Re = Rec,2-D
on g, and shows how the presence of the ground modifies the wave-maker. For all the
considered gap heights, the largest values of S occur downstream of the TE close to the
wake reverse-flow region, and it is almost null everywhere else in the domain, where
the product between the direct and adjoint modes is small. Therefore, for all g, the side
recirculating region that arises over the top cylinder side for elongated cylinders is only
marginally involved in the triggering mechanism of the instability. In free stream, the
map of S is symmetric and the largest values occur in two lobes symmetrically located
across the wake reverse-flow region. When the gap height decreases, the map of S loses its
symmetry. For g > 1, the largest values of S occur in the bottom lobe, in agreement with
the local maximum of the adjoint mode (see figure 12). This confirms that for these g, the
instability is mainly triggered by the shear layer separating from the bottom LE corner. In
fact, as discussed above, for these g, the strong flow acceleration downstream of the bottom
TE (figure 6) mainly destabilises the bottom LE shear layer. In contrast, when the viscous
effects dominate the gap flow for smaller g, S is maximum on the top lobe indicating that
the triggering instability in this case is mainly associated with the top LE shear layer. In
fact, the viscous effects decelerate the flow in the gap and stabilise the bottom shear layer
(figure 6).
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Figure 13. As in figure 11, but for the structural sensitivity map. The flow goes from left to right.
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Figure 14. (a) Critical Reynolds number Rec,3-D and (b) critical wavelength λc as a function of g forA = 1, 3
and 5. The dashed lines indicate the free stream values. The inset in panel (b) plots the dependence of 
r on
g for A = 1, 3 and 5 at Re = Rec,3-D. Note that the flow actually undergoes the three-dimensional regular
bifurcation for g � 0.5 only.

4.2. Regular bifurcation
For g < 0.5, the primary bifurcation consists of a three-dimensional regular bifurcation
for all aspect ratios, due to mode E. The leading three-dimensional mode is time invariant,
and the associated eigenvalue has null imaginary part Im(γ ) = 0.

4.2.1. The critical Reynolds number and wavelength
Figure 14(a,b) plots the evolution of the critical Reynolds number Rec,3-D and of the
critical wavelength λc = 2π/βc with g for A = 1, 3 and 5. Note that the dependence
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of both Rec,3-D and λc on the gap height is detailed for 0.125 ≤ g ≤ 4, although the steady
flow actually undergoes this regular bifurcation for g < 0.5 only.

For small gaps g ≤ 0.5, Rec,3-D increases with g for allA. For example, forA = 1,
it increases from Rec,3-D ≈ 69 at g = 0.125 to Rec,3-D ≈ 97.5 at g = 0.5. For larger gaps,
the dependence of Rec,3-D on g changes withA. ForA ≤ 1, after reaching a maximum at
g ≈ 0.5, Rec,3-D slightly decreases for larger gaps, asymptotically reaching the free stream
value (being Rec,3-D ≈ 93 forA = 1). ForA ≥ 3, Rec,3-D monotonically increases with
g up to the asymptotic free stream value, which monotonically increases with A; for
example, Rec,3-D ≈ 169 for A = 3 and Rec,3-D ≈ 246 for A = 5. Compared with the
circular cylinder case, the regular bifurcation for the square cylinder (A = 1) occurs at
lower Reynolds numbers; for example, for the circular cylinder at g ≈ 0.22, Rec,3-D ≈ 128
(Rao et al. 2013), while for the square cylinder at g = 0.25, Rec,3-D ≈ 89. AsA increases,
Rec,3-D increases for all g. For allA, the Rec,3-D(g) curve has a kink at g ≈ 0.5 that is not
found in the λc(g) curve; this is clearly visible in figure 9 forA = 0.5. This may indicate
that the triggering mechanism of this regular bifurcation is different depending on whether
g < 0.5 or g ≥ 0.5, as supported in the following by the structural sensitivity (see § 4.2.3)
and the asymptotic inviscid stability analysis (see § 5).

The large variation of λc (see figure 14b, where 7 ≤ λc ≤ 15 for 1 ≤A ≤ 5) indicates
that the spanwise wavelength of the three-dimensional mode does not scale with the
cylinder thickness D. In contrast, λc scales with a characteristic length of the wake
recirculating regions. In fact, the dependence of λc onA and g recalls that of 
r shown
in figure 4. For A ≤ 1, λc decreases when the gap height is reduced in the range
1 ≤ g ≤ 4 and increases for smaller gaps with a maximum attained for g = 0.25. For
longer cylinders, when g is reduced, λc monotonically increases, but for the smallest g in
this study, being maximum for g ≈ 0.25. However, the ratio between λc and 
r evaluated
at Re = Rec,3-D is not constant for allA and g, meaning that λc is not dictated directly
by the size of the wake reverse-flow region. It is worth stressing that the link between

r and λc has already been observed by other authors, when considering the primary
three-dimensional instability of different flows. Barkley, Gomes & Henderson (2002)
found that the flow past a backward facing step with an expansion rate of 2 undergoes a
stationary three-dimensional bifurcation with a wavelength of approximately 7 step heights
which, they infer, is dictated by the length of the recirculating region. Similarly, when
studying the three-dimensional instability of the flow behind a cylinder rolling over a wall,
Stewart et al. (2010b) discussed a possible link between the spanwise wavelength λc and
the length of the wake recirculating region.

Although 
r plays a role in determining the wavelength of the unstable mode, a proper
scaling for the regular bifurcation has not been found, as done for the Hopf bifurcation
(Chiarini et al. 2022b). In fact, we were not able to detect a pair of velocity and length
scales that well describes the instability, such that the associated Reynolds number
collapses at criticality to the same value for differentA and g. We conjecture that this is, at
least partially, due to the above-cited possible presence of different triggering mechanisms
that may coexist for some g.

4.2.2. Direct and adjoint modes
Figures 15 and 16 plot the direct and adjoint modes associated with the regular bifurcation.
Figure 15 plots the real part of the streamwise vorticity Re(ω̂x) of the direct mode to show
the three-dimensional nature of the mode. Figure 16 plots the real part of the vertical
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Figure 15. Evolution of the real part of the streamwise vorticity Re(ω̂x) of the direct eigenmode associated
with the regular bifurcation forA = 5 at Re = Rec,3-D and λ = λc. The panels are for (a) g = 4, (b) g = 1,
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The flow goes from left to right.
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component of the adjoint velocity field Re(f̂ +
y ) to highlight the structure of the adjoint

mode. The results are shown for A = 5, but they are also representative of the other
aspect ratios.

In free stream, the three-dimensional mode corresponds to mode E described by
Rao et al. (2016) for the circular cylinder. As shown in figure 15, the direct mode
propagates downstream and, unlike the two-dimensional unsteady mode associated with
the Hopf bifurcation, is symmetric, i.e. {û, v̂, ŵ, p̂}(x, ỹ) = {û,−v̂, ŵ, p̂}(x,−ỹ). The
spatial organisation of this three-dimensional mode shows large values close to the
cylinder rather than in the far wake, with the maximum placed close to the TE corners.
When the gap height is reduced, the mode loses its symmetry, and its topology slowly
changes. As g is reduced, the direct mode does not remain confined downstream of the
cylinder, but progressively moves upwards and extends within the top side reverse flow
region, with the maximum located just above the top TE corner; see g = 0.5 and g = 0.125
in figure 16(c,d). The smooth variation of the mode with the gap height suggests that the
change of the mechanism triggering the instability, if any, is not abrupt.

Like the direct mode, in free stream, the adjoint field is symmetric and its maximum
is located in the wake reverse-flow region downstream of the TE. When the gap height
is reduced, the adjoint field loses its symmetry and the receptivity of the mode changes.
Due to the boundary conditions, the receptivity increases over the top side of the cylinder
and progressively decreases over the bottom side. At intermediate gap heights, g ≈ 1 − 4,
the adjoint mode is maximum close to the bottom TE corners. Further decreasing the gap
height, the largest receptivity of the mode moves over the top side of the cylinder, with the
maximum placed close to the top TE and LE corners. For these g, | f +| ≈ 0 in the gap as
the viscous effects dominate there.

4.2.3. Structural sensitivity
Figure 17 shows the structural sensitivity for the three-dimensional stationary mode, using
againA = 5 as a representative case. In free stream, the structural sensitivity is confined
downstream of the TE in the wake reverse-flow region. The largest values are placed along
the symmetry plane dividing the top and bottom wake recirculating regions and two further
local maxima of lower intensity are placed just downstream of the TE corners. Similar
results are reported by Rao et al. (2016) for the circular cylinder case. When the gap height
is reduced, the maximum of the sensitivity moves progressively inside the top recirculating
region delimited by the ψ = 0 streamline. For g ≤ 0.5, the structural sensitivity features
two local maxima: one placed just above the top TE corner, the other located downstream
of the TE and close to the bottom part of the ψ = 0 streamline. This suggest that, in
free stream and for large gaps, the top and bottom wake recirculating regions cooperate
in triggering the instability, while for small gaps, the triggering mechanism is localised
in the top recirculating region only (see § 5). For small gaps, in fact, the bottom wake
recirculating region shrinks and detaches from the TE. The main triggering mechanism
of the three-dimensional instability, therefore, changes with the gap height. However, like
for the direct and adjoint modes, the variation of the structural sensitivity map with g
is not abrupt, but gradual. All together, this scenario indicates that different physical
mechanisms coexist in triggering this instability and that they have different importance
depending on the gap height. A similar conclusion was also drawn by Rao et al. (2016),
when investigating the nature of mode E for the flow past rotating cylinders at different
rotation rates.
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Figure 17. As in figure 15, but for the structural sensitivity. Grey/green diamonds indicate elliptical/hyperbolic
stagnation points. The black solid line is for ψ = 0, while the dashed blue line is for U = 0. The flow goes
from left to right.

5. On the physical mechanism triggering the three-dimensional steady bifurcation

The physical mechanism triggering the steady three-dimensional bifurcation is not
immediately clear and changes with the gap height, although in the g–Re plane, the neutral
curves are continuous and the changes of the direct and adjoint modes are smooth (see also
Rao et al. 2013).

For large gaps, the global stability results resemble those for a circular cylinder in free
stream investigated by Rao et al. (2016). They observed that the structural sensitivity field
resembles what is seen in the generic problem of the Crow instability of a counter-rotating
vortex pair (Crow 1970). In fact, as required for the Crow instability, for large gaps, the
structural sensitivity is maximum in the area separating the two wake recirculating regions.
In addition, for large gap heights, g � 1, the preferred wavelength of this mode is λz ≈ 6D
for allA, in line with that of the Crow instability that is λz ≈ 6.6b (Crow 1970), where b
is the distance between the two vortex cores; in this case, b ≈ D.

When the gap height is reduced, the triggering mechanism changes. For small gaps,
in fact, the counter-rotating vortex pair downstream of the TE is replaced by a large
recirculating region attached to the TE and delimited by the ψ = 0 streamline that
separates from the top LE corner, and a small bottom wake recirculating region detached
from the TE, which is placed close to the ground and stretched in the streamwise direction
(see figure 3). For elongated cylinders at small gaps, the bottom wake recirculating region
disappears; for example, see in figure 17 that for A = 5, the elliptical stagnation point
(grey diamond) downstream of the bottom TE disappears for g < 0.25. The structural
sensitivity suggests that the triggering mechanism is embedded in the top recirculating
region. In this case, the instability has some similarities with the three-dimensional
instability of the flow past a backward-facing step (Ghia, Osswald & Ghia 1989; Barkley
et al. 2002) and a bump (Gallaire et al. 2007), and of the wake past a circular cylinder
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Figure 18. The grey lines indicate negative isovalues of the Rayleigh discriminant Δ. Four different regions
with Δ < 0 are highlighted. The black thick line is for ψ = 0. The colour map is for the structural sensitivity
at criticality Re = Rec,3-D and λ = λc for g = 0.125. (a)A = 1; (b)A = 5. Grey/green diamonds indicate
elliptical/hyperbolic stagnation points. Note that forA = 5, the elliptical stagnation point denoting the bottom
wake vortex and the downstream hyperbolic stagnation point disappear for this g.

rolling on a wall (Stewart et al. 2010b). For the backward-facing step, several triggering
mechanisms have been proposed over the years. Ghia et al. (1989) first proposed the
Taylor–Görtler instability (Görtler 1954) to be responsible for this transition, but later,
Barkley et al. (2002) rejected this interpretation and, using the Rayleigh criterion (Bayly
et al. 1988), they observed that the triggering mechanism is centrifugal and associated with
the closed streamlines in the recirculating region. Later, Gallaire et al. (2007) proposed
the same mechanism for the steady flow past a bump. In contrast, Stewart et al. (2010b)
observed that there is no evidence of centrifugal instability in the three-dimensional
transition of the flow past circular cylinders rolling on a wall, and explain this difference
with respect to the backward-facing step case with the absence of a downstream steady
wall. In fact, they did not observe outwardly decreasing circulation for the streamlines
within the recirculating region. Although this does not eliminate the possibility of a
centrifugal instability, they proposed that the transition to three-dimensional flow is due to
an elliptic instability of the wake recirculating region (Kerswell 2002), as they found quite
a good agreement of the spanwise wavelength with the values predicted by the theory.
Similarly, Griffith et al. (2007) and Rao et al. (2016) associated the three-dimensional
bifurcation of the flow past a backward-facing step with an elliptical instability. In the
present case, the structural sensitivity fields (figure 17) are far from those observed for
a typical elliptic instability and seem to exclude this type of transition mechanism. The
spanwise perturbation vorticity is not contained within the elliptically shaped streamlines
and it has not the typical structure for an elliptic instability, with two lobes of opposite
sign forming approximately a 45◦ angle with the axis of the ellipse (Landman & Saffman
1987; Waleffe 1990). Moreover, the structural sensitivity is not maximum at the elliptic
stagnation point at the centre of the elliptic streamlines, but its largest values are placed
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close to the regions where the streamlines have large curvature. Therefore, from this point
of view, this transition does not seem to be elliptic in nature.

Let us now inspect whether there is evidence for this instability to be of centrifugal
nature. Following the work by Gallaire et al. (2007), in figure 18, the grey lines indicate
isolines of negative values of the Rayleigh discriminant Δ:

Δ = 2|U |Ωz

R
, (5.1)

where |U | is the base-flow velocity modulus and R the local algebraic curvature radius,
i.e.

R = |U |3
(∇ψ) · (U · ∇U)

. (5.2)

According to Sipp & Jacquin (2000), a sufficient condition for the centrifugal instability
in the inviscid short-wave limit is the existence of a streamline ψ0 such that Δ(r0) < 0 for
any point r0 along it. Figure 18 shows that there exist different regions of the flow where
Δ is negative (see the grey lines): (i) upstream of the top leading-edge corner; (ii) slightly
downstream and above the TE corner; (iii) behind the TE over the ψ = 0 streamline
delimiting the top recirculating region; (iv) downstream of the flow recirculation. Clearly,
there is no streamline along which Δ is negative for all points. However, the fact that
Δ < 0 in the flow regions where the structural sensitivity is maximum seems to indicate
that the centrifugal instability may play a role in the triggering mechanism. As suggested
by Gallaire et al. (2007), since the above criterion is only a sufficient condition, it is
possible that a partial gain (i.e. streamlines that only partially cross Δ < 0 regions) is
sufficient for triggering the global instability. This possibility is addressed by inspecting
the local instability of closed streamlines by means of the asymptotic inviscid stability
theory described in § 2.3.

5.1. Asymptotic analysis
The asymptotic inviscid stability analysis relies on the same steady base flows used for
the global stability analysis. The closed Lagrangian trajectories are extracted integrating
in time (2.9) using a third-order Runge–Kutta method. Then, the fundamental matrix A(T)
is evaluated for several closed orbits integrating the ODE (2.12) over one revolution period
T of the trajectories.

The results forA > 3 are first presented, usingA = 5 at Re = 101.5 and g = 0.125;
note that qualitatively, the same results hold also for largerA. The Reynolds number has
been set to Re = 101.5, as for this configuration, it is slightly larger than the critical value
found with the global stability analysis. Figure 19 shows the real and imaginary part of the
leading eigenvalue evaluated for streamlines with different x0 = (x0, y0). The panels refer
to streamlines starting at x0 = 2.45 with 1.01 ≤ y0 ≤ 1.39 (figure 19b) and x0 = 6.34 with
0.81 ≤ y0 ≤ 1.18 (figure 19c). For the reader’s convenience, the (x0, y0) starting points of
the streamlines considered in this analysis are shown in figure 19(a) with the blue and red
thick lines, respectively. Note that (x, y) = (2.45, 1.39) and (x, y) = (6.34, 1.18) are the
two elliptical stagnation points within the side and wake recirculating regions and (x, y) =
(6.34, 0.81) is located over the ψ = 0 streamline. The asymptotic analysis reveals three
different branches for both values of x0 considered. The eigenvalues of the first (red) and
third (green and blue) branches have zero frequency, while those of the second (yellow)
branch have non-zero frequency. The first two branches at both x0 refer to the same close
orbits, see figure 20. These orbits evolve close to the ψ = 0 streamline from the LE corner
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Figure 19. The WKBJ analysis forA = 5 and g = 0.125 at (Re, λ) = (Rec,3-D, λc). (a) (x0, y0) starting point
of the streamlines used for the analysis with x0 = 2.45 (blue line) and x0 = 6.34 (red line). The black line
is for ψ = 0; the grey and green diamonds indicate the elliptic and hyperbolic stagnation points. (b,c) The
WKBJ growth rate σr (circles) and eigenfrequency σi (triangles) for (b) the streamlines with x0 = 2.45 and
1.01 ≤ y0 ≤ 1.39 and (c) the streamlines with x0 = 6.34 and 0.81 ≤ y0 ≤ 1.18. The eigenvalues of the first
(red) and third (green and blue) branches have zero frequency, while those of the second (yellow) branch have
non-zero frequency.
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Figure 20. Orbits associated with the three unstable branches detected with the WKBJ analysis superimposed
on the structural sensitivity map forA = 5, g = 0.125 at (Re, λ) = (Rec,3-D, λc). The black line is for ψ = 0.
Grey/green diamonds indicate elliptical/hyperbolic stagnation points.

to the wake region, see the red and yellow lines. Note that orbits of the second branch
with non-null frequency are shorter and placed closer to the elliptical stagnation point.
In contrast, the third branch of eigenvalues refers to different orbits evolving around the
elliptic stagnation point within the side and wake recirculating regions; see the green and
blue streamlines in figure 20, respectively. The streamline with maximum growth rate
belongs to the third branch detected for x0 = 6.34 and is identified by the blue line in
figure 20. Among the orbits associated with the same branch, it is the largest and passes
through the two regions with large values of the structural sensitivity where the Rayleigh
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Figure 21. Global and local stability analysis results forA = 5 and g = 0.125. The green diamonds result
from the global stability analysis and the red circle from the local analysis. For the global stability analysis,
ReBF is fixed at ReBF = 101.5 and ReSTB is increased to ReSTB = 200, 500, 1000, 1500, 2000. (a) Evolution of
the maximum growth rate with Re−1/2

STB . (b) Evolution of the associated wave number with Re1/3
STB. The dashed

line is obtained via least square approximation of the global stability results.

invariant is negative Δ < 0. In agreement with the results of the global stability analysis,
it has null imaginary part, indicating a stationary mode. This seems to indicate that the
local regions with Δ < 0 are sufficient to trigger the global instability, owing to the local
feedback on these closed orbits.

However, the growth rate predicted by this theory (≈ 0.074) does not match the
maximum growth rate measured by the global stability at Re = 101.5 and β = 0.8 (≈
2.5 × 10−5). To obtain a correct prediction of the instability, we consider the correction
terms that account for the finite Re and wavenumber effects discussed by Landman &
Saffman (1987), Gallaire et al. (2007) and Citro et al. (2015), i.e.

σ = σ∞ − β2

Re
− A
β
. (5.3)

Note, however, that this is reasonable only if A Re = O(β3). In doing this, the influence of
viscosity on the mode structure is neglected and, therefore, A is expected not to depend on
Re. As shown by Gallaire et al. (2007), the maximum growth rate and the corresponding
spanwise wavenumber β should scale as σmax ∝ Re−1/3 and βmax ∝ Re1/3 (Bayly 1988;
Sipp et al. 1999); more precisely,

σmax = σ∞ − (21/3 + 2−2/3)

(
A2

Re

)1/3

and βmax =
(

A Re
2

)1/3

. (5.4a,b)

The global stability analysis is used to check these scaling laws. The stability
analysis is repeated keeping the Reynolds number of the base flow fixed to ReBF =
101.5, and increasing the Reynolds number of the stability problem to ReSTB =
200, 500, 1000, 1500 and 2000 to progressively reduce the viscous effects in the
eigenvalue problem. Figure 21(a) shows that the leading eigenvalues of the new numerical
experiments approximately lay on the same line σmax = b + aRe−1/3, where a least square
approximation gives b = 0.0748 that is very close to σ∞ = 0.074. Moreover, the good
collapse of σmax suggest that A does not depend on Re, supporting the hypothesis that
the effect of the viscosity on the mode structure is negligible. Figure 21(b) shows that
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Figure 22. Structural sensitivity map for A = 5, g = 0.125 and (ReBF, λc) = (Rec,3-D, λc), and
(a) ReSTB = 101.5, (b) 500, (c) 1000 and (d) 1500. Grey/green diamonds indicate elliptical/hyperbolic
stagnation points, respectively.
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Figure 23. Structural sensitivity map forA = 5 at g = 4 at (ReBF, λ) = (Rec,3-D, λc) and ReSTB = 2000.
Grey/green diamonds indicate elliptical/hyperbolic stagnation points, respectively.

also βmax seems to follow the expected scaling law βmax ∝ Re1/3. However, there is not
agreement in the value of A predicted by these two scaling laws. Overall, this analysis
indicates that for elongated cylinders, the three-dimensional regular bifurcation for small
gaps is the result of an inviscid triggering mechanism.

The structural sensitivity field for the different ReSTB considered is shown in figure 22.
By fixing ReBF = 101.5 and increasing ReSTB, the spatial distribution of the sensitivity
map progressively changes. For all ReSTB, the largest values of the sensitivity remain
sharply confined within the top wake recirculating region. For large ReSTB, the maximum
of S moves close to the elliptic stagnation point, and large values are observed over the
bottom boundary of the ψ = 0 line where Δ < 0. Although the latter large values are
compatible with a centrifugal instability, the position of the maximum of the sensitivity
raises the question on the role of the elliptical instability in this three-dimensional
bifurcation. Indeed, the elliptical instability can be synchronous (Kerswell 2002) and the
spanwise wavelength of the resulting three-dimensional unstable mode depends on the size
of the associated elliptic-shaped streamlines (see for example Stewart et al. 2010b).
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Figure 24. The WKBJ analysis forA = 1 and g = 0.125 at (Re, λ) = (Rec,3-D, λc). (a) The (x0, y0) starting
point of the streamlines used for the analysis (blue line). The black line is for ψ = 0; the grey diamonds in the
top panel indicate elliptical stagnation points. (b) The WKBJ growth rates σr (circles) and eigenfrequencies σi
(triangles) forA = 1, (Re, λ) = (Rec,3-D, λc).
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Figure 25. Orbits associated with the three unstable branches detected with the WKBJ analysis superimposed
on the structural sensitivity map forA = 1, g = 0.125 at (Re, λ) = (Rec,3-D, λc). The red, yellow and green
thick lines indicate the orbits with maximum growth rate of each branch (see figure 24). The black line is for
ψ = 0. Grey/green diamonds indicate elliptical/hyperbolic stagnation points.

Figure 23 shows the plot of the structural sensitivity forA = 5 and g = 4 at ReBF =
212.9, ReSTB = 2000 and β = 1.1. Unlike for small gaps, in this case, the structural
sensitivity features two local maxima placed within the top and bottom wake recirculating
regions, indicating that both regions are involved in the triggering mechanism. This is
consistent with the abovementioned Crow instability.

Cylinders withA ≤ 3 are now considered, and the asymptotic inviscid stability analysis
forA = 1 and g = 0.125 at Re = Rec,3-D ≈ 68.9 is presented as an example. As shown in
figure 24, in this case, the eigenvalue with maximum growth rate has a non-zero frequency
and this is not consistent with the results of the global stability analysis. The associated
orbit (see the yellow line in figure 25) extends from the region above the longitudinal
side of the cylinder to the region downstream of the TE. The inconsistency between the
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results of the global and local analysis suggest that, unlike for elongated cylinders, for
short bodies, the viscous effects play an important role in the triggering mechanism. Note
that also in this case, the asymptotic analysis reveals a branch of unstable eigenvalues with
null frequency that are associated with orbits that evolve downstream of the TE around
the elliptical stagnation point within the TE wake recirculating region. These orbits are
the same that have been conjectured to trigger the global instability forA > 3, see the
green line in figure 25. One may speculate that, also in this case, the global instability is
triggered by the local feedback associated with these orbits. Indeed, it is possible that at
finite Reynolds numbers, the maximum growth rate associated with these lines overcomes
that of the branch with non-null frequency due to a lower damping effect of viscosity. The
fact that these lines cross the regions where the structural sensitivity is maximum and that
those associated with eigenvalues with non-null frequency are close to the cylinder where
the viscous effects are largest may support this hypothesis.

6. Conclusion

The present work studies the primary instability of the flow past rectangular cylinders
moving along a solid wall. The aspect ratio of the cylinder and the gap height are varied
between 0.5 ≤A ≤ 7 and 0.125 ≤ g ≤ 10, to consider short and elongated cylinders, and
small and large gap heights. Reynolds numbers up to Re = 300 are considered. Although
the Reynolds number investigated in this work is rather low with respect to that of most
applications, in many problems, there is a separation of time and length scales so that the
effect of the instabilities detected by the linear stability are still relevant. Independently
of A, the primary instability consists of a Hopf bifurcation towards a two-dimensional
unsteady state for g ≥ 0.5, or a regular bifurcation towards a three-dimensional steady
state for g < 0.5.

ForA ≤ 1, the critical Reynolds number of the Hopf bifurcation Rec,2-D monotonically
increases when the gap height decreases. In contrast, for largerA, Rec,2-D does not have
a monotonic dependence on the gap height; for large gaps, a decrease of g destabilises
the flow (Rec,2-D decreases), with the most unstable configuration being observed for g ≈
1, while the opposite occurs for the smallest gaps. This dependence of Rec,2-D onA is
explained with the different influence of the ground proximity on the flow in the gap. For
short cylinders, a decrease of the gap height results in a stronger acceleration of the shear
layer separating from the bottom LE corner both in the fore and aft parts of the cylinder
side. In contrast, for elongated cylinders, the shear layer acceleration is stronger only in
the aft part of the gap, as the ground proximity results into a decrease of the fluid velocity
close to the LE.

The critical Reynolds number of the regular bifurcation Rec,3-D increases withA for
all gap heights. For A ≥ 3, Rec,3-D monotonically increases with g towards the free
stream value. For shorter bodies, it increases for g � 1 and slightly decreases for larger
gap heights. Although the perturbation fields vary smoothly with the gap height for all
aspect ratios, the structural sensitivity suggests that the main triggering mechanism of this
instability changes for large and small gap heights. For large g, the perturbation fields
resemble that of the Crow instability of a counter-rotating vortex pair, like in free stream,
and the structural sensitivity indicates that the two wake recirculating regions placed after
the TE cooperate to trigger the instability. For small g, the structural sensitivity indicates
that the main triggering mechanism is embedded in the large recirculating region placed
over the top cylinder side. For this case, we put forward some evidence that the centrifugal
instability plays a role in the triggering mechanism.
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M0 M1 M2 M3 M4

Lx 105 105 65 105 105
Ly 80 + g 40 + g 80 + g 80 + g 80 + g

g = 0.125 Rec,2-D 160.1564 159.4335 161.5469 164.7269 160.2073
Im(γc) 0.3886 0.3876 0.3940 0.3914 0.3888

g = 10 Rec,2-D 97.9222 97.9831 97.6513 97.7808 98.0042
Im(γc) 0.6796 0.6806 0.6787 0.6778 0.6792

Table 1. Variations of the critical Reynolds number Rec,2-D and frequency Im(γc) for the two-dimensional
unstable global mode of the rectangular cylinder withA = 5 on four different meshes M1 − M4. Both the
g = 0.125 and g = 10 gap heights are considered. M0 indicates the mesh used for the stability computations
in this work. M1 indicates the mesh with different cross-stream extension Ly. M2 is the mesh with smaller
streamwise extension Lx of the domain. M3 and M4 are the meshes with coarser grid resolution. Recall that all
lengths are made dimensionless with the cylinder thickness D.

The local WKBJ analysis (Bayly 1988) in the inviscid and short-wave limit has been
used to investigate the nature of the three-dimensional regular bifurcation for small gap
heights. It shows that it is possible to identify close streamlines along which the integrated
growth rate is positive. Three branches of unstable orbits are found, two are stationary
and one is unsteady. This provides an assessment of the inviscid nature of the stationary
instability, similar to what was observed by Gallaire et al. (2007) and Barkley et al. (2002)
for the flow past a bump and a backward-facing step, respectively. For elongated cylinders
with A > 3, the critical orbit with maximum growth rate is associated with the steady
branch of orbits confined in the top-wake recirculating region, and crosses the regions
where the structural sensitivity is maximum. In this case, once the corrections for finite
Reynolds number and spanwise length scales are applied, the asymptotic results compare
very well with the results of the global stability analysis. For shorter cylinders, however,
the local theory fails to predict the three-dimensional regular instability. In this case, the
critical orbit is on the unsteady branch and partially extends over the top longitudinal side
of the cylinder.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Alessandro Chiarini https://orcid.org/0000-0001-7746-2850;
Franco Auteri https://orcid.org/0000-0001-8796-9102.

Appendix. Sensitivity to the domain size and resolution

In this section, the sensitivity of the results to the domain size and grid resolution is
investigated for both the two-dimensional and three-dimensional bifurcations. This is done
by performing further global stability computations forA = 5 and for different g.

For the two-dimensional bifurcation, the smallest and largest gap heights, i.e. g = 0.125
and g = 10, have been examined. Four additional meshes (M1 − M4) have been considered
to investigate the sensitivity to the cross-stream and streamwise extent of the domain (M1
and M2) and to the grid resolution (M3 and M4). The results are summarised in table 1.
For M1, the cross-stream extent of the domain is decreased to Ly = g + 40, while the
streamwise extent is the same used in the regular grid M0, i.e. Lx = 105. For M2, the
streamwise extent is reduced shifting upstream the position of the outlet; in this case, the
computational domain extends for −25 ≤ x ≤ 40 and −g ≤ y ≤ 80. For both cases, the
number of triangles is changed to maintain the grid resolution approximately constant.
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Stability of rectangular cylinders moving along a wall

M0 M1 M2 M3 M4

Lx 105 105 65 105 105
Ly 80 + g 40 + g 80 + g 80 + g 80 + g

g = 0.125 Rec,3-D 101.46 101.10 101.61 101.87 101.50
βc 0.7636 0.7618 0.7688 0.7823 0.7662

Table 2. Variations of the critical Reynolds number Rec,3-D and wavenumber βc for the three-dimensional
unstable global mode of the rectangular cylinder withA = 5 and g = 0.125 on four different meshes M1 −
M4. The four meshes are as in table 1.

7654

x

y

3210

1.5

1.0

0.5

0

y

1.5

1.0

0.5

0

76543210

(b)

(a)

Figure 26. Visualisation of two meshes used for the stability computations in the region close to the cylinder
and close to the wall. (a)A = 1 and g = 0.125. (b)A = 5 and g = 0.125.

For g = 0.125, Rec,2-D and Im(γc) are within 0.45 % and 0.24 % and within 0.86 % and
1.38 %, the values predicted by the regular grid for the M1 and M2 meshes, respectively.
For g = 10, they are within 0.06 % and 0.14 % for M1 and within 0.27 % and 0.13 % for
M2. In contrast, for meshes M3 and M4, the same domain as M0 is used, but the number
of triangles is reduced by approximately 50 % and 25 %. Both Rec,2-D and Im(γc) are
almost insensitive when increasing the resolution from M4 to M0 for both g = 0.125 and
g = 10. In detail, for g = 0.125, the variations of Rec,2-D and Im(γc) compared with the
regular grid are within 2.85 % and 0.72 % for M3 and within 0.03 % and 0.04 % for M4.
For g = 10, the variations are within 0.14 % and 0.27 % for M3 and within 0.08 % and
0.06 % for M4.

For the three-dimensional regular bifurcation, the g = 0.125 gap height has been
examined and the stability computations have been repeated for the same M1 − M4 meshes
described above. The sensitivity results are reported in table 2. Again, the results are almost
insensitive to a variation of the size of the computational domain. In fact, Rec,3-D and βc
are within 0.35 % and 0.23 %, the values predicted by the regular grid for M1 and within
0.14 % and 0.68 % for M2. The results obtained with meshes M3 and M4 confirm that the
grid resolution of the regular grid is adequate. Indeed, with mesh M3, Rec,3-D and βc are
within 0.40 % and 2.45 %, the values predicted by the regular grid, but with mesh M4, they
are within 0.04 % and 0.34 %.

Figure 26 shows the M0 meshes for the cylinders with A = 1 and A = 5 and g =
0.125, and visualises the distribution of the triangles in the regions close to the cylinder
and close to the wall.
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