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In this paper, we prove several results on the exponential decay in L2 norm of the
KdV equation on the real line with localized dampings. First, for the linear KdV
equation, the exponential decay holds if and only if the averages of the damping
coefficient on all intervals of a fixed length have a positive lower bound. Moreover,
under the same damping condition, the exponential decay holds for the (nonlinear)
KdV equation with small initial data. Finally, with the aid of certain properties of
propagation of regularity in Bourgain spaces for solutions of the associated linear
system and the unique continuation property, the exponential decay for the KdV
equation with large data holds if the damping coefficient has a positive lower bound
on E, where E is equidistributed over the real line and the complement Ec has a
finite Lebesgue measure.
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1. Introduction

In this paper, we are interested in the exponential decay property of the KdV
equation on the real line R

∂tu + ∂3
xu + u∂xu + a(x)u = 0, u(x, 0) = u0(x) ∈ L2(R). (1.1)

Here, u(x, t) is a real-valued function on R × R
+, the function a(x) satisfies the

condition

0 � a(x) ∈ L∞(R). (A1)

In the case a(x) = 0, (1.1) reduces to the classical KdV equation, which models the
unidirectional propagation of small-amplitude long waves in nonlinear dispersive
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systems. If we multiply (1.1) by 2u and integrate over R, then

d
dt

∫
R

|u(x, t)|2dx + 2
∫

R

a(x)|u(x, t)|2dx = 0. (1.2)

This, and condition a(x) � 0, clearly implies that ‖u(· , t)‖L2(R) � ‖u0‖L2(R) for all
t � 0. Moreover, if a(x) � a0 > 0 for all x ∈ R, then (1.2) gives the decay bound

‖u(·, t)‖L2(R) � e−a0t‖u0‖L2(R), for all t � 0. (1.3)

Thus, the term au is called a damping in the literature. Now an interesting question
arises naturally, whether the exponential decay as (1.3) holds if

a(x) � a0 > 0, x ∈ E (A2)

is satisfied only on a subset E ⊂ R? In this case, the term au is referred to a localized
damping.

Similar problems for KdV type equations on bounded domains have been studied
extensively, we refer to e.g. [3, 14, 15, 17–19, 21, 23] and the survey [24]. But
much less is known for the KdV equation on unbounded domains. For the KdV
equation posed on (x, t) ∈ R

2
+, the exponential decay of the L2(R+) norm was

proved in [16] when (A2) holds on E = (0, δ)
⋃

(L, +∞) for some 0 < δ < L. The
same result was obtained in [22] under a weaker localized damping, namely (A2)
holds only on E = (L, +∞) for some L > 0. For the KdV equation on (x, t) ∈ R ×
R+, namely (1.1), the exponential decay was established in [4] with damping on E =
(−∞, −L)

⋃
(L, +∞). If one considers the KdV equation with strong dissipation

∂tu − ∂2
xu + ∂3

xu + u∂xu + a(x)u = 0, u(x, 0) = u0(x) ∈ L2(R),

called the Korteweg–de Vries–Burgers equation, then the exponential decay holds
with an indefinite damping, namely a(x) may change sign, see [5, 7, 9].

In this article, the main goal is to consider the following question: To what extent
the set E can be small so that the exponential decay holds for KdV equations with
damping on E. First of all, we give a sufficient and necessary condition for the
exponential decay of the linear KdV equation.

Theorem 1.1. Assume that (A1) holds. Then the following are equivalent:

(1) There exist constants C, λ > 0 so that

‖u(·, t)‖L2(R) � Ce−λt‖u0‖L2(R), ∀t � 0

holds for all solutions of the initial value problem (IVP) ∂tu + ∂3
xu + a(x)u =

0, u(x, 0) = u0(x) ∈ L2(R).

(2) There exists a constant L > 0 so that

inf
x∈R

∫ x+L

x−L

a(y)dy > 0. (1.4)
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Figure 1. Comparison of thick set with NCC.

As noted in [8], under assumption (A1), condition (1.4) is equivalent to (A2) for
some a0 > 0 and a thick set E. Recall that (see e.g. [29]) a measurable set E ⊂ R

is thick, if there exists L > 0 so that

inf
x∈R

∣∣∣E ⋂
[x − L, x + L]

∣∣∣ > 0.

Here and below, we use |E| to denote the Lebesgue measure of E. Based on
theorem 1.1 and the contraction mapping principle, we give the exponential decay
for the KdV equation (1.1) with small data.

Theorem 1.2 (Decay for small data). Assume that (A1) holds and (A2) holds on
a thick set E. Then there exist constants C > 0, λ > 0, δ > 0 such that

‖u(t)‖L2(R) � Ce−λt‖u0‖L2(R), t � 0

holds for all solutions of (1.1) with data ‖u0‖L2(R) � δ.

To obtain the exponential decay for large data, we need to strength the damping
effect. To state our result, we first introduce a set class. A set E ⊂ R is said to
be satisfying the network control condition (NCC), named after [2], if there exist
constants r, L > 0 so that

E ⊃
⋃
n

(xn − r, xn + r), inf
n

|x − xn| � L, for all x ∈ R.

Clearly, a set satisfying NCC is a thick set, but a thick set could not satisfy NCC,
see figure 1.

Remark 1.3. In figure 1, the set consisting of red intervals is a typical thick set. It
has a fixed positive Lebesgue measure on every [n, n + 1], but it does not contain
an interval with given length simultaneously on all [n, n + 1], n ∈ Z. The union of
blue intervals is a typical set satisfying NCC.

The set class satisfying NCC in higher dimensions (the definition is the same
except minor modifications) was first introduced to study the observability of the
Kolmogorov equation [10] (see also [6] for observability of heat equations).

Theorem 1.4 (Decay for general data). Assume that (A1) holds and (A2) holds
on E, where E satisfies NCC and the complement set Ec has a finite Lebesgue
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Figure 2. Damping domain considered in [4] vs damping domain considered in
theorem 1.4.

measure. Then for every R > 0, there exist constants C, λ > 0 depending only on
R and a(x) so that

‖u(t)‖L2(R) � Ce−λt‖u0‖L2(R), t � 0

holds for all solutions u of IVP (1.1) with initial data satisfying ‖u0‖L2(R) � R.

Note that if E is the complement of a compact set, then E satisfies NCC and
m(Ec) < ∞. However, if

E = R\
⋃

0 �=k∈Z

[
k, k +

1
k2

]
,

then E satisfies NCC and m(Ec) < ∞, but Ec cannot be contained in a compact
set, see figure 2. Therefore, theorem 1.4 improves the results in [4] in the sense
that the exponential decay holds with localized damping on more general sets.
In fact, to obtain exponential decay results established in [4], it is assumed that
the damping effect holds on the complement of a compact set (see the blue set in
figure 2). On the other hand, conditions in theorem 1.4 allows no damping to occur
on some small gaps at infinity (see the red set in figure 2).

Let us describe briefly the applications of conditions established on the set E and
the main arguments to prove theorem 1.4.

(1) E satisfies NCC. This condition is necessary to show the propagation of reg-
ularity for the operator L = ∂t + ∂3

x. Roughly speaking, let u be a solution of
the equation Lu = f with a smooth f , then u is smooth on R if u is smooth
on E. We refer to lemma 4.3 for precise statements.

(2) m(Ec) < ∞. This condition is necessary to establish the compactness of
sequence un ∈ L2(0, T ;L2(Ec)), where un is the solution of IVP (1.1) with
initial data u0n bounded in L2(R). Combining the compactness and the
propagation of regularity, we show that the solution of (1.1) enjoys the
observability∫ T

0

∫
R

|u(x, t)|2dxdt � C

∫ T

0

∫
R

a(x)|u(x, t)|2dxdt.

Then the exponential decay follows from a standard argument.

The notation used in this paper is standard. We only point out that we use A � B
to denote A � CB for some constant C > 0, which may vary from place to place.

The paper is organized as follows. In § 2, we show theorem 1.1. The proof of
theorem 1.2 is given in § 3. Finally, in § 4, the propagation of regularity and an
observability inequality are established to prove theorem 1.4.
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2. Exponential decay for linear KdV

Assume that 0 � a(x) ∈ L∞(R). Consider the linear operator A : H3(R) �→ L2(R)

Au = ∂3
xu + a(x)u, u ∈ H3(R).

Clearly, we have

(Au, u) = (∂3
xu + a(x)u, u) =

∫
R

a(x)|u(x)|2dx � 0.

This shows that −A is dissipative. According to Lumer–Phillips theorem [20], −A
generates a C0 semigroup of contractions in L2(R), namely

‖e−tA‖L2(R)→L2(R) � 1, ∀t � 0.

This will be improved to an exponential decay upper bound if a satisfies some
further damping conditions.

Theorem 2.1. Assume that (A1) holds and (A2) holds on a thick set E. Then there
exist constants C, λ > 0 depending only on a and E so that

‖e−tA‖L2(R)→L2(R) � Ce−λt, ∀t � 0.

Proof. The result has been stated in [31] without proof. We give a sketch here for
the reader’s convenience. Let E be a thick set. Based on the uncertainty principle
of the Fourier transform, one can show that (see [31, lemma 2.3]) there exists a
constant c1 > 0 so that for all τ ∈ R, u ∈ H3(R),

c1‖u‖L2(R) � ‖(∂3
x + iτ)u‖L2(R) + ‖u‖L2(E). (2.1)

Since a ∈ L∞(R), by the triangular inequality

‖(∂3
x + iτ)u‖L2(R) � ‖(A + iτ)u‖L2(R) + ‖a‖1/2

L∞(R)‖a1/2u‖L2(R). (2.2)

By assumption (A2), a(x) � a0 on E, we have

‖u‖L2(E) � a
−(1/2)
0 ‖a1/2u‖L2(R). (2.3)

It follows from (2.1)–(2.3) that for some c2 > 0

c1‖u‖L2(R) � ‖(A + iτ)u‖L2(R) + c2‖a1/2u‖L2(R). (2.4)

Moreover, taking the L2(R) inner product and using (A1), we find∫
R

a(x)|u|2dx = Re((A + iτ)u, u) � ‖u‖L2(R)‖(A + iτ)u‖L2(R). (2.5)

Plugging (2.5) into (2.4) and using Cauchy–Schwartz, we infer that for all ε > 0,

c1‖u‖L2(R) � ‖(A + iτ)u‖L2(R) + c2ε‖u‖L2(R) + c2ε
−1‖(A + iτ)u‖L2(R). (2.6)
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Taking ε = ε0 > 0 small enough such that c2ε0 � c1/2, then we deduce from (2.6)
that

‖u‖L2(R) � c3‖(A + iτ)u‖L2(R), ∀τ ∈ R,

where c3 > 0 is a constant independent of τ . This implies that the resol-
vent set ρ(A) ⊃ iR and supτ∈R

‖(A + iτ)−1‖L2(R)→L2(R) < ∞. Thus according to
Gearhart–Pruss–Huang criteria [11], the desired decay holds. �

Proof of theorem 1.1. Assume that (A1) holds. We divide the proof into two steps.
(2)=⇒(1). First, following [8], we show that the condition (2) implies that (A2)

holds on a thick set E. In fact, if (2) holds, then there exists γ > 0, so that

inf
x∈R

∫ x+L

x−L

a(y)dy � γ > 0. (2.7)

Fix x ∈ R. For every ε > 0, we consider the set

Σε = {y ∈ [x − L, x + L] : 0 � a(y) < ε}.
It follows from (2.7) that

γ �
∫ x+L

x−L

a(y)dy �
∫

[x−L,x+L]
⋂

Σε

a(y)dy +
∫

[x−L,x+L]
⋂

Σc
ε

a(y)dy

� 2Lε + ‖a‖L∞(R)|Σc
ε|. (2.8)

Choose ε = ε0 := γ/4L. It follows from (2.8) and the definition of Σc
ε that

|y ∈ [x − L, x + L] : a(y) � ε0| � γ

2‖a‖L∞(R)
> 0.

Since x can be chosen arbitrarily, we conclude that the set {y ∈ R : a(y) � ε0} is a
thick set. Now according to theorem 2.1, (1) holds.

(1)=⇒(2). Assume that (1) holds for some constants C, λ > 0, then

‖e−tA‖L2(R)→L2(R) � Ce−λt, ∀t � 0,

where A = ∂3
x + a(x) with domain D(A) = H3(R). According to Gearhart–Pruss–

Huang criteria [11], we have

sup
τ∈R

‖(A + iτ)−1‖L2(R)→L2(R) < ∞.

In particular, letting τ = 0, this implies ‖A−1‖L2(R)→L2(R) < ∞. In other words,
there exists a constant c > 0 so that

c‖f‖L2(R) � ‖(∂3
x + a(x))f‖L2(R), ∀f ∈ L2(R). (2.9)

Now we are going to test (2.9) with a sequence of functions

fε(x) = ε1/4e−εx2
, ε > 0, x ∈ R.
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Fix ε > 0. Clearly,

‖fε‖L2(R) � c0 (2.10)

for some constant c0 > 0 independent of ε. Moreover, we compute

∂3
x(eϕ) = eϕ

(
(∂xϕ)3 + 3∂xϕ∂2

xϕ + ∂3
xϕ

)
,

which implies that

∂3
xfε = ε1/4e−εx2

(−8ε3x3 + 12ε2x).

This gives that for some constant c1 > 0 independent of ε

‖∂3
xfε‖L2(R) � c1ε

3/2. (2.11)

It follows from (2.9)–(2.11) that

cc0 � c1ε
3/2 + ‖afε‖L2(R). (2.12)

Choosing ε = ε0 such that c1ε
3/2
0 = cc0/2 in (2.12), we find

cc0

2
� ‖afε0‖L2(R) � ‖afε0‖L2(|x|�L) + ‖afε0‖L2(|x|>L), (2.13)

for every L > 0. Note that for some c2 > 0 we have

‖afε0‖L2(|x|>L) � ε
1/4
0 ‖a‖L∞(R)

(∫
|x|�L

e−2ε0x2
dx

)1/2

� c2‖a‖L∞(R)e−(ε0/2)L2
.

(2.14)
Choosing L = L0 so that c2‖a‖L∞(R)e−(ε0/2)L2 � cc0/4, we deduce from
(2.13)–(2.14) that

cc0

4
� ‖afε0‖L2(|x|�L0). (2.15)

Squaring both sides of (2.15) and using Cauchy–Schwarz inequality, we infer that(cc0

4

)2

� ‖a‖L∞(R)

∫
|x|�L0

a(x)f2
ε0

(x)dx � √
ε0‖a‖L∞(R)

∫
|x|�L0

a(x)dx. (2.16)

It follows from (2.16) that ∫
|x|�L0

a(x)dx � γ (2.17)

with γ =
(

cc0
4

)2 1√
ε0‖a‖L∞(R)

> 0.
Now for every x0 ∈ R, if we testing (2.9) with

fε(x) = ε1/4e−ε(x−x0)
2
,

then, similar to (2.17), we have∫
|x−x0|�L0

a(x)dx � γ. (2.18)

This shows that (2) holds. Thus the proof is complete. �
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3. Exponential decay with small data

First we recall some estimates in Bourgain spaces. Let s, b ∈ R, the Bourgain spaces
Xs,b are defined by the norm

‖u‖Xs,b :=
(∫

R2
(1 + |ξ|)2s(1 + |τ − ξ3|)2b|û(ξ, τ)|2dξdτ

)1/2

< ∞,

where û(ξ, τ) is the space–time Fourier transform of u, given by

û(ξ, τ) =
∫

R2
e−i(xξ+tτ)u(x, t)dxdt.

For an open interval I on R, the restriction in time Bourgain spaces Xs,b
I are

endowed with the norm

‖u‖Xs,b
I

:= inf
v∈Xs,b

{
‖v‖Xs,b , v(·) = u(·) on I

}
.

Let {W (t)}t∈R be the Airy group, given by

(W (t)u0)(x) = e−t∂3
xu0 = c

∫
R

eixξeitξ3
û0(ξ)dξ, (3.1)

where c is an absolute constant.

Lemma 3.1. Assume that I = (0, δ) with 0 < δ � 1 and s � 0.

(1) If b > 1/2, then

‖W (t)u0‖Xs,b
I

�b ‖u0‖Hs(R), (3.2)∥∥∥∥∫ t

0

W (t − τ)f(·, τ)dτ

∥∥∥∥
Xs,b

I

�b ‖f‖Xs,b−1
I

. (3.3)

(2) If −(1/2) < b � b′ < 1/2, then

‖u‖Xs,b
(−δ,δ)

�s,b,b′ δb′−b‖u‖
Xs,b′

I

. (3.4)

(3) If 1/2 < b � b′ � 3/4, then

‖∂x(uv)‖
Xs,b′−1

I

�s,b ‖u‖Xs,b
I

‖v‖Xs,b
I

. (3.5)

Proof. See [30]. �

The item (1) of lemma 3.1 can be understood as some estimates of the Airy
group W (t) in Bourgain spaces. Now we give some similar estimates of e−tA, A =
∂3

x + a(x), based on lemma 3.1.
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Lemma 3.2. Assume that a ∈ L∞(R), I = (0, δ) and b ∈ (1/2, 1]. Then for some
small δ = δ(b, ‖a‖L∞) > 0, we have

‖e−tAu0‖X0,b
I

�b ‖u0‖L2(R), (3.6)∥∥∥∥∫ t

0

e−(t−τ)A∂x(uv)(τ)dτ

∥∥∥∥
X0,b

I

�b ‖u‖X0,b
I

‖v‖X0,b
I

. (3.7)

Proof. By Duhamel formula we have

e−Atu0 = W (t)u0 −
∫ t

0

W (t − s)(ae−Asu0)ds. (3.8)

Taking X0,b
I norm on both sides of (3.8), using (1) of lemma 3.1, we find

‖e−tAu0‖X0,b
I

� ‖W (t)u0‖X0,b
I

+
∥∥∥∥∫ t

0

W (t − τ)(ae−τAu0)dτ

∥∥∥∥
X0,b

I

� C‖u0‖L2(R) + C‖ae−tAu0‖X0,b−1
I

, (3.9)

where C = C(b) > 0. Since b � 1, noting X0,0 = L2
t,x, we have

‖ae−tAu0‖X0,b−1
I

� ‖ae−tAu0‖X0,0
I

� ‖a‖L∞‖e−tAu0‖X0,0
I

� C ′δb‖e−tAu0‖X0,b
I

,

(3.10)

where in the last step we used (2) of lemma 3.1, and C ′ > 0 is a constant depending
on b and ‖a‖L∞ , but independent of δ. It follows from (3.9)–(3.10) that

‖e−tAu0‖X0,b
I

� C‖u0‖L2(R) + CC ′δb‖e−tAu0‖X0,b
I

. (3.11)

If we take δ small such that CC ′δb � 1/2, then the last term of (3.11) can be
absorbed by the left hand side, we have

‖e−tAu0‖X0,b
I

� 2C‖u0‖L2(R).

This proves (3.6) for such δ.
To prove (3.7), we apply the identity∫ t

0

e−(t−τ)Af(τ)dτ =
∫ t

0

W (t − τ)f(τ)dτ

−
∫ t

0

W (t − τ)a(x)
(∫ τ

0

e−(τ−τ ′)Af(τ ′)dτ ′
)

dτ

with f = ∂x(uv), similar to the above argument, we obtain∥∥∥∥∫ t

0

e−(t−τ)A∂x(uv)(τ)dτ

∥∥∥∥
X0,b

I

� C‖u‖X0,b
I

‖v‖X0,b
I

+ C‖a‖L∞δb

∥∥∥∥∫ t

0

e−(t−τ)A∂x(uv)(τ)dτ

∥∥∥∥
X0,b

I

.

This proves (3.7) for δ small enough. �
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Lemma 3.2 holds for the interval I with small length. Now we extend it to general
intervals.

Lemma 3.3. Assume that (A1) holds and (A2) holds on a thick set E. Let T > 0,
I = (0, T ) and b ∈ (1/2, 1]. Then there exists C = C(b, ‖a‖L∞) > 0 we have

‖e−tAu0‖X0,b
I

� C‖u0‖L2(R), (3.12)∥∥∥∥∫ t

0

e−(t−τ)A∂x(uv)(τ)dτ

∥∥∥∥
X0,b

I

� C(T + 1)‖u‖X0,b
I

‖v‖X0,b
I

. (3.13)

Proof. In the case T � δ, (3.12) and (3.12) follows from (3.6) and (3.7), respectively.
So we assume T > δ now. The proof then mainly relies on the following inequality:
for all s � 0, b ∈ (1/2, 1], δ > 0 and t0 ∈ R,

‖u‖Xs,b
(t0,t0+2δ)

� ‖u‖Xs,b
(t0,t0+δ)

+ ‖u‖Xs,b
(t0+δ,t0+2δ)

. (3.14)

See [32, lemma 6.2] for a proof.
To prove (3.12), choose an integer k � 1 so that kδ � T . Then (0, T ) ⊂ (0, kδ),

using (3.14) repeatedly, we find

‖e−tAu0‖X0,b
(0,T )

�
k∑

j=1

‖e−tAu0‖X0,b
((j−1)δ,jδ)

. (3.15)

But by (3.6) again, we have

‖e−tAu0‖X0,b
((j−1)δ,jδ)

= ‖e−tAe−(j−1)δAu0‖X0,b
(0,δ)

�b ‖e−(j−1)δAu0‖L2(R) � e−(j−1)δλ‖u0‖L2(R),

where in the last step we used theorem 2.1. This, together with (3.15), gives

‖e−tAu0‖X0,b
(0,T )

�
k∑

j=1

e−(j−1)δλ‖u0‖L2(R) � C‖u0‖L2(R)

with some C > 0 depending on δ and b. This proves (3.12).
To show (3.13), we choose k so that (k − 1)δ < T � kδ. Then by (3.14) and (3.7),∥∥∥∥∫ t

0

e−(t−τ)A∂x(uv)(τ)dτ

∥∥∥∥
X0,b

(0,T )

�
k∑

j=1

∥∥∥∥∫ t

0

e−(t−τ)A∂x(uv)(τ)dτ

∥∥∥∥
X0,b

((j−1)δ,jδ)

�b

k∑
j=1

‖u‖X0,b
((j−1)δ,jδ)

‖v‖X0,b
((j−1)δ,jδ)

� k‖u‖X0,b
(0,T )

‖v‖X0,b
(0,T )

�
(

T

δ
+ 1

)
‖u‖X0,b

(0,T )
‖v‖X0,b

(0,T )
.

This proves (3.13). �
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Now we can prove theorem 1.2.

Proof of theorem 1.2. By Duhamel principle, we can rewrite the KdV equation (1.1)
into an integral form

u(t) = e−tAu0 −
∫ t

0

e−(t−s)A(uux)(s)ds. (3.16)

Taking L2(R) norm on both sides of (3.16), using theorem 2.1 and the embedding
X0,b

(0,T ) ↪→ L∞(0, T ;L2(R)) when b > 1/2, we find for all T > 0

‖u(T )‖L2(R) � C0e−λT ‖u0‖L2(R) + C

∥∥∥∥∫ t

0

e−(t−s)A(uux)(s)ds

∥∥∥∥
X0,b

(0,T )

� C0e−λT ‖u0‖L2(R) + C1(T + 1)‖u‖2
X0,b

(0,T )
(3.17)

for some C0 > 1/2, where in the last step we used (3.13).
Now fix a large T > 0 so that

C0e−λT =
1
2
e−(λ/2)T . (3.18)

Then (3.17) becomes

‖u(T )‖L2(R) � 1
2
e−(λ/2)T ‖u0‖L2(R) + C1(T + 1)‖u‖2

X0,b
(0,T )

. (3.19)

Moreover, taking X0,b
(0,T ) norm on both sides of (3.16), using lemma 3.3, we obtain

‖u‖X0,b
(0,T )

� C2‖u0‖L2(R) + C3(T + 1)‖u‖2
X0,b

(0,T )
. (3.20)

Now consider the map Γ

Γu = e−tAu0 −
∫ t

0

e−(t−s)A(uux)(s)ds (3.21)

on the ball

B =
{

u : ‖u‖X0,b
(0,T )

� 2C2‖u0‖L2(R)

}
.

The estimate (3.20) shows that if u ∈ B then

‖Γu‖X0,b
(0,T )

� C2‖u0‖L2(R) + 4C2
2C3(T + 1)‖u0‖2

L2(R). (3.22)

Moreover, if u, v ∈ B, then

‖Γu − Γv‖X0,b
(0,T )

� 4C2C3(T + 1)‖u0‖L2(R)‖u − v‖X0,b
(0,T )

. (3.23)

Thanks to (3.22)–(3.23), if ‖u0‖L2(R) is small enough, say,

‖u0‖L2(R) � 1
8C2C3(T + 1)

:= δ1, (3.24)

then ΓB ⊂ B and ‖Γu − Γv‖X0,b
(0,T )

� (1/2)‖u − v‖X0,b
(0,T )

, thus Γ is a contraction

mapping on B. So equation (3.16) has a unique solution u ⊂ B. This, together
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with the bound (3.19), gives that

‖u(T )‖L2(R) � 1
2
e−(λ/2)T ‖u0‖L2(R) + 4C2

2C1(T + 1)‖u0‖2
L2(R). (3.25)

Assume further that

‖u0‖L2(R) � 1
8C2

2C1(T + 1)
e−(λ/2)T := δ2, (3.26)

so that 4C2
2C1(T + 1)‖u0‖2

L2(R) � (1/2)e−(λ/2)T ‖u0‖L2(R), then (3.25) becomes

‖u(T )‖L2(R) � e−(λ/2)T ‖u0‖L2(R).

By induction, we find that for all n � 1

‖u(nT )‖L2(R) � e−(λ/2)nT ‖u0‖L2(R)

if ‖u0‖L2(R) � δ = min{δ1, δ2}. Then by the semigroup property, we infer that

‖u(t)‖L2(R) � C ′e−λ′t‖u0‖L2(R), ∀t � 0

for some constants C ′, λ′ > 0. This completes the proof of theorem 1.2. �

4. Exponential decay for general data

4.1. A unique continuation

This subsection is devoted to the following unique continuation property (UCP)
of the KdV equation, which is a key step to establish the exponential decay for
general data.

Proposition 4.1. Let T > 0 and E be a set satisfying NCC. Assume that u ∈
X

0,(1/2)+
(0,T ) is a solution of the KdV equation

∂tu + ∂3
xu + u∂xu = 0, (x, t) ∈ R × (0, T )

and u(x, t) = 0 on E × (0, T ). Then

u(x, t) = 0, for x ∈ R, t ∈ (0, T ).

The proof of this result relies on the following unique continuation property,
stated explicitly in [33], that follows from the results in [25].

Lemma 4.2. Let T > 0. Assume that u ∈ L∞(0, T ;H3(R)) is a solution of the KdV
equation

∂tu + ∂3
xu + u∂xu = 0, (x, t) ∈ R × (0, T )

and u = 0 on an open subset of R × (0, T ), then

u(x, t) = 0, for x ∈ R, t ∈ (0, T ).
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Note that proposition 4.1 does not follow from lemma 4.2 directly, since the solu-
tion, u ∈ X

0,(1/2)+
(0,T ) , has not higher enough regularity. To overcome this difficulty,

we need to first establish the propagation of regularity for the operator ∂t + ∂3
x

on R.

Lemma 4.3. Let T > 0, r � 0 and f ∈ X
r,−(1/2)
(0,T ) . Let u ∈ X

r,1/2
(0,T ) be a solution of

∂tu + ∂3
xu = f.

If E ⊂ R satisfies NCC and u ∈ L2
loc(0, T ;Hr+1/2(E)), then u ∈ L2

loc(0, T ;
Hr+1/2(R)).

Roughly speaking, lemma 4.3 means that the solution of the linear KdV equation
has higher regularity on a set satisfying NCC, then the solution automatically has
higher regularity on the whole space R. This result is inspired by the work of [14],
in which the propagation of regularity for the linear KdV equation on torus T is
proved, when E is an open subset of T. In [14], the proof relies on a partition of
unity

1 =
∑

j

χ(x − xj)

where χ is a smooth cutoff function supported on the open set E, and the sum is
taken over for finite terms. However, the set E, satisfying NCC, may have compli-
cated structure, so it is not clear whether the corresponding partition of unity exists
or not. Even though, we shall use the following lemma instead, which is sufficient
for our purpose.

Lemma 4.4. Assume that E satisfy NCC. Then there exist constants L0 > 0, m0 ∈
N and a smooth function χ ∈ C∞(R) such that the support suppχ ⊂ E, |∂k

xχ| � Ck

for all k ∈ N, and
m0∑

	=−m0

χ2(x + L0) � 1, ∀x ∈ R. (4.1)

Proof. By definition, for some constants r, L > 0 we have

E ⊃
⋃
n

(xn − r, xn + r), inf
n∈Z

|x − xn| � L, for all x ∈ R.

Without loss of generality, we assume that L > 2r. Clearly, there exists n0 ∈ Z so
that |xn0 | � L. Then

(xn0 − r, xn0 + r) ⊂
(
−3L

2
,
3L

2

)
.

We set

I0 := (xn0 − r, xn0 + r).
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Similarly, for every j ∈ Z, there exists an interval

Ij := (xnj
− r, xnj

+ r) ⊂
(

6jL − 3L

2
, 6jL +

3L

2

)
. (4.2)

Clearly, we have

E ⊃
⋃
j∈Z

Ij , (4.3)

dist(Ij , Ij+1) � 3L, for all j ∈ Z. (4.4)

Now let χ0 ∈ C∞
c (I0) (the set of smooth functions with compact support) so that

χ0(x) =

⎧⎨⎩1, if x ∈
[
xn0 −

r

2
, xn0 +

r

2

]
0, if |x − xn0 | � r.

(4.5)

Moreover, we define for every j ∈ Z

χj(x) = χ0(x − xnj
), x ∈ R (4.6)

and

χ(x) =
∑
j∈Z

χj(x), x ∈ R. (4.7)

Now we show that χ enjoys the desired property. First, suppχ ⊂ E follows from
(4.3) and (4.5)–(4.7). Moreover, for every x ∈ R, by (4.2), all terms in the sum of
(4.7) vanish except at most one term, so

|∂k
xχ(x)| � |∂k

xχ0(x)| � Ck, ∀k ∈ N,

and at the same time we have

χ2(x) =
∑
j∈Z

χ2
j (x), x ∈ R. (4.8)

Since χ0 = 1 on a subinterval of [−6L, 6L] with length r, then for some N � m0 �
6L/r we have

m0∑
	=−m0

χ2
0(x + r) � 1, for all x ∈ [−6L, 6L]. (4.9)

Similarly,
m0∑

	=−m0

χ2
j (x + r) � 1, for all x ∈ [6(j − 1)L, 6(j + 1)L]. (4.10)

Let L0 = r. It follows from (4.8)–(4.10) that
m0∑

	=−m0

χ2(x + L0) � 1, ∀x ∈ R.

This completes the proof. �
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Proof of lemma 4.3. Fix T > 0. We assume, without loss of generality, that 0 � r <
1. Otherwise, we consider the equation

∂t(∂k
xu) + ∂3

x(∂k
xu) = ∂k

xf

instead, where k is a positive integer. We divide the proof into three steps.
Step 1. Let φ ∈ C∞

c (0, T ) and ϕ ∈ C∞(R) so that |∂k
xϕ| � Ck, ∀k ∈ N. We claim

that ∣∣∣(φ(t)J2r−1(∂xϕ)∂2
xu, u)

∣∣∣ � C. (4.11)

Here and in the rest of the proof, Js is defined by the Fourier transform as Ĵsf =
(1 + |ξ|)sf̂(ξ), (·, ·) denotes the inner product in L2(0, T ;L2(R)).

In fact, let L = ∂t + ∂3
x and A = φ(t)J2r−1ϕ. Then using Parseval’s identity, we

have

(Lu, A∗u) + (Au, Lu) = ([A, ∂3
x]u, u) − (φ′(t)J2r−1ϕu, u), (4.12)

where A
∗ = ϕ(x)J2r−1φ(t) is the dual operator of A, the commutator [A, B] =

AB − BA as usual. Since Lu = f ∈ X
r,−(1/2)
(0,T ) , we infer that

|(Lu, A∗u) + (Au, Lu)| � ‖f‖
X

r,−(1/2)
(0,T )

(‖Au‖
X

−r,(1/2)
(0,T )

+ ‖A
∗u‖

X
0,1/2
(0,T )

)

(by lemma A.5) � C‖f‖
X

r,−(1/2)
(0,T )

‖u‖
X

r,1/2
(0,T )

� C.

By (A.1) in the appendix, we also have |(φ′(t)J2r−1ϕu, u)| � C. So by (4.12),

|([A, ∂3
x]u, u)| � C. (4.13)

A direct computation gives that

[A, ∂3
x] = −3φ(t)J2r−1(∂xϕ)∂2

x − 3φ(t)J2r−1(∂2
xϕ)∂x − φ(t)J2r−1∂3

xϕ.

Similar to (A.1), we have∣∣∣(3φ(t)J2r−1(∂2
xϕ)∂xu + φ(t)J2r−1∂3

xϕ)u, u
)∣∣∣ � C‖u‖2

L2
loc(0,T ;Hr(R)) � C.

Thus, the claim (4.11) follows from (4.13).
Step 2. For any φ ∈ C∞

c (0, T ), χ ∈ C∞(R) with support suppχ ⊂ E and |∂k
xχ| �

Ck, we claim that ∣∣∣(φ(t)J2r−1χ2∂2
xu, u)

∣∣∣ � C. (4.14)

In fact, we rewrite

(φ(t)J2r−1χ2∂2
xu, u) = I1 + I2

where

I1 = (φ(t)Jr−(3/2)χ∂2
xu, Jr+1/2χu),

I2 = (φ(t)Jr−(3/2)χ∂2
xu, [χ, Jr+1/2]u) + (φ(t)[Jr−(3/2), χ]χ∂2

xu, Jr+1/2u).
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From assumption u ∈ L2
loc(0, T ;Hr+1/2(E)), we infer χ∂2

xu ∈ L2
loc(0, T ;

Hr−(3/2)(R)), thus

|I1| � C‖φ(t)Jr−(3/2)χ∂2
xu‖L2(0,T ;L2(R))‖u‖L2

loc(0,T ;Hr+1/2(E)) � C.

Moreover, using the fact u ∈ L2(0, T ;Hr(R)) and (A.2)–(A.3), one can show that
|I2| � C. This proves the claim (4.14).

Step 3. Complete the proof. Let χ ∈ C∞ be the cutoff function constructed in
lemma 4.4. For every x0 ∈ R, define a function ϕ by Fourier transform

ϕ̂(ξ) =
1 − eix0ξ

iξ
χ̂2(ξ).

By the Fourier inversion, this implies that

∂xϕ(x) = χ2(x) − χ2(x + x0), x ∈ R. (4.15)

We apply (4.11) with ∂xϕ given by (4.15), and use (4.14) to find that∣∣∣(φ(t)J2r−1χ2(·+x0)∂2
xu, u)

∣∣∣ � C. (4.16)

Since 0 � r < 1 we infer

|(φ(t)J2r−1χ2(·+x0)u, u)| � C.

Noting J2 = 1 − ∂2
x we get from (4.16) that∣∣∣(φ(t)J2r−1χ2(·+x0)J2u, u)

∣∣∣ � C. (4.17)

We rewrite

(φ(t)J2r−1χ2(·+x0)J2u, u)

=
(
φ(t)Jr+1/2u, χ2(·+x0)Jr+1/2u

)
+

(
φ(t)Jr+1/2u, [Jr−(3/2), χ2(·+x0)]J2u

)
and use the bound |(φ(t)Jr+1/2u, [Jr−(3/2), χ2(· + x0)]J2u)| � C‖u‖2

L2
loc(0, T ;Hr(R))

�
C (follows from (A.4)), we deduce from (4.17) that∫ T

0

∫
R

φ(t)|χ(x + x0)Jr+1/2u|2dxdt � C. (4.18)

Applying (4.18) with x0 = {lL0}m0
l=−m0

, noting (4.1), we conclude that∫ T

0

φ(t)
∫

R

|Jr+1/2u|2dxdt �
m0∑

l=−m0

∫ T

0

∫
R

φ(t)|χ(x + lL0)Jr+1/2u|2dxdt � C.

This shows that u ∈ L2
loc(0, T ;Hr+1/2(R)), and completes the proof. �
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Remark 4.5. Very recently, Panthee and Vielma Leal have established in [19] the
propagation of regularity in Bourgain’s spaces for the Benjamin equation on a
periodic domain.

Corollary 4.6. Let T > 0 and u ∈ X
0,(1/2)+
(0,T ) be a solution of the KdV equation

∂tu + ∂3
xu + u∂xu = 0, (x, t) ∈ R × (0, T ). (4.19)

If E satisfies NCC and u(x, t) = 0 for (x, t) ∈ E × (0, T ), then u ∈ L2
loc(0, T ;H∞(R)).

Remark 4.7. Here and below X0,(1/2)+ = X0,(1/2)+ε with an arbitrarily small
ε > 0.

Proof. Rewrite the KdV equation as

∂tu + ∂3
xu = f

with f = −u∂xu. Since u ∈ X
0,(1/2)+
(0,T ) , by the bilinear estimate (3.5),

‖f‖
X

0,−(1/2)+
(0,T )

� C‖u‖2

X
0,(1/2)+
(0,T )

� C.

Since u(x, t) = 0 for (x, t) ∈ E × (0, T ), we have of course u ∈ L2
loc(0, T ;H∞(E)).

By lemma 4.3, we obtain

u ∈ L2
loc(0, T ;H1/2(R)).

Let t0 ∈ (0, T ) so that u(t0) ∈ H1/2(R). Then we find the solution u of (4.19)
satisfies

u ∈ X
1/2,(1/2)+
(0,T ) .

Similarly, using lemma 4.3 repeatedly, we conclude that u ∈ L2
loc(0, T ;H∞(R)). �

Proof of proposition 4.1. According to corollary 4.6, we know that u ∈ L2
loc(0, T ;

H∞(R)). Since u(x, t) = 0 for (x, t) ∈ E × (0, T ) and E contains an open set in R,
so u = 0 on an open set in R × (0, T ), then by the UCP in lemma 4.2, we conclude
that u ≡ 0. �

4.2. Proof of theorem 1.4

Let W (t) = e−t∂3
x be the Airy group. Then we have the sharp Kato smoothing

effect [12, theorem 4.1]

‖∂xW (t)u0‖L∞
x L2

t (R2) � ‖u0‖L2(R). (4.20)

The estimate (4.20) can be reformulated in Bourgain space as (see [13, p. 5])

‖∂xu‖L∞
x L2

t (R2) � ‖u‖X0,(1/2)+ . (4.21)

The bound (4.21) will be used to derive the compactness of some sequences later.
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Proposition 4.8. Assume that 0 � a(x) ∈ L∞(R). Then the IVP (1.1) has a
unique global solution u ∈ C([0, ∞);L2(R)). Moreover, for every T > 0

‖u‖
X

0,(1/2)+
(0,T )

� C(T, ‖a‖L∞(R), ‖u0‖L2(R)) < ∞.

Proof. Thanks to lemma 3.1, using the contraction principle one can show that
there exists a unique solution u ∈ X

0,(1/2)+
(0,δ) of (1.1) with the bound

‖u‖
X

0,(1/2)+
(0,δ)

� 2‖u0‖L2(R),

where the life span

δ = δ(‖a‖L∞(R), ‖u0‖L2(R)) > 0

is small enough. Multiplying (1.1) by u and integrating over R we obtain

1
2

d
dt

∫
R

|u(x, t)|2dx +
∫

R

a(x)|u(x, t)|2dx = 0,

which, together with the fact a(x) � 0, implies that

‖u(t, ·)‖L2(R) � ‖u0‖L2(R), ∀t � 0. (4.22)

Thus we can take u(δ) as a new data, to find a solution on (δ, 2δ) so that
‖u‖

X
0,(1/2)+
(δ,2δ)

� 2‖u0‖L2(R). Repeat this process, we find that for every T > 0

‖u‖
X

0,(1/2)+
(0,T )

� C(T, ‖a‖L∞(R), ‖u0‖L2(R)).

This completes the proof. �

Corollary 4.9. Assume that 0 � a(x) ∈ L∞(R). Let u be the solution of (1.1)
obtained in proposition 4.8. Then for every T > 0 and for every measurable set
Ω ⊂ R ∫ T

0

∫
Ω

|∂xu(x, t)|2dxdt � |Ω|C(T, ‖a‖L∞(R), ‖u0‖L2(R)), (4.23)

where |Ω| denotes the Lebesgue measure of Ω.

Proof. Fix T > 0. Combining (4.21) and proposition 4.8 we obtain

‖∂xu‖L∞
x L2

t (R2) � C(T, ‖a‖L∞(R), ‖u0‖L2(R)).

From this, we use Hölder inequality to find

‖∂xu‖L2
x(Ω)L2

t (0,T ) � |Ω|1/2‖∂xu‖L∞
x (Ω)L2

t (R) � C.

Then we conclude (4.23) by Fubini theorem. �

Now we prove an observability inequality, which means that we can recover the
solution of the KdV equation if we observe the solution on E × (0, T ) when E
satisfies NCC and Ec has a finite Lebesgue measure.
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Lemma 4.10. Let R, T > 0 and let E satisfy NCC, |Ec| < ∞. Assume that (A1)
and (A2) hold. Then there exist a constant C = C(R, T, a) > 0 such that for all
‖u0‖L2(R) � R, the solution u of the IVP (1.1) satisfies∫ T

0

∫
R

u2(x, t)dxdt � C

∫ T

0

∫
R

a(x)u2(x, t)dxdt. (4.24)

Proof. Following [4], we argue by contradiction. Assume that there exists a sequence
solutions uk of the KdV equation (1.1), with initial data ‖u0k‖L2(R) � R, such that

lim
k→∞

∫ T

0

∫
R

a(x)u2
k(x, t)dxdt∫ T

0

∫
R

u2
k(x, t)dxdt

= 0. (4.25)

Define

αk = ‖uk‖L2(R×(0,T )), vk(x, t) =
uk(x, t)

αk
. (4.26)

Then

‖vk‖L2(R×(0,T )) = 1, k ∈ N (4.27)

and vk is a solution of

(vk)t + (vk)xxx + αkvk(vk)x + a(x)vk = 0, (x, t) ∈ R × R
+ (4.28)

with initial data

vk(x, 0) = u0k(x)/αk.

It follows from (4.25)–(4.26) that

lim
k→∞

∫ T

0

∫
R

a(x)v2
k(x, t)dxdt = 0. (4.29)

This, since a(x) � a0 > 0 for all x ∈ E, gives that

lim
k→∞

∫ T

0

∫
E

v2
k(x, t)dxdt = 0. (4.30)

Moreover, multiplying (4.28) with vk and integrating over R × (0, t) and changing
the order of integration, we obtain∫

R

v2
k(x, t)dx + 2

∫ t

0

∫
R

a(x)v2
k(x, τ)dxdτ =

∫
R

v2
0kdx. (4.31)

Integrating (4.31) with respect to t over [0, T ], we obtain∫
R

v2
0kdx � 1

T

∫ T

0

∫
R

v2
k(x, t)dxdt + 2

∫ T

0

∫ t

0

∫
R

a(x)v2
kdxdt.

This, together with (4.27) and (4.29), shows that∫
R

v2
0k(x)dx � C(T, ‖a‖L∞ , R). (4.32)
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Furthermore, it follows from the bound (4.22) that

∫ T

0

∫
R

u2
k(x, t)dxdt � T

∫
R

u2
0k(x)dx.

This, together with (4.26), gives that

αk �
(

T

∫
u2

0k(x)dx

)1/2

� T 1/2R (4.33)

since ‖u0k‖L2(R) � R for all k. Thanks to (4.32) and (4.33), by the well posedness
of (4.28), we have

‖vk‖X
0,(1/2)+
(0,T )

� C(T, ‖a‖L∞ , R). (4.34)

By our assumption, the complement set Ec has finite Lebesgue measure,
|Ec| < ∞. Thanks to (4.32) and (4.33), we can apply corollary 4.9 to obtain that

∫ T

0

∫
Ec

|∂xvk(x, t)|2dxdt � C|Ec| < ∞, ∀k ∈ N. (4.35)

Combining (4.27) and (4.35) we find that vk is uniformly bounded in
L2(0, T ;H1(Ec)). Also, using equation (4.28), we get that (vk)t is uniformly
bounded in L2(0, T ;H−2(Ec)). Since |Ec| < ∞, it is easy to see that

lim
x→∞

∣∣∣∣Ec
⋃(

x − 1
2
, x +

1
2

)∣∣∣∣ = 0,

then according to [1, theorem 2.8], the embedding H1(Ec) ↪→ L2(Ec) is compact.
Thus, by Aubin–Lions theorem, there exists a subsequence, still denoted by vk,
so that vk → v in L2((0, T ) × Ec). On the other hand, it follows from (4.30) that
vk → 0 in L2((0, T ) × E). These show that

vk → v strongly in L2(0, T ;L2(R)) (4.36)

with ‖v‖
X

0,(1/2)+
(0,T )

� C (by (4.34)) and

v(x, t) = 0, for (x, t) ∈ E × (0, T ). (4.37)

We assume that αk → α � 0. Let φ(x, t) be a function such that φ ∈
C([0, T ];H3(R)), φt ∈ C([0, T ];L2(R)) with φ|t=0 = φ|t=T = 0. Testing (4.28) with
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φ we get ∫ T

0

∫
R

(
vk∂tφ + vk∂3

xφ − a(x)vkφ + αk
v2

k

2
∂xφ

)
dxdt = 0. (4.38)

Now, taking the limit as k → ∞ in (4.38), and applying (4.36)–(4.37) we arrive at∫ T

0

∫
R

(
v∂tφ + v∂3

xφ + α
v2

2
∂xφ

)
dxdt = 0, (4.39)

where we used the fact that
∫ T

0

∫
R

a(x)vk(x, t)φ(x, t)dxdt → 0 as k → ∞, which
follows from (4.29) and the inequality∣∣∣∣∣
∫ T

0

∫
R

a(x)vk(x, t)φ(x, t)dxdt

∣∣∣∣∣ �
(∫ T

0

∫
R

a(x)v2
k(x, t)dxdt

)1/2

‖a1/2φ‖L2(0,T ;L2(R)).

The identity (4.39) means that v(x, t) ∈ X
0,(1/2)+
(0,T ) is a weak solution of

∂tv + ∂3
xv + αv∂xv = 0, (x, t) ∈ R × (0, T ). (4.40)

Moreover, by (4.37) we have v|E×(0,T ) = 0.
If α = 0, then equation (4.40) becomes ∂tv + ∂3

xv = 0. Since v = 0 on an open
set in (x, t) ∈ R × (0, T ), according to [33, corollary 3.1], we have v ≡ 0.

If α > 0, set V (x, t) = v(cx, c3t) with c = α−(1/2), then V ∈ X
0,(1/2)+
(0,c−3T ) is a

solution of

∂tV + ∂3
xV + V ∂xV = 0, (x, t) ∈ R × (0, c−3T ).

Moreover, we have V |c−1E×(0, c−3T ) = 0, where c−1E = {c−1x : x ∈ E}. It is easy
to see that c−1E also satisfies NCC. Then by the unique continuation property in
proposition 4.1 for the KdV equation, we get V ≡ 0 and thus v ≡ 0.

In both cases, we arrive at the conclusion v ≡ 0. However, this contradicts to
(4.27). Therefore, (4.24) holds. �

Proof of theorem 1.4. Let T > 0 and ‖u0‖L2(R) � R. Multiplying (1.1) by u and
integrating over R × (0, T ), we get∫

R

|u(x, T )|2dx + 2
∫ T

0

∫
R

a(x)|u(x, t)|2dxdt =
∫

R

|u0(x)|2dx. (4.41)

Since E satisfies NCC, it follows from lemma 4.10 that∫ T

0

∫
R

a(x)|u(x, t)|2dxdt � c

∫ T

0

∫
R

|u(x, t)|2dxdt, (4.42)

where c > 0 is a constant depending only on T, R and the damping coefficient
a(x). Moreover, since a(x) � 0, we have ‖u(·, t)‖L2(R) � ‖u(·, t′)‖L2(R) for all t � t′,
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which implies that ∫ T

0

∫
R

|u(x, t)|2dxdt � T

∫
R

|u(x, T )|2dx. (4.43)

Combining (4.41)–(4.43), we infer that∫
R

|u(x, T )|2dx � α

∫
R

|u0(x)|2dx

with α = 1/(1 + 2cT ) ∈ (0, 1). By iteration we have for all n � 1∫
R

|u(x, nT )|2dx � αn

∫
R

|u0(x)|2dx.

This gives the exponential decay clearly. �
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Appendix A. Appendix

In this section, we prove some technical estimates used in lemma 4.3.
Let b(x, ξ) be a smooth function on R

2. Define the pseudo-differential operator

b(x,D)f(x) =
∫

R

eixξb(x, ξ)f̂(ξ)dξ, f ∈ S (R),

where D = i−1∂x, f̂ denotes the Fourier transform of f , S (R) the Schwartz class.
The function b(x, ξ) is called the symbol of the operator b(x, D). In particular,
letting b(x, ξ) = (1 + |ξ|2)s/2, s ∈ R, we recover the definition of the fractional
Laplacian Js = (1 − ∂2

x)s/2. The Sobolev space Hs(R) is an Hilbert space endowed
with the norm

‖f‖Hs(R) = ‖Jsf‖L2(R).

Let m ∈ R. We say a smooth function b(x, ξ) belongs to Sm if for all α, β ∈ N

|∂β
x∂α

ξ b(x, ξ)| � Cαβ(1 + |ξ|)m, x, ξ ∈ R.

An important result on the class Sm is given in the following lemma, see [27,
proposition 5.5, p. 20].
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Lemma A.1. Let m, s ∈ R and b ∈ Sm. Then b(x, D) is bounded from Hs(R) to
Hs−m(R).

We say ϕ ∈ C∞
b if for all α ∈ N

|∂α
x ϕ(x)| � Cα, for all x ∈ R.

Lemma A.2. Let m ∈ R and ϕ ∈ C∞
b . Then

‖ϕf‖Hm(R) � C‖f‖Hm(R).

Proof. It is equivalent to show that

‖ϕJ−mf‖Hm(R) � C‖f‖L2(R).

Note that the symbol of ϕJ−m is b(x, ξ) = ϕ(x)(1 + |ξ|2)−m/2, and it is easy to see
that b(x, ξ) ∈ S−m, then the desired bound follows from lemma A.1. �

Lemma A.3. Let m, s ∈ R and ϕ ∈ C∞
b . Then

‖[ϕ, Jm]f‖Hs(R) � C‖f‖Hm+s−1(R).

Proof. By the definition of commutator, we have

[ϕ, Jm]f = ϕ(x)Jm − Jm(ϕf) :=
(
b1(x,D) − b2(x,D)

)
f,

where b1(x, ξ) = ϕ(x)(1 + |ξ|2)−m/2 and b2(x, ξ) is the symbol of Jm(ϕ·). Accord-
ing to the calculus of pseudo-differential operators, see e.g. [26, theorem 2, p.
237],

b2(x, ξ) = b1(x, ξ) + c(x, ξ)

with c(x, ξ) ∈ S−m−1. Thus the symbol of [ϕ, Jm], equals to c(x, ξ), belongs to
S−m−1. Then the lemma follows from lemma A.1. �

Now we prove the results used in the proof of lemma 4.3.

Lemma A.4. Let r � 0 and ϕ, χ ∈ C∞
b . Then the following bounds hold:

|(J2r−1ϕu, u)| � C‖u‖2
Hr(R), (A.1)

|(Jr−(3/2)χ∂2
xu, [χ, Jr+1/2]u)| � C‖u‖2

Hr(R), (A.2)

|([Jr−(3/2), χ]χ∂2
xu, Jr+1/2u)| � C‖u‖2

Hr(R), (A.3)

|(Jr+1/2u, [Jr−(3/2), χ2]J2u)| � C‖u‖2
Hr(R). (A.4)
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Proof. By Cauchy–Schwarz inequality and lemma A.1, we have

|(J2r−1ϕu, u)| = |(Jr−1ϕu, Jru)| � ‖Jr−1ϕu‖L2(R)‖Jru‖ � C‖u‖2
Hr(R).

This proves (A.1). Since

|(Jr−(3/2)χ∂2
xu, [χ, Jr+1/2]u)| = |(Jr−2χ∂2

xu, J1/2[χ, Jr+1/2]u)|
� ‖χ∂2

xu‖Hr−2(R)‖[χ, Jr+1/2]u‖H1/2(R),

we also have ‖χ∂2
xu‖Hr−2(R) � C‖u‖Hr(R) by lemma A.1, and ‖[χ, Jr+1/2]u‖H1/2(R)

� C‖u‖Hr(R) by lemma A.2. Thus (A.2) holds.
Similarly, one can show that (A.3) and (A.4) hold. �

Finally, we provide a multiplication property of Bourgain space Xs,b.

Lemma A.5. Let −1 � b � 1, s ∈ R and ϕ ∈ C∞
b . Then for all u ∈ Xs,b

‖ϕ(x)u‖Xs−2|b|,b � ‖u‖Xs,b . (A.5)

Similarly, for every T > 0, we have ‖ϕ(x)u‖
X

s−2|b|,b
(0,T )

� ‖u‖Xs,b
(0,T )

.

Proof. The proof is the same as that in [14, lemma 3.4], we only give a sketch here.
By duality and interpolation arguments, it suffices to consider the cases b = 0 and
b = 1.

In the case b = 0, (A.5) follows from lemma A.2 clearly.
In the case b = 1, we first observe that

‖ϕ(x)u‖Xs−2,1 � ‖ϕu‖Xs−2,0 + ‖(∂t + ∂3
x)(ϕu)‖Xs−2,0

� Υ + ‖ϕ(∂t + ∂3
x)u‖Xs−2,0 , (A.6)

where Υ = ‖ϕu‖Xs−2,0 + ‖3∂xϕ∂2
xu + 3∂2

xϕ∂xu + ∂3
xϕu‖Xs−2,0 . Using lemma A.2

again, we deduce from (A.6) that

‖ϕu‖Xs−2,1 � ‖u‖Xs,0 + ‖(∂t + ∂3
x)u‖Xs−2,0 � ‖u‖Xs,1 .

Thus (A.5) also holds. �

Remark A.6. If φ ∈ C∞
c (R), then φ(t) maps Xs,b into Xs,b, see [28, lemma 2.11,

p. 101]. In other words, the Bourgain space is stable with the multiplication by a
compact supported smooth function of time t. However, as lemma A.5 indicates,
some regularity index is lost with the multiplication by a smooth function of spatial
variable x. The loss is unavoidable, see the example in [14, lemma 3.4]. Anyway,
the lemma is sufficient for our purpose in this paper.
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