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ON ORDERS OF DIRECTLY INDECOMPOSABLE FINITE RINGS
YASUYUKI HIRANO AND TAKAO SUMIYAMA

Let R be a directly indecomposable finite ring. Let p be a prime, let m be a
positive integer and suppose the radical of R has p™ elements. Then we show
that p™+! < |R| < p™ *™*!. As a consequence, we have that, for a given finite
nilpotent ring N, there are up to isomorphism only finitely many finite rings not
having simple ring direct summands, with radical isomorphic to N. Let R* denote
the group of units of R. Then we prove that (1 — 1/p)™*! < |R*|/|R| < 1-1/p™.
As a corollary, we obtain that if R is a directly indecomposable non-simple finite
2'-ring then |R| < {R*||Rad (R)|.

Stewart [7] considered the following problem. Given a finite group G, what are
the possible finite rings with group of units isomorphic to G? In this paper, we con-
sider a similar problem; given a finite nilpotent ring N, what are possible finite rings
with radical isomorphic to N? For (not necessarily finite) algebras, this problem was
considered by Flanigan [2] and Hall [3].

All the rings considered in this paper are finite, and have an identity. Let R be
a directly indecomposable finite ring. Then, as is well known, the order |R| of ‘R is a
power of a prime p. Let Rad(R) denote the (Jacobson) radical of R and suppose that
|Rad (R)] = p™ > 1. Mainwaring and Pearson [4] proved that there are at most m +1
minimal ideals in R/ Rad (R). Using their method, we try to estimate |R|.

For a prime p and positive integers n and ¢, GR(p", t) denotes the Galois exten-
sion of Z/Zp™ of degree ¢ (see McDonald [5, p.307]). Especially the field GR(p, t) of
p' elements is denoted by GF(p').

A graph means a finite undirected graph without loops. The edge which joins two
vertices £ and y is denoted by (z, y).

We begin with the following lemma.

LEMMA 1. Let G =(V, E) be a non-trivial connected graph, where V is the set
of vertices of G and E the set of edges of G. Let u be a vertex in V. Then there exists
an injective mapping ¢: V \ {u} — E satisfying the conditions: (i) p(w) = (w, u) for
some w € V'\ {u}, and (ii) for any v € V' \ {u}, one of the endpoints of ¢(v) is v.

PROOF: We proceed by induction on [V|. In case |V| = 2, our assertion is trivial.
Assume |V] > 2 and let G — u denote the subgraph of G obtained by deleting the
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vertex u and all edges incident with u. Let G, = (W, Ey), ..., Gr = (V;, E;) be
the connected components of G — u. Then, for each ¢, there exists u; € V; such that
(u, ;) € E. If G; is non-trivial, namely |V;| > 2, then by induction hypothesis there
exists an injective mapping p;: V;\{u;} — E; satisfying the conditions (i) and (ii). We
now define a mapping ¢: V'\ {u} — E by ¢(u;) = (u, u;) for each i and ¢(v) = pj(v)
if v € Vj \ {u;}. It is easy to see that ¢ satisfies (i) and (ii).

It is easy to check the set
{(ai;) € Mpy1(GF(p)) | az1 = as1 = ... = @m41,1 = 0}

forms a subring of My, 1(GF(p)). We denote this subring by Am1(p).
We shall estimate the order of a non-simple directly indecomposable finite ring in

terms of the order of its radical.

THEOREM 1. Let R be a directly indecomposable finite ring and suppose |Rad ( R)|
= p™ where p is a prime and m is a positive integer. Then

pm+1 <|R| < pm’+m+l‘

The first equality holds if and only if R/ Rad (R) = GF(p), and the second equality
holds if and only if R is either isomorphic or anti-isomorphic to Ap+1(p).

PROOF: Since R has 1, we have p < |R/Rad(R)|, so that p™*! < |R|. The
equality holds if and only if R/ Rad (R)= GF(p).

To prove the latter inequality, suppose that R/Rad(R) = Mn (K1) ® ... ®
M,,(K.,), where K; = GF(p*), i=1,..., 5. Let e; denote the identity of My, (K;).
By McDonald [5, Theorem 7.12], ey, ..., €, can be lifted to orthogonal idempotents
fi, ..o, foin R with fy +...4+ f, = 1. In case s = 1, Rad (R)/Rad (R)? is a nonzero
right M, (K1)-module, and hence is a direct sum of simple right M, (K;)-modules. It
is well known that any simple right M, (K;)-module is isomorphic to the right ideal I
consisting of all matrices with only the first row different from zero. Since |I| = p™% |

we see

p™* < |Rad (R)/Rad(R)’| < [Rad (R)| = p™,
whence n1k; < m. Therefore

2 2
IRl — pk1n1+m s Pm +m+1.

Now suppose s > 1. We shall define a graph G = (V, E) as follows: V ={1, 2, ..., s}
and two distinct vertices 1+ and j are joined by an edge (i, j) if either f;Rf; # 0
or fiRf; # 0. According to the proof of Mainwaring and Pearson [4, Theorem],
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this graph G is connected. Since @ix;jfiRf; is contained in Rad(R), we see that
[I11fiRf;j| < p™. We shall estimate |f;Rf;|. For the sake of simplification, we
i#j
let¢ J = Rad(R) and F = GF(p). Now assume f;Rf; # 0. Then f;Rf; is a
nonzero (fiRf:, fjRf;)-bimodule. Let M denote the factor module of f;Rf; by
fiJfiRf; + fiRf;Jf;. By virtue of Nakayama’s lemma [5, Theorem 5.2], M is
a nonzero (fiRfi/fiJ fi, fjRf;/f;J f;)-bimodule. Since faRfn/fnJfn is isomorphic
to My, (Kr), 1 < h < 8, M can be viewed as a nonzero (M,...(K,-), M,,’.(KJ-))-
bimodule. Since the opposite ring of M, (K;) is isomorphic to M, (Kj;) itself, M
can be regarded as a nonzero left M, (K;) ® F Mn;(K;)-module. By the way, we
can easily see that K; ®r K; = GF(p"‘) ®F GF(p"i) ~ G'F(p‘)(d), the direct sum
of d copies of GF(p’), where d = gcd{k;, k;} and £ = lem{k;, k;}. Therefore
M, (K;) ®F M,.’.(K,-) ~ M,,'.,.J. (GF(p‘))(d), whence we have |fiRf;| > |M| > p™™i.
Consequently we obtain
1) Z nin;(lem{k;, k;}) < m.

(i, j)eE
Define a mapping ¥: E — Z by ¥(i, j) = ninj(lem{k;, k;}) for any (i, j) € E. Then
(1) can be rewritten as follows.
(2) > ¥(z) <m.

z€E

By Lemma 1 there exists an injective mapping ¢: V' = {1, 2, ..., s—1} — E satisfying
that, for each i € V', ¢(i) = (4, j) for some j € V and there exists h € V' with
(k) = (h, 8). Since (ni - 1) (nf - 1) 2 0, we have

(¥(p(h)))* = nini(lem{kn, k.})* > (n}ka) (n3k.)
p nikh +nfk, —-1.
On the other hand, by the definitions of ¢ and ¥, (¢(<p(1)))2 >nlk;, 1<i<s—1.
s—1
By the inequality (2), we have m > Y ¥(¢(i)). Hence we obtain
=1

h-1 -1
m? 2 ) (B(e()’ + (@) + Y ($(e(i))?
5=1 j=h+1
h-1 s—1
> nlki+ (nhks+nlk, - 1)+ Y nlk;
=1 i=h+1
= infk,- - 1.
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Therefore we have
lR| — Pn;k1+...+n3k,+m S pm2+m+l.

By the above argument, the equality holds if and only if either s = 2, ky = k2 =1,
ny=1,ny=mors=2, kg =ky =1, ny =m, ny =1. Without loss of generality,

we may assume that the former occurs. In this case, we have either |fi Rf2| = p™ or

|\f2Rfil = p™. If [ARf2| = p™, then R = fiRfi ® fLRf: ® foRf2, iRfi = GF(p)
and faRf; = Mm(GF(p)). Hence we have

HRA f sz)
R = ~ An .
( 0 faRf +1(p)
Similarly, if |foRfi| = p™, then R is anti-isomorphic to Am+1(p). This completes the
proof. 0

COROLLARY 1. If R is a finite ring not having simple ring direct summands,
then |R| < n™*!, where n = |Rad(R)|.

PROOF: First we assume that R is directly indecomposable. Then |Rad (R)| = p™
for some prime p and some positive integer m. Then we have |R| < p"‘"""‘“ by
Theorem 1. Since p > 2, we can easily see that m? +m + 1 < m(p™ + 1), whence we
have p”"""""”1 < nntt,

Returning to the general case, let R = R;®R2®...0R, be the direct decomposition
of R into directly indecomposable components and let n; = |Rad (R;)|. By hypothesis,

each n; is greater than 1, and n = ninz...n,. By the result proved above, we obtain
|R:| < nlt?, 1 <i < s. Hence we obtain

|R| = |Ry|...|R| < nT T .. pletl L pn L,

As an immediate consequence of Corollary 1, we have

PROPOSITION 1. For a given nilpotent ring N there are up to isomorphism
only finitely many finite rings not having simple ring direct summands, with radical
isomorphic to N .

Let R* denote the group of units of aring R. Farahat [1] considered the proportion
6(R) = |R*|/|R| for a finite ring R. We shall study §(R) of a directly indecomposable
non-simple finite ring R. To state the result, we need to introduce a class of rings. Let
o be an automorphism of GF(p™). We denote the subring

{6 o)

of My(GF(p™)) by Bo(p™).

a,be GF(p"‘)}
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THEOREM 2. Let R be adirectly indecomposable finite ring and suppose |Rad (R)|
= p™ where p is a prime and m is a positive integer. Then

(1 -1/p)" <8(R)<1-1/p™

The first equality holds if and only if R is isomorphic to either GR(pz, m) or B.(p™).
The second equality holds if and only if R is an algebra over GF(p) such that
R/Rad(R) ~ GF(p)™*V.

PROOF: Asin the proof of Theorem 1,let R/ Rad (R) = M, (K1)® ... ®M,,(K,),
where K; = GF(p*), 1 <i < s. By [1, (3.2)], we have

8(R) = 6(Mn (K:)) < §(My, (K1)

=1

Also, by Farahat [1, (3.6)], we have

§(Mn, (K1) = (1 —1/p")(1 = 1/p%M) ... (1 —1/p™P).
This is not greater than 1 — 1/p™, because k; € m as shown in the proof of Theorem
1. Hence we obtain §(R) < 1 — 1/p™. The equality holds if and only if s =n; =1
and k; = m, that is, R/ Rad (R) = GF(p™). We determine such a ring R. To do this,
assume that R is of characteristic p*. Then by Raghavendran [6, Theorem 8 (i)], R
contains a subring § which is isomorphic to GR(p*, m). Since

p'™ =|5| < |R| = |R/Rad (R)| |Rad (R)| = p*™,

either t = 1 or t = 2. If ¢t = 2, then R ~ GR(p?,m). Now suppose t = 1.
Since Rad(R)/Rad(R)® is a nonzero vector space over R/Rad(R) = GF(p™),
lRad(R)/ Rad (R)2| > p™. Since |Rad(R)| = p™ by hypothesis, this implies
Rad (R)? = 0. Then R =~ B,(p™) for some o by Raghavendran [6, Theorem 3]:

Next we deal with the first inequality. We easily see

(3) §(R) =) §(Mn,(K:))

=1

=A@ -0 -1/ o (1= 1))

2 (1 _ 1/p)ﬁ1+n:+...+ﬂ..

From (1) in the proof of Theorem 1, we get

https://doi.org/10.1017/50004972700011990 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700011990

358 Y. Hirano and T. Sumiyama (6]

Define a mapping x: E — Z by x(i,j) = ninj. We again employ the mapping
p: V' ={1,2,...,8—1} = E in the proof of Theorem 1. Then there exists A € V'
such that ¢(h) = (h, 8). Then x(p(h)) = nan, 2 np +n, — 1. Since x(¢(3)) = nq,
1<i1<8—1, wesee

m> Y x(z)

z€FE

> Y x(ed)

h—1 51
=3 x(e() +x(eB) + Y x(¢())
i=1 i=h+1

s—1

h-1
>Y nit(matn, -1+ Y n
=1

i=h+1
]
= Zn.- -1
i=1

Combining this inequality with (3), we get §(R) > (1 —1/p)™*'. The equality holds if
and only if s =m +1 and n; = k; =1, 1 <1 < s, so that R/Rad(R) ~ GF(p)(m+1).
By the definition of E, for any (i, j) € E, either f;Rf; # 0 or f;Rf; # 0. Since
|E| 2 |V|—1 =m and since
II {5:Rf115R5:1} < [Rad (R)| =™,
(s,j)eE
we conclude that |E| = m and |f;Rf;||fjRfi| = p for each (i,j) € E. Since R =
m+1
@ f:Rf; as additive group, this implies char(R) = p. Therefore R is a (2m + 1)-
$,j=1
dimensional algebra over GF(p). This completes the proof. 0
We shall give an example of a ring satisfying the second equality in Theorem 2.

EXAMPLE. Let e;; be the standard matrix units in Mp41(GF(p)) and consider the

subalgebra
m+1 m+1
R= E GF(p)ei; + E GF(p)ei;.
=1 j=2

Then R is a directly indecomposable ring such that |Rad(R)| = p™ and §(R) =
1-1/p™.

Note that 1+ Rad (R) is a (normal) subgroup of the group R*, so that |[Rad (R)| <
|R*|. Thus the following improves Stewart [7, Corollary 2.5] in case R is a directly
indecomposable finite 2'-ring with nonzero radical.
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COROLLARY 2. If R is a directly indecomposable non-simple finite 2'-ring, then
|R| < |R*||Rad(R)].

PRrROOF: By hypotheses, |Rad(R)| = p™ for some prime p > 2 and some positive
integer m. By Theorem 2 we have

m-+1
mi< () R

Now, since p > 2, we have

P m+1
(;_—1) <p™ =|Rad(R)|.

REFERENCES

[1] H.XK. Farahat, ‘The multiplicative groups of a ring’, Math. Z. 87 (1965), 378—384.

[2] F.J.Flanigan, ‘Radical behavior and the Wedderburn family’, Bull. Amer. Math. Soc. 79
(1973); 66-70.

[3] M. Hall, ‘The position of the radical in an algebra’, Trans. Amer. Math. Soc. 48 (1940),
391-404.

[4] D.Mainwaring and K.R. Pearson, ‘Decomposability of finite rings’, J. Austral. Math. Soc.
Ser. A 28 (1979), 136-138.

[5] B.R. McDonald, Finite rings with identity (Marcel Dekker, New York, 1974).
[6] R. Raghavendran, ‘Finite associative rings’, Compositio Math. 21 (1969), 195-229.
[7] 1. Stewart, ‘Finite rings with a specified group of units’, Math. Z. 126 (1972}, 51-58.

Department of Mathematics Department of Mathematics
Okayama University Aichi Institute of Technology
Okayama 700 Yakusa-chd, Toyota, 470-03
Japan Japan

https://doi.org/10.1017/50004972700011990 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700011990

