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Eigenvectors of the observability and controllability Gramians represent responsive and
receptive flow structures that enjoy a well-established connection to resolvent forcing and
response modes. However, whereas resolvent modes have demonstrated great potential
to guide sensor and actuator placement, observability and controllability modes have been
leveraged exclusively in the context of model reduction via input and output projections. In
this work, we introduce interpolatory, rather than orthogonal, input and output projections,
that can be leveraged for sensor and actuator placement and open-loop control design.
An interpolatory projector is an oblique projector with the property of preserving certain
entries in the vector being projected. We review the connection between the resolvent
operator and the Gramians, and present several numerical examples where we perform
both orthogonal and interpolatory input and output projections onto the dominant forcing
and response subspaces. Input projections are used to identify dynamically relevant
disturbances, place sensors to measure disturbances, and place actuators for feedforward
control in the linearized Ginzburg-Landau equation. Output projections are used to
identify coherent structures and place sensors aiming at state reconstruction in the
turbulent flow in a minimal channel at Re; = 185. The framework does not require data
snapshots and relies only on knowledge of the steady or mean flow.
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1. Introduction

Advances in our ability to control complex fluid flows to manipulate aerodynamic
forces, reduce noise, or promote mixing have a profound impact on the performance
of engineering systems found in aeronautics, energy conversion and transportation,
among others (Gad-el Hak 1989). However, industrially relevant flows are typically
high-dimensional and nonlinear dynamical systems, which makes their control very
challenging (Brunton & Noack 2015). Fortunately, the dynamics of these systems is often
dominated by a few physically meaningful flow structures, or modes, that can be extracted
from the governing equations or learned from data using modal decompositions (Taira
et al. 2017, 2020). Moreover, powerful tools from linear control theory can be leveraged
if the system of interest is amenable to linearization about a steady state (Bagheri et al.
20090b; Sipp et al. 2010; Fabbiane et al. 2014; Sipp & Schmid 2016).

The proper orthogonal decomposition (POD) (Lumley 1970) is a data-driven modal
decomposition that has been leveraged to identify coherent structures in turbulent flows
(Berkooz, Holmes & Lumley 1993), to build reduced-order models via Galerkin projection
(Rowley & Dawson 2017), and for sparse sensor placement for reconstruction (Manohar
et al. 2018). Similarly, balanced modes arising from balanced truncation, introduced in the
seminal work of Moore (1981), have been successful at producing reduced-order models of
fluid flows (Farrell & Ioannou 2001; Willcox & Peraire 2002; Rowley 2005; Ilak & Rowley
2008; Bagheri, Brandt & Henningson 2009a; Barbagallo, Sipp & Schmid 2009; Ahuja &
Rowley 2010; Dergham et al. 2011b; Dergham, Sipp & Robinet 2011a, 2013). Furthermore,
balanced modes have been leveraged recently for sparse sensor and actuator placement
for feedback control (Manohar, Kutz & Brunton 2021). Balanced proper orthogonal
decomposition (BPOD) is a method that is able to approximate balanced modes directly
from direct and adjoint simulation data in the form of snapshots from impulse (Willcox &
Peraire 2002; Rowley 2005) or harmonic forcing responses (Dergham et al. 2011a,b, 2013).
Balancing transformations are also intimately connected to the eigensystem realization
algorithm (Juang & Pappa 1985), an input—output system identification technique that
has been widely successful in a range of linear flow control applications (Cabell et al.
2006; Ahuja & Rowley 2010; Illingworth, Morgans & Rowley 2012; Belson et al. 2013;
Brunton, Rowley & Williams 2013; Brunton, Dawson & Rowley 2014; Flinois & Morgans
2016; Illingworth 2016). More recently, the covariance balancing reduction using adjoint
snapshots (CoBRAS), developed by Otto, Padovan & Rowley (2022), is able to tackle
nonlinear model reduction.

Resolvent analysis is a modal decomposition, based on linear (or linearized) governing
equations in the frequency domain, that is particularly useful to characterize non-normal
systems, such as shear and advection-dominated flows (Trefethen er al. 1993; Schmid
2007). The resolvent operator governs how any harmonic forcing, at a specific frequency,
is amplified by the dynamics to produce a response. Its decomposition produces resolvent
gains and resolvent forcing, and response modes that enable low-rank approximations
of the forcing response dynamics of the full system, which are extremely valuable for
modelling, controlling and understanding the underlying flow physics (McKeon 2017;
Jovanovi¢ 2021). Although resolvent analysis was conceived initially for laminar flows
linearized about a steady state (Trefethen et al. 1993), the analysis of linear amplification
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mechanisms in mean-flow-linearized turbulent flows has been shown to uncover scale
interactions and provide insight into self-sustaining mechanisms (Del Alamo & Jimenez
2006; Hwang & Cossu 2010a,b; McKeon & Sharma 2010). Data-driven resolvent analysis
is a recent method, developed by Herrmann et al. (2021), to compute resolvent modes and
gains directly from time-resolved measurement data, and without requiring the governing
equations, by leveraging the dynamic mode decomposition (Rowley e al. 2009; Schmid
2010) or any of its variants (Tu et al. 2014; Schmid 2022; Baddoo et al. 2023). It
is important to remark that the data-driven version was developed for linear systems,
therefore its application to turbulent flows requires separating the nonlinear contributions
to the dynamics from the data using, for example, the linear and nonlinear disambiguation
optimization (LANDO) (Baddoo et al. 2022). During the last decade, resolvent analysis
has been applied to several control-oriented tasks, including reduced-order modelling,
data assimilation, estimation, sensor and actuator placement, and open- and closed-loop
control. Resolvent-based reduced-order models have been studied for separated laminar
boundary layer flows (Alizard, Cherubini & Robinet 2009), supersonic boundary layer
flows (Bugeat et al. 2019, 2022), turbulent channel flows (Moarref et al. 2013, 2014;
McKeon 2017; Abreu et al. 2020), laminar and turbulent cavity flows (Gémez et al.
2016; Sun et al. 2020), and turbulent jets (Schmidt et al. 2018; Lesshafft et al. 2019).
Symon et al. (2020) and Franceschini, Sipp & Marquet (2021) developed data-assimilation
frameworks that leverage resolvent analysis to reconstruct mean and unsteady flow
fields from a few experimental measurements. Towne, Lozano-Durdn & Yang (2020)
formulated a resolvent-based method to estimate space—time flow statistics from limited
data. Subsequently, Martini et al. (2020) and Amaral et al. (2021) developed and
applied, respectively, an optimal and non-causal resolvent-based estimator that is able to
reconstruct unmeasured, time-varying, flow quantities from limited experimental data as
post-processing.

In the context of control, a very important landmark is the input—output framework
adopted by Jovanovi¢ & Bamieh (2005) that allows one to focus on the response of
certain outputs of interest, such as sparse sensor measurements, to forcing of specific
input components, such as localized actuators. This allows investigating the responsivity
and receptivity of forcings and responses restricted to subsets of inputs and outputs
generated by feasible actuator and sensor configurations, respectively. Therefore, the
analysis provides insight into the frequencies and spatial footprints of harmonic forcings
that are efficient at modifying the flow and the responses that they generate. The simplest
approach considers placing actuators and sensors so that they align with the forcing and
response modes found, and exciting their corresponding frequencies. However, although
these actuators can modify the flow efficiently when used at their specific frequencies,
the method is not able to determine the sense of this change with respect to a control
objective, and provides no guarantees regarding the control authority over a range of
frequencies. Nevertheless, this approach has been used extensively to provide guidelines
for sensor and actuator placement and control strategies. In this way, resolvent analysis
has been leveraged successfully to control the onset of turbulence and reduce turbulent
drag in a channel flow via streamwise travelling waves (Moarref & Jovanovi¢ 2010)
and transverse wall oscillations (Moarref & Jovanovi¢ 2012), respectively, mitigate the
effect of stochastic disturbances in the laminar flow behind a backward-facing step
(Boujo & Gallaire 2015), predict noise generation in a turbulent axisymmetric jet (Jeun,
Nichols & Jovanovi¢ 2016), understand transition mechanisms in a parallel-disk turbine
(Herrmann-Priesnitz, Calderén-Mufioz & Soto 2018b), promote mixing in a liquid-cooled
heat sink (Herrmann-Priesnitz et al. 2018a), control separation in the turbulent flow
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over a NACA 0012 aerofoil (Yeh & Taira 2019), suppress oscillations in a supersonic
turbulent cavity flow (Liu et al. 2021), and reduce the size of a turbulent separation
bubble using zero-net-mass-flux actuation (Wu et al. 2022). Recently, Skene et al.
(2022) developed an optimization framework to find sparse resolvent forcing modes,
with small spatial footprints, that can be targeted by more realistic localized actuators.
Similarly, Lopez-Doriga et al. (2023) introduced a sparsity-promoting resolvent analysis
that allows identification of responsive forcings that are localized in space and time.
Another important advancement for this framework is the structured input—output analysis,
developed by Liu & Gayme (2021), that preserves certain properties of the nonlinear
forcing and is able to recover transitional flow features that were available previously only
through nonlinear input—output analysis (Rigas, Sipp & Colonius 2021).

The works of Luhar, Sharma & McKeon (2014) and Toedtli, Luhar & McKeon
(2019) used resolvent analysis to study the effect of opposition control for drag
reduction in wall-bounded turbulent flows. Their approach incorporates feedback control
directly into the resolvent operator via the implementation of a boundary condition
that accounts for wall blowing/suction with a strength proportional to sensor readings
at a fixed height over the wall. The work of Leclercq er al. (2019) was the first to
account for mean-flow deformation due to control, iterating between resolvent-guided
controller design and computing the resulting controlled mean flow. Another promising
approach is that of Martini et al. (2022), which introduced the Wiener—Hopf formalism
to perform resolvent-based optimal estimation and control of globally stable systems
with arbitrary disturbance statistics. The work of Jin, Illingworth & Sandberg (2022),
to our knowledge, is the first to leverage resolvent analysis to address directly
the challenge posed by high-dimensional inputs and outputs in flow control. They
develop a technique to reduce the number of inputs and outputs by projecting onto
orthogonal bases for their most responsive and receptive components over a range
of frequencies, and refer to the procedure as terminal reduction. The method is then
applied for optimal control and estimation of the cylinder flow at low Reynolds
numbers.

Resolvent modes are frequency-dependent flow structures that can be interpreted
physically as the most responsive forcings and the most receptive responses at a given
frequency. However, for certain control-oriented tasks, such as terminal reduction (Jin
et al. 2022), it is preferable to have sets of modes that are meaningful over all (or a range
of) frequencies. Such sets may be built from resolvent forcing and response modes by
handpicking relevant high-gain frequencies in an ad hoc fashion. Alternatively, stochastic
optimals (SOs) and empirical orthogonal functions (EOFs) are frequency-agnostic modes
that, respectively, optimally contribute to and account for the sustained variance in a
linear system excited by white noise in space and time (Farrell & Ioannou 1993, 2001).
These flow structures also correspond to observable and controllable modes (Bagheri et al.
2009a; Dergham et al. 2011a) — the eigenvectors of the observability and controllability
Gramians from linear control theory — when considering full state inputs and outputs.
We remark that although SOs and EOFs are sometimes defined as data-driven modes,
we follow Farrell & Ioannou (2001) and take their definitions based on the Gramians.
Moreover, the mathematical connection between the Gramians and the resolvent operator
(Zhou, Salomon & Wu 1999; Farrell & Ioannou 2001; Dergham et al. 2011a), detailed
further in our review in § 2, implies that SOs and EOFs can be interpreted as representative
resolvent modes. Furthermore, SOs and EOFs form orthonormal bases of hierarchically
ordered forcing and response modes that are the most responsive and receptive across
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all frequencies, which makes them optimal for projection onto the dominant forcing and
response subspaces.

Consequently, SOs and EOFs have been leveraged in the context of model reduction via
the input and output projection methods introduced by Dergham et al. (2011a) and Rowley
(2005), respectively. First, output projection was developed to reduce the computational
cost of performing BPOD for systems with many outputs (Rowley 2005). This was
achieved by projecting the large number of outputs onto a much smaller number of
controllable modes, which are equivalent to POD modes for linear systems with full state
measurements, thus reducing the number of adjoint impulse response simulations required.
Analogously, input projection reduces the number of direct impulse response simulations
required in the case of a large number of inputs by projecting them onto the leading
observable modes (Dergham et al. 2011a). In subsequent work, Dergham et al. (2013)
developed a method that enables computing the leading SOs and EOFs for systems with
a large number of inputs and outputs simultaneously, such as a fluid flow with full state
measurements and forcing. The framework approximates the Gramians by exploiting their
connection with the resolvent operator, for which a low-rank approximation is obtained
over a range of frequencies using a time-stepper routine (Dergham et al. 2013). In this
context, input and output projections based on the leading SOs and EOFs have proven to
be very successful at enabling model reduction via balanced truncation or BPOD (Rowley
2005; Ilak & Rowley 2008; Bagheri et al. 2009a; Dergham et al. 2011a, 2013). However,
their potential to guide sensor and actuator placement and design has not been investigated.

In this work, we introduce an equation-based framework to reconstruct forcing and
response fields from point sensor measurements by leveraging SOs and EOFs along
with a greedy algorithm for sensor selection. To achieve this, the input and output
projection methods (Rowley 2005; Dergham et al. 2011a) are extended to admit the use
of interpolatory, rather than orthogonal, projectors, which are formally defined in § 3. The
approach can be leveraged for sensor and actuator placement, and open-loop control, as
demonstrated on several numerical examples.

The remainder of the paper is organized as follows. Theoretical background on
resolvent analysis and observability and controllability Gramians is covered in § 2 along
with a review of the mathematical connection between resolvent modes and Gramian
eigenmodes. Interpolatory input and output projections are introduced, and their utility
for control-related tasks is explained in § 3. Examples leveraging the orthogonal and
interpolatory input and output projections are presented in §§4 and 35, respectively. Our
conclusions are offered in § 6.

2. Review: from resolvent to Gramians

In this section, we begin with a brief background on resolvent analysis and the
observability and controllability Gramians — operators arising in linear control theory. We
follow up with a review of the established mathematical connections between resolvent
forcing and response modes, and the eigenvectors of the Gramians. The interpretation
of SOs and EOFs as representative forcing and response modes across all frequencies is
justified.

2.1. The resolvent operator
Let us consider a forced linear dynamical system

I gt @.1)
— = Ax , .
dr
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where r € R denotes time, x(f) € R" is the state whose dynamics are governed by
the operator A € R™", and f € R" is the forcing. Such a system may arise from
a semi-discretized partial differential equation, and in the case of fluid flows, the
incompressible Navier—Stokes equations can be written in this form by projecting the
velocity field onto a divergence-free basis to eliminate the pressure variable. The
state x may represent either the deviation from a steady state of a laminar flow, or
fluctuations about the temporal mean of a statistically stationary unsteady flow. In
both cases, the matrix A4 is the linearization of the underlying nonlinear system about
the corresponding base flow, either the equilibrium or mean flow. The forcing term
may represent disturbances from the environment, model discrepancy, open-loop control
actuation and/or the effect of nonlinear terms. Although we have defined 4, x and f to
be real for simplicity, the methods presented below can be applied equally in the case of
complex variables.

In the Laplace s-domain, the resolvent operator H(s) = (sI —A)~ ! is the transfer
function from all possible inputs to all possible outputs in state space, with I € R"*"
being the identity matrix. This operator encodes how any harmonic forcing f(a)) el ata
specific frequency w is amplified by the linear dynamics to produce a response

%(w) = H(io) f (»). (2.2)

At any given frequency, a singular value decomposition (SVD) of the resolvent
operator reveals the most responsive forcings, their gains, and the most receptive
responses at that particular frequency. Specifically, the SVD factorizes the resolvent
into H(iw) = ¥(w) X(w) ®(w)*, where X € R is a diagonal matrix containing the
resolvent gains oy 202> --- 20,20, and ® =[d1¢, ... ¢,] € C”" and ¥ =
(V¥ ... ¥,] € C™" are unitary matrices whose columns are known as the forcing
and response resolvent modes, ¢; and ¥ ;, respectively.

2.2. The Gramians
Linear control theory deals with systems of the form

((11_3; =Ax+ Bu, y= Cx, (2.3a,b)
where the matrices B € R"? and C € R7*" are determined by the configuration of
actuators and sensors, and describe how the control inputs u(z) € R? act on the dynamics
and which outputs y(#) € R? are measured from the state, respectively. Note that B, C, u
and y might be complex as well. In this setting, it is often important to identify the most
controllable and observable directions in state space, that is, what are the states that are
excited most efficiently by the inputs, and what are the states that are discerned most easily
from the measured outputs. This is achieved by analysing the infinite-time observability
and controllability Gramians, W, and W,, defined as

o0 « 1 (0 0)
W, = / eArcrceldt = — / H(iw)* C*C H(iw) dw, (2.4q)
0 2n —00

o0 " 1 o0
W, = / ' BB e dr = — / H(iw) BB* H(iw)* dw, (2.4b)
0 2w —00

where the rightmost expressions are the frequency domain representations which, as
is well-known, feature the resolvent operator. It is important to point out that these
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representations are equivalent for stable systems only; whereas the integrals in the time
domain diverge for the unstable case, the definitions in the frequency domain still hold as
long as there are no marginal eigenvalues (Zhou et al. 1999; Dergham et al. 2011b). It is
generally intractable to compute the Gramians directly using (2.4a) and (2.4b). Instead,
they are often obtained by solving the Lyapunov equations

AW, + WeA+ C*C =0, (2.5a)
AW. + W.A* + BB* = 0, (2.5b)

which can be achieved conveniently using readily available numerical routines (Skogestad
& Postlethwaite 2005; Brunton & Kutz 2019). However, for high-dimensional systems,
this becomes too computationally expensive, and typically the Gramians are approximated
empirically from simulation data (Willcox & Peraire 2002; Rowley 2005).

Both matrices, W, and W, are symmetric positive semi-definite, and their eigenvectors
comprise hierarchically ordered orthogonal bases of known observable and controllable
modes, respectively. For the case of full state outputs, the observability Gramian
eigenvectors are the stochastic optimals (SOs) and, for the case of full state inputs,
the eigenvectors of the controllability Gramian are the empirical orthogonal functions
(EOFs) (Farrell & Ioannou 1993, 2001). Both SOs and EOFs also have deterministic
interpretations that connect them to resolvent forcing and response modes. These
connections are discussed in the remainder of this section.

2.3. 8Os and EOFs are representative resolvent modes
We consider a linear system of the form in (2.1) by considering C = B = I such that we

are measuring all possible outputs y = x and forcing all possible inputs u = f". In this
scenario, the Gramians become

o0 " 1 o0

W, = / eAledldr = — / H(iw)* H (iw) do, (2.6a)
0 21 J
o0 N 1 o0

W, = / e dr = — / H(iw) H (iw)* do. (2.6b)
0 21 J o

These frequency domain expressions were leveraged by Dergham et al. (20110) to obtain
empirical approximations of the Gramians using data of long-time response to harmonic
forcings. Furthermore, substituting the resolvent by its SVD H (iw) = ¥ (w) X (w) @ (w)*,
and using the orthogonality of the resolvent modes at each w, yields

w,= L /°° B () Z(0)} b (0) do, W, = i/m W () 2(@)° ¥ ()" do,
21 J_ oo 21 J o
(2.7a,b)

where no approximations have been made up to this point. We now consider a numerical
quadrature to represent the integrals over the frequency domain as a sum over m
discrete frequencies wy. For ease of notation, we consider a trapezoidal rule with a
uniform frequency spacing Aw, but other quadratures and non-uniform spacing could be
considered in general. Letting oji, ¢ and ¥ denote the jth resolvent gain, forcing and
response modes evaluated at the kth frequency leads to the following approximations of
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the Gramians:

m

A
Wo ~ 2—w @ (wp) Z(or)* @ (w)* (2.8a)
k=1
Ulk¢Tk
Aw —
=2 [ouduc - oudu] : (2.8b)
k=1 0n/<¢Zk
Aw 011¢T1
= g [011¢11 te Unm¢nm] ~ LoL,* (2.8¢)
Unm¢;kzm
and
Aw —
Wern =3 W) Z(@)? ¥ (@0 (2.9a)
=
Aw m O—lkwTk
= 5 [Ulk'/’1k Unk'/fnk] : (2.90)
k=1 Unk'ﬁ:k
Ao onyi
= o [011'/’11 e Unm'/’nm] : ~ L.L.", (2.9¢)
Unm‘/’:m

where the expressions in (2.8¢) and (2.9c) reorder terms as the multiplication of
two matrices, allowing us to recognize the Cholesky factors of the Gramians, L, ~
(Aw/21)' (01101 -+ Oum®pm] and Le ~ (Aw/210) 2 [o11¥ ) - - - OumW - It is now
clear that the column space of these Cholesky factors spans the same forcing or response
subspace as all the corresponding resolvent modes at all frequencies. Moreover, because
L, and L, are Cholesky factors, their left singular vectors are equivalent to the eigenvectors
of W, and W,. These eigenvectors are precisely the SOs and EOFs, and form orthogonal
bases for these forcing and response subspaces. The framework introduced by Dergham
et al. (2013) uses the numerical quadrature described above, along with a rank truncation
of the resolvent at every frequency, to approximate the leading SOs and EOFs for
high-dimensional systems such as fluid flows.

The results presented above imply that SOs and EOFs can be interpreted as
representative resolvent modes. Indeed, the leading SOs and EOFs will often closely
resemble ad hoc selections of dominant — across frequencies — resolvent forcing
and response modes, as shown in figure 1 for a turbulent channel flow example.
Implementation details for this example can be found in § 5.

2.4. Gramian-based forcing and response modes

Although SOs and EOFs are usually explained as the structures that optimally contribute
to and account for the sustained variance in stochastically excited flows, they also have an
interesting deterministic interpretation (Farrell & Ioannou 2001). Specifically, the SOs and
EOFs correspond to the most responsive forcings and the most receptive responses across
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Dynamical system @
% =Axtf 'H \
Resolvent forcing modes Frequency Resolvent response modes
2 5 6 7
o ~ T i
g‘ I - = % — /f s\ #
GEBEZZETTNE
=2ZTT N

Stochastic optimals (SOs) Empirical orthogonal functions (EOFs)

Resolvent gains, o

« Interpolatory projections § 3

1
2
3 « Leveraging forcing modes § 4

« Leveraging response modes § 5

Figure 1. Forcing and response resolvent modes at handpicked high-gain frequencies compared to
the leading SOs and EOFs for mean-flow-linearized minimal channel flow at Re; = 185. Real part of modes
depicted as isosurfaces of wall-normal forcing and streamwise velocity response.

all frequencies. This is formalized by deriving the SOs and EOFs as the solutions to the
optimization problems presented below.

Let us first introduce the £-norm for signals y(¢). This norm measures energy integrated
over time, as follows:

Ily®l%, = f oo||y(z>||%dr= L / - I7(@)13 dw = [F(@) 1%, (2.10)
2 0 2 J o 2

where () denotes a Fourier-transformed variable, and the frequency domain expression
follows from Plancherel’s theorem.

In order to define our objective functions to be maximized, we consider the gain in the
L»-norm for signals. Moreover, the last equality in (2.10) implies that, in the £, sense,
optimizing energy amplification integrated over all frequencies is equivalent to optimizing
energy growth integrated over all time.

Hence the most responsive forcing across all frequencies is the mode v that, mapped
through the resolvent, produces the most amplified response in the £, sense and is found
by maximizing the gain

o0
A*t At
: 2 2 v* e” e drv
IH Gw)vll7, e vz, /0 v Wy
2 = 2 = * = * ’ 2.1
113 lvolI3 v v*y

where the observability Gramian W, emerges naturally from expanding the norm
definition. In fact, the cost function in the rightmost expression corresponds to a Rayleigh
quotient, thus the optimizer is the leading eigenvector of W,, that is, the leading SO.
Subsequent eigenvectors then solve for the next most responsive forcings. Although the
association between the most observable modes and the most responsive forcings may
seem counter-intuitive, these are the structures that generate the most energetic responses,
and can therefore be most easily discerned from the time history of the state.

Now, the most receptive response across all frequencies is the mode v that best aligns,
in the £, sense, with all possible responses, which are spanned by the columns of the
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Physical interpretation Cost maximized Optimizer
(st lvll2=1

Most responsive impulse forcing after ¢ e vllg Leading right singular vectors of e’
Most receptive impulse response after ¢ et v ||% Leading left singular vectors of e/
Most responsive harmonic forcing at @ [|H (iw) v H% Leading right singular vectors of H (iw)
Most receptive harmonic response at [|H (w)* v ||% Leading left singular vectors of H (iw)
Most responsive impulse forcin rall P .

ost respo s%ve 1mpu e. oret .g overailf He/f vz Least damped eigenvectors of W,
Most responsive harmonic forcing across all w [|H (iw) v|| 7
Mos e 1 Is . N 1 a2 .

ost receptTve impu se. response over all ¢ ||e“.1 v Lé Least damped eigenvectors of W,
Most receptive harmonic response across all || H (iw)™ v|| o

Table 1. Forcing and response modes for non-normal systems, and the optimization problems that they solve.

resolvent, thus maximizing the gain
A A
. ) - v* eet dro
IH (o) vlz, e ol7, /0 VW

2 - 2 -
lvll3 Ivll3 vty vty

, (2.12)

where now a Rayleigh quotient with the controllability Gramian W, appears in the last
expression. Thus the optimizer corresponds to its leading eigenvector, that is, the leading
EOF. Again, subsequent eigenvectors then solve for the next most receptive responses in
the same sense. The intuition behind the association between controllable modes and the
most receptive responses lies in the fact that these are the states that the system is most
easily steered to through the action of any input or forcing.

When working with modal decompositions of fluid flows (or dynamical systems in
general), it is useful to think about the optimization problems being solved to provide
physical interpretations for the modes. This has been particularly important for non-normal
systems, where non-modal stability analyses have provided valuable insights regarding
physical mechanisms for linear energy amplification (Schmid 2007). As we have shown,
and summarize in table 1, the forcing and response modes produced by the Gramian
eigenvectors are closely connected to those obtained from transient growth and resolvent
analyses.

It is important to note that we have been using the Euclidean 2-norm to represent the
energy of a state vector ||v||%. It is often the case that a physically meaningful inner
product considers a positive-definite weighting matrix Q so that the relevant metric
is ||v]|2 = v*Qu. This weighting might account for integration quadratures or scaling

of heterogeneous variables in multi-physics systems (Herrmann-Priesnitz et al. 2018a).
However, in this scenario, one can modify the problem conveniently and easily to work

with the Euclidean 2-norm by taking the state as Fv and the dynamics as EAF !, where
F* is the Cholesky factor of Q = F*F.

3. Interpolatory input and output projections

We begin this section by presenting the main motivation for input and output projections
and their conventional definitions using orthogonal projectors. Next, we formally define
the concept of interpolatory projectors. Finally, we introduce our proposed method and the
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ideas for its application in the context of flow control, which are the main contributions of
this work.

3.1. Orthogonal input and output projections
The goal of input and output projections is to find projectors P to produce low-rank
approximations of either inputs or outputs, respectively, such that the input—output
behaviour remains as close as possible to that of the original system of form (2.3a,b).
In the case of input projections, the approximated dynamics is governed by

dx

e Ax + BPu, y = Cx, (3.1a,b)
and for the case of output projections, it is described by

d

d—’; — Ax+ Bu, j=PCx. (3.2a,b)

In both scenarios, we want the outputs y(¢) and y(¢) for the original and projected systems
to be close for a sequence of inputs u(r). We will consider the £,-norm for signals,
introduced in (2.10), as our metric of choice, which measures energy integrated over time.
Under this norm, the input projection error becomes

1 R N . ~
Iy =301z, = 5 / 1G(iw)it(w) — G(iw) Pi(w)||3 do (3.3a)
- / 1G(iw) I — P) ir(w) 3 do, (3.3b)
27 J_so
and the output projection error becomes
1 o0 N
Iy =30z, = 5 [ 1G(iw) it(w) — P G(iw) f ()13 do (3.4a)
= %/ I —P) GGw) fl(a))H%da), (3.4b)

where G(s) = C(sI —A)~'B = CH(s) B is the transfer function for the unprojected
system (2.3a,b).

The values of [P that minimize the errors (3.3) and (3.4) depend on the class of inputs
admitted and on the type of projector sought. The methods introduced by Dergham et al.
(2011a) and Rowley (2005) seek orthogonal projectors to minimize the errors (3.3) and
(3.4), respectively, for inputs that are impulses on every possible degree of freedom. Given
an orthonormal set of vectors V' = [v] --- v,], an orthogonal projector onto the column
space of V is given by P, = V7™,

If such a rank-r projector minimizes the input projection error (3.3), then the modes
in V' correspond to the most dynamically relevant inputs, that is, the response of the
system can be well predicted when approximating u(¢) ~ P, u() = VV* u(t) = Vd(1),
with d(¢) € C". In addition to the physical insight regarding the most responsive inputs,
these modes can be leveraged to design spatially distributed actuators. Building actuators
that are tailored to excite these modes results in a controller that can act along the most
responsive directions in state space. The optimal basis for orthogonal input projection is
given by the leading POD modes from adjoint impulse response simulations, which, in the
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case of full state inputs, are equivalent to the leading observable modes (Dergham et al.
2011a).

Similarly, if the output projection error in (3.4) is minimized, then V spans the
subspace of the most receptive measurements. In this case, the modes in V allow for
a low-dimensional representation of the output in terms of mode amplitudes, that is,
y() =~ Py y(t) = VV* y(t) = Va(t), with a(t) € C". The optimal basis for orthogonal
output projection is given by the leading POD modes from direct impulse response
simulations, which, in the case of full state outputs, are equivalent to the leading
controllable modes (Rowley 2005; Holmes et al. 2012).

Furthermore, in this work we are concerned with fluid flows that can be forced
anywhere and measured everywhere, that is, the system has full state inputs and outputs
simultaneously. Recall that if this is the case, then the transfer function becomes the
resolvent operator G(s) = H (s). In this scenario, the optimal bases that minimize (3.3) and
(3.4) are comprised of flow structures that coincide with the leading SOs and EOFs, and
can be interpreted as the most responsive forcings and receptive responses, respectively.

3.2. Interpolatory projectors
We have presented the idea of using projectors to produce low-rank approximations of
inputs and outputs, or forcings and responses in dynamical systems of the form in (2.1)
with full state inputs and outputs. The optimal orthogonal projectors that minimize the
errors (3.3) and (3.4) in that case use the leading SOs and EOFs as bases. Here, we define
another kind of projector — an interpolatory projector — that, as we show later, is useful
practically for sensor and actuator placement and open-loop control.

An interpolatory projector is an oblique projector with the special property of preserving
exactly certain entries in any vector upon which it acts. These entries are referred to as
interpolation points, thus justifying the name, which was first introduced in Chaturantabut
& Sorensen (2010) and later adopted by more recent work (Sorensen & Embree 2016;
Gidisu & Hochstenbach 2021).

DEFINITION 1. Given a full-rank matrix ¥ € R"™" and a set of distinct indices y € N,
the interpolatory projector for y onto the column space of V is

P.=vEP'v) ' PT, (3.5)

provided that PV is invertible, where P = le), ---ey,] € R"™ contains r columns of the
identity matrix given by p.

The matrix P is a sparse matrix, referred to as the sampling matrix because it samples the
entries given by the indices y of any vector x € R” upon which it acts, that is, PTx = x(p).

Just like an orthogonal projector P, = VF'T, when P. is applied to a vector, the result is in
the column space of V. However, IP. is an oblique projector, and it also has the following
distinct property: for any x € R",

P.x)(y) = P'P.x = PTV(PTV)"'PTx = PTx = x(p), (3.6)

so the projected vector P.x matches x in the entries indicated by y. These entries are
known as the interpolation or sampling points, and are determined by the non-zero entries
in the sampling matrix. A simple example of interpolatory projection is presented in
Appendix A.
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3.3. Proposed method

For our interpolatory input and output projections, we take the leading SOs and EOFs
as the basis V, respectively. It is important to note that these projectors are sub-optimal
with respect to (3.3) and (3.4), and therefore will never show better performance (under
these metrics) than the orthogonal projectors of the same rank built with the same
bases. Furthermore, the choice of the sampling locations, or equivalently the design of
P, is critical for the performance of the interpolatory projection to approximate that
of the orthogonal one. In addition, when using the leading SOs or EOFs in V, the
interpolation points that result in small projection errors are physically interesting, since
they represent responsive or receptive spatial locations, respectively. However, finding the
optimal sampling matrix that minimizes the projection error for a given basis V' requires
a brute force search over all possible sampling location combinations. While this can be
achieved for small-scale systems (Chen & Rowley 2011), with n ~ O(10%) at the time of
writing, the computational cost makes it intractable in higher dimensions. Alternatively,
there are several fast greedy algorithms that can be used to approximate the optimal
sensor locations, avoiding the combinatorial search. In the context of reduced-order
modelling, the empirical and discrete empirical interpolation methods, EIM (Barrault et al.
2004) and DEIM (Chaturantabut & Sorensen 2010), were developed to find locations to
interpolate nonlinear terms in a high-dimensional dynamical system, which is known as
hyper-reduction. An even simpler and equally efficient approach is the Q-DEIM algorithm,
introduced by Drmac & Gugercin (2016), that leverages the pivoted QR factorization
to select the sampling points. Manohar et al. (2018) showed that this is also a robust
strategy for sparse sensor placement for state reconstruction on a range of applications.
Here, we adhere to this method because it provides near-optimal interpolation points and is
simple to implement by leveraging the pivoted QR factorization available in most scientific
computing software packages. The pseudo-code for this greedy sensor selection strategy,
adapted from Manohar et al. (2018), is shown in Algorithm 1, where we use Matlab’s array
slicing notation.

Algorithm 1 Greedy sensor selection using pivoted QR (Manohar ef al. 2018)

Inputs: basis V' € R™”

Outputs: sampling matrix P € R"*” and sensor indices y € N”
pivots < pivotedQR (V1)
y < pivots(1 : r)
P I,y

Therefore, the approach used to build P for our interpolatory input or output projections
consists in taking a pivoted QR factorization of the transpose of the basis V, which is
comprised of the leading either SOs or EOFs, respectively. Then the first ¥ QR pivots
correspond to the sampling points, or sensor locations, which we will refer to as tailored
sensors since they depend solely on the corresponding V, and are therefore tailored
specifically to that basis (Manohar et al. 2018).

Combining the SOs and EOFs with the pivoted QR factorization for sampling point
selection, we obtain an equation-driven framework for interpolatory input and output
projections that is easy to implement. In the following, we explain how this approach
can be leveraged for several control-related tasks.
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3.4. Sparse sensor and actuator placement

The leading SOs span the subspace of the dominant forcings for response prediction.
Using an interpolatory 1projector, these dominant forcings can be approximated
as f(r)=P.f(r)=V(P V)_IPT [ = V(PT V)"l d(r), where now d corresponds
to the entries of f at the r interpolation points. This means that we can
approximate the dynamically relevant parts of the forcing from sparse sensor
measurements, and if a model of the dynamics is available, predict the response
of the system. Moreover, the interpolation points also make attractive open-loop
actuator locations to act on the SOs and mitigate the disturbances with the largest
impact on the dynamics. Similarly, using the EOFs, we can reconstruct the response
x(t) ~P.x(t) = V(PT V)_lPT x(t) = V(PT V)~ a(s) from sparse sensor measurements
a corresponding to the entries of x at the r interpolation points.

Balanced modes, corresponding to the most jointly controllable and observable states
of a linear dynamical system (Moore 1981; Rowley & Dawson 2017), have also been
leveraged for sensor and actuator placement by Manohar et al. (2021). However, that work
was focused on feedback control, whereas here we are proposing sensors for forcing or
response reconstruction and actuators for open loop control. Although balanced modes
may also seem like attractive choices of bases to build input and output projectors, the
subspaces that they span are sub-optimal for projection in terms of the errors (3.3) and
(3.4), since the balancing implies a trade-off between observability and controllability.
Therefore, for the tasks presented in this work, that rely on input and output projections, the
eigenvectors of the Gramians are more principled choices of bases. This way, the resulting
interpolatory projectors are approximating the optimal orthogonal projectors.

3.5. Partial disturbance feedforward control

Disturbance feedforward control is an open-loop control strategy that uses measurements
of the disturbances to a system and a model of its dynamics to determine a sequence
of control inputs with the objective of mitigating the effect of disturbances. This
strategy is used typically to reject low-frequency, high-amplitude disturbances and perform
aggressive reference tracking, in combination with a feedback controller that attenuates
high-frequency sensor noise and compensates for model uncertainty (Bade et al. 2016;
Papadakis, Lu & Ricco 2016; Williams & King 2018; Tol, Kotsonis & De Visser 2019;
Herrmann et al. 2022). Consider a linear dynamical system

dx

m =Ax+w+ Bu, y=Cw, (3.7a,b)
that is forced simultaneously by exogenous disturbances w and the control actuation term
Bu, with u € C? and B € C"™P, where y = Cw are measurements of the disturbances
through the linear mapping C € C?*". This is a particular case of the disturbance
feedforward control problem presented in Doyle er al. (1988) with no feedback, where
the error signal z = x is just the state. Therefore, for a given set-up, an optimal control
law can be derived within the framework of H> control (Doyle ef al. 1988; Skogestad &
Postlethwaite 2005). However, we consider the joint problem of designing simultaneously
the actuation matrix B, the measurement matrix C and a simple control law with a constant

gain matrix u = — Ky, with the aim of mitigating only the most meaningful disturbances.
Substituting the control law in (3.7a,b), the controlled system dynamics becomes

dx

T =Ax+f, f=U—-BKC)w, (3.8a,b)
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where the system is forced by the effective forcing f. Now we want to find a combination
of actuators B, disturbance sensors C and gain K that minimizes the effect of f on the
response of the system. This is achieved if (I — BKC) projects w onto the least responsive
disturbances, or equivalently, if BKC projects onto the most responsive disturbances, given
by the leading SOs of the system (3.8a,b). In other words, the sensors, control gains and
actuators can be selected conveniently so that the matrix product of B, K and C produces
an orthogonal or interpolatory input projector. Note that this approach only partially
mitigates the disturbances, which is why we refer to it as partial disturbance feedforward
control.

This approach is particularly attractive for noise-amplifier systems, where a few
preferred forcing structures are responsible for most of the energy sustained by the
response (Dergham et al. 2011a, 2013). In §4, we demonstrate the performance of
partial disturbance feedforward control on a stochastically forced linear system considering
different types of sensors and actuators.

Furthermore, the proposed approach may also prove to be interesting in the context of
turbulent flows. Specifically, for wall-bounded turbulent flows, the SOs of the mean-flow
linearization are expected to be an efficient basis for input projection because of their
behaviour as selective noise amplifiers (Dergham er al. 2013). However, the effect of
control inputs would cause mean-flow deformation. Whether or not the actuators designed
based on the SOs of the uncontrolled flow would remain effective when control is in place
has yet to be investigated. This will be the subject of future research and is outside the
scope of the present work.

4. Leveraging forcing modes

In this section, we present three numerical examples detailing how orthogonal and
interpolatory input projections relying on Gramian-based forcing modes can be leveraged.
First, in §4.1 we show how orthogonal input projection is able to identify the most
responsive disturbances to predict accurately the response of the system using a
low-dimensional forcing. Building on this, in § 4.2 we use interpolatory input projection
to approximate the dynamically relevant disturbances from sparse measurements of the
forcing field. To close this section, in § 4.3 we test both kinds of input projectors to perform
partial disturbance feedforward control and mitigate the effect of the most responsive
forcing with different sensor and actuator configurations. Our test bed is the linearized
complex Ginzburg—Landau equation, which is a typical model for instabilities in spatially
evolving flows. The semi-discretized system is governed by the linear operator

A= —vD, +yD? + u(x), 4.1)

where x is the spatial coordinate, and Dy and D)ZC are the first- and second-order spatial
differentiation matrices with homogeneous boundary conditions at x — £00. We choose
a quadratic spatial dependence for the parameter w(x) = (no — ci) + (,142/2))62 that
has been used previously by several authors (Bagheri et al. 2009h; Chen & Rowley
2011; Towne, Schmidt & Colonius 2018). The other parameters are set to uo = 0.23,
2 =—0.01,v=2+0.4iand y = 1 — i as in Towne et al. (2018), giving rise to linearly
stable dynamics. As in Bagheri er al. (2009b), we use spectral collocation based on
Gauss-weighted Hermite polynomials to build the differentiation matrices D, and D)ZC, and
the integration quadrature. The spatial coordinate is discretized into n = 220 collocation
points, and the domain is truncated to x € [—85, 85], which is sufficient to enforce the
far-field boundary conditions. The observability Gramian considering full state inputs

971 A27-15


https://doi.org/10.1017/jfm.2023.680

https://doi.org/10.1017/jfm.2023.680 Published online by Cambridge University Press

B. Herrmann and others

(a) Linearized Ginzburg-Landau equation subject to white noise disturbances (d ) Relative response prediction error
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Figure 2. (a) Response of the linearized complex Ginzburg-Landau equation to white noise forcing. The
system behaves as a selective disturbance amplifier. (b) Two bases of representative forcing modes are
used to build orthogonal input projectors: the leading forcing POD modes computed from snapshots of the
disturbances, and the leading SOs. (¢) Projected forcings and their induced responses using 20 forcing POD
modes versus 3 SOs. (d) Normalized input projection error as a function of the projector rank r. The real part is
displayed for forcing, response and mode plots. These findings follow directly from the work of Dergham et al.
(2011a).

and outputs is computed using readily available routines that solve the corresponding
Lyapunov equation (2.5a).

Throughout the examples, band-limited white noise disturbances f(¢) are generated,
several input projectors P are built, and the responses of the system to f(f) and to
the projected forcings Pf(¢f) are compared. Simulations are carried out by integrating
numerically for 10* time units, and the results are recorded every At = 0.5 time units
for post-processing. Every time step, the forcing is generated on a uniform spatial grid of
80 points as a vector of random complex numbers with amplitudes drawn from a normal
distribution and phases drawn from a uniform distribution, which is then mapped onto the
non-uniform spatial grid via spline interpolation.

4.1. Most responsive disturbances

For the set of parameters used, the linearized complex Ginzburg—Landau equation is
known to behave as a selective amplifier of disturbances (Bagheri et al. 2009b). When
forced with white noise, the dynamics of the system filters disturbances and generates
a response where most of the energy is contained in coherent structures, as shown in
figure 2(a). This implies that, among all possible ways to excite the system, there are a few
preferred forcing patterns that are dynamically relevant and have a dominant effect on the
produced response.
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We build orthogonal projectors onto two different subspaces, spanned by the bases V'
shown in figure 2(b), that one might consider when seeking low-rank approximations of
the forcing. For the first subspace, we gather snapshots of the forcing, perform POD on
those snapshots, and retain the leading r forcing POD modes as our basis to build a
rank-r projector. The second subspace is the one spanned by the leading r eigenvectors
of the observability Gramian. The projection of the forcing onto these subspaces, and the
response of the system to the projected forcings, are shown in figure 2(¢) for » = 20 POD
modes and r = 3 W, eigenmodes.

The projected forcing using POD resembles closely the original forcing, which is
expected since POD provides the optimal low-rank approximation based on empirical
observations. Despite this, the response is predicted more accurately using the input
projection onto the SOs, even when using just 3 modes compared to the 20 used for
the POD-based projection, as shown in figure 2(c). More quantitatively, the error in the
response prediction, measured by the normalized £,-norm, is always lower for the same
forcing projection rank r, and decreases much more rapidly for low-rank approximations,
as shown in figure 2(d).

This performance gap is expected since the POD modes of the disturbance field,
albeit optimal at reconstructing the observed disturbances, are completely agnostic to the
dynamics of the system. The purpose of the comparison is to highlight the dynamical
significance of the SOs as the most responsive disturbances, providing a subspace for input
projection that is optimal for response prediction. We remark that the findings presented in
this subsection are not new since they follow directly from the application of the method
developed by Dergham et al. (2011a).

4.2. Sensor placement for prediction

Using interpolatory input projection, the most responsive disturbances buried within white
noise forcing can be exposed successfully from sparse sensor measurements, as shown
in figure 3(a) for the case of 8 sensors. The projected forcing captures the dynamically
relevant parts of the disturbances, allowing for an accurate prediction of the energetic
coherent structures in the response, as also shown in figure 3(a). Moreover, the error
induced by the interpolatory projection on the response prediction rapidly approaches
the error induced by an orthogonal projector, built using the same basis, as the basis
size increases, as shown in figure 3(b). The spatial locations found for the sensors,
tailored to the eigenvectors of W, resemble closely the optimal placements computed by
Chen & Rowley (2011). However, our approach circumvents solving the computationally
expensive optimization problem presented in that work by using the pivoted QR method.
Furthermore, the sensor locations found are also similar to those found by Manohar ef al.
(2021), which is expected since those were tailored to the adjoint balanced modes, which
span almost the same subspace as the eigenvectors of the observability Gramian for this
particular case. Importantly, in that and other previous works, the sensor placement was
optimized for feedback control, whereas here, sensors aim to reconstruct the disturbance
field to use it for prediction. As discussed in § 3, for this purpose, balanced modes are
sub-optimal and SOs are the optimal choice.

4.3. Open-loop control design

Here, we consider the application of the partial disturbance feedforward control approach
described in §3 to the linearized complex Ginzburg-Landau equation subject to white
noise disturbances. This strategy leverages the concept input projections to address only
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(a) Response prediction from sparse forcing measurements (7 = 8) (b) Relative response prediction error
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Figure 3. (a) Forcing applied to the linearized complex Ginzburg—Landau equation and its induced response
compared to an interpolatory projection of the forcing and its induced response. The projector interpolates
the forcing in the span of the leading » = 8 SOs from measurements at » = 8 spatial locations (sensors).
(b) Normalized input projection error using interpolatory (dashed) and orthogonal (solid) projectors as a
function of the projector rank r. (¢) Sensor locations as a function of the size of the basis used for projection.
Sampling points are selected using pivoted QR, as in Manohar et al. (2018), and are therefore tailored to the
basis of SOs. Plots show the real parts of forcings and responses.

the most meaningful disturbances. With this strategy in mind, we design three feedforward
controllers considering different restrictions on the allowable sensors and actuators.

First, we assume that we have access to full disturbance measurements, that is, C = I,
and that spatially distributed (body forcing) actuators are feasible. We design our actuators
to excite directly the most responsive disturbances, that is, B = V, with V' containing the
leading SOs. Therefore, choosing the gain to be K = V* results in BKC being the optimal
orthogonal input projector. Considering r = 10 distributed actuators, the feedforward
controller is able to successfully reject disturbances by projecting-out the components that
would cause the most energetic response, as shown in figure 4(b). More precisely, a 97 %
reduction in the £,-norm of the fluctuations is achieved.

For a second case, we allow only pointwise measurements of the disturbances, that is,

C = PT, and still consider spatially distributed actuators. Choosing our actuators to be
B = V means that the gain K = (PTV)~! makes BKC an interpolatory input projector.
In this scenario, the full disturbance field is interpolated from sparse sensors, and then
the actuators attempt to cancel out the components that would lead to the most energetic
response. Using r» = 10 spatially distributed actuators and 10 point sensors, selected via
pivoted QR, the feedforward controller has only slightly lower performance than when
using full measurements, as shown in figure 4(c). Specifically, a 93 % reduction in the
L>-norm of the fluctuations is obtained in this case.

Finally, we examine a more realistic scenario where only spatially localized sensors and
actuators are allowed. Specifically, we consider B = Pand C = PT, where, rather than
r columns of the identity as in P, the columns of P are given by discretized Gaussian
functions

(r—x)"\
exp|l ———1, j=1,...,r, 4.2)

202
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(a) Partial disturbance feedforward control
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Figure 4. (a) Feedforward control strategy to reject disturbances in the linearized complex Ginzburg—Landau
equation. The control actuation and the response of the controlled system are shown for three sensor and
actuator configurations: (b) full disturbance measurements and 10 spatially distributed (body forcing) actuators;
(c) 10 point sensors and 10 spatially distributed actuators; and (d) 10 localized sensors and actuators. Plots for
the forcing, control actuations and responses display the real parts of these fields.

localized at sampling points x;, where we choose o = 0.6. Using a control gain K =

(PTP)~!, the actuation then attempts to cancel out directly the disturbances measured
in the regions localized around the sampling points. We hypothesize that the optimal
sensor locations for response prediction are also good for actuator placement, since they
correspond to the optimal locations to interpolate the most responsive forcings. Therefore,
leveraging the first » = 10 SOs, we use pivoted QR to select 10 sampling points to place
disturbance sensors and actuators. The resulting controller has a reasonable disturbance
rejection performance, as shown in figure 4(d). In this case, an 89 % reduction in the
L>-norm of the fluctuations is achieved.

5. Leveraging response modes

In this section, we present numerical examples detailing how the orthogonal and
interpolatory output projections can be leveraged to identify the most receptive
perturbations of a dynamical system, and to reconstruct its state from sparse sensor
measurements. As a test bed system, we use a minimal channel flow at Re; = 185.
This corresponds to a pressure-driven turbulent flow, governed by the incompressible
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Figure 5. (a) Snapshots of minimal channel flow at Re; = 185 projected onto subspaces spanned by
the leading » POD modes (top) and the leading r EOFs of the mean-flow-linearized operator (bottom).
(b) A typical DNS snapshot. The colour map shows streamwise velocity. (¢) Streamwise and wall-normal
root-mean-square (r.m.s.) velocity profiles of the projected snapshots at various projection ranks. The left-hand
plots (green curves) correspond to POD-based projections, and the right-hand plots (purple curves) to
EOF-based projections. (d) Normalized output projection error as a function of the projector rank r. POD
modes span the optimal (in the £, sense) linear subspace and therefore represent the lower bound for this error.

Navier—Stokes equations, in a doubly periodic plane channel. The domain size is 1.83 x
2 x 0.92 dimensionless length units along the x, y and z coordinates that indicate the
streamwise (periodic), wall-normal and spanwise (periodic) directions, respectively. For
Reynolds number Re = 4200, based on the channel half-height 4 and the centreline
velocity for the laminar parabolic profile U, i, leading to Re; = 185, this is the smallest
domain that is able to sustain turbulence, and it is known as a minimal flow unit (Jiménez
& Moin 1991).

We use the spectral code Channelflow (Gibson, Halcrow & Cvitanovi¢ 2008; Gibson
2014) to perform direct numerical simulations (DNS). The code uses Chebyshev and
Fourier expansions of the flow field in the wall-normal and horizontal directions, and a
third-order Adams—Bashforth backward differentiation scheme for the time integration.
We find that a grid with 32 x 101 x 16 (after de-aliasing) in x, y and z, and a time step
0.005 time units, are sufficient to discretize the domain and keep the CFL number below
0.55, for the cases studied. The flow is initialized from a random perturbation of the
laminar profile, simulated for 10* time units (based on A /Ue.1am) until transients have died
out and statistical stationarity is reached, then velocity field snapshots are saved every

0.2 time units for an additional 1.5 x 10* time units, which is enough to get converged
statistics. The streamwise velocity for a typical flow field snapshot is shown in figure 5(b).
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The mean flow is computed from the DNS snapshots and used to build the
mean-flow-linearized operator with an in-house code based on the Orr—Sommerfeld/Squire
formulation. The code uses Chebyshev spectral collocation to discretize the wall-normal
direction with the same grid used in the DNS. The linearized operator is built for every
wavenumber tuple in the range resolved by the DNS, and the controllability Gramian,
considering full state inputs and outputs, is computed solving the corresponding Lyapunov
equation (2.5h) with available routines. Global EOFs (eigenvectors of W,) are computed
by taking the inverse Fourier transform of the local EOFs obtained for every wavenumber
tuple and ordering them according to their energy (eigenvalues of W,).

Orthogonal and interpolatory projections of velocity fluctuation snapshots from the
DNS are investigated. The EOFs, arising from the mean-flow linearization, and POD
modes, spanning the optimal linear subspace, are compared as bases for the projections. To
compute the POD modes, the DNS dataset is augmented with reflections of the snapshots
with respect to the midplanes in the y and z directions to enforce the corresponding
symmetries. We then perform a randomized SVD (Halko, Martinsson & Tropp 2011)
aiming at the leading 800 POD modes using a Gaussian random matrix with 1000 columns
and without power iterations.

5.1. Most receptive perturbations

We examine the suitability of the EOFs and POD modes as bases V for the dominant
response subspace. We build rank-r orthogonal projectors from the leading r elements in
these bases, and use them to project the DNS snapshots. Qualitatively, both POD modes
and W, eigenmodes seem to capture the main coarse features in the flow with a rank 100
projection and further details as r increases, as shown in figure 5(a) for the streamwise
velocity.

Second-order statistics of the velocity fluctuations are approached by those obtained
for the projected snapshots as the rank of the projector increases with both bases, as
shown in figure 5(c). However, there is a slower convergence for the Gramian-based
projection. Specifically, although the Gramian eigenmodes capture reasonably the peak
in the root-mean-square (r.m.s.) profiles, a higher number of modes is required to resolve
properly the statistics close to the wall and near the channel centre.

More quantitatively, the response projection error, measured by the normalized
Lr-norm, drops faster with increasing r and is always lower when using POD modes,
as shown in figure 5(d). This is expected because POD modes span the optimal linear
subspace in the L, sense and therefore represent the lower bound for the response
projection error. Nevertheless, for this system, the error of the projection onto the EOFs
follows this lower bound closely. Importantly, this performance is achieved without any
data snapshots and requires only knowledge of the mean flow, as opposed to the long
sequence of high-fidelity snapshots needed to obtain converged POD modes. These results
are not surprising since resolvent analysis has been very successful to model wall-bounded
turbulent flows (McKeon 2017), and as explained in § 2, the EOFs and the combination of
all resolvent response modes at all frequencies span the same subspace.

5.2. Sensor placement for reconstruction

We now examine the performance of interpolatory projectors to reconstruct velocity
fluctuations in the minimal channel flow from sparse sensor measurements. Again, sensor
locations are selected using the pivoted QR approach from Manohar ef al. (2018), and
are thus tailored to the specific basis used. The sensor placement distribution reveals the
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spatial regions that are most informative to reconstruct the dominant coherent structures.
Since the state vector of the system contains the three velocity components, sensors are
also selecting which component to measure.

Leveraging both of our bases, of POD modes and EOFs, we find that sensors accumulate
towards the walls as more of them are added, as shown in figure 6(a). A detailed view of
the sensor distribution in the wall-normal direction, presented in figure 6(b), reveals that
most of the sensors tailored to the EOFs are positioned closer to the wall and fall within
the buffer region. For both bases, the great majority of the sensors measure streamwise
velocity, which is expected since that is the most energetic component. Interestingly, there
is more variety in the sensors tailored to the POD basis, including more measurements of
the spanwise and wall-normal velocities, as shown in figure 6(b).

A total of six projectors are built, three for each basis, and the reconstruction £, error
over the entire sequence of DNS snapshots is evaluated as a function of the projection
rank r, as shown in figure 6(c). Considering the leading r elements in each basis, we
build interpolatory output projectors using r tailored sensors complemented with an
additional 2r random sensors. Because this is a high-dimensional system with a total
of na 1.6 x 10° states, complementing tailored sensors with random ones is a simple
strategy to improve the resulting reconstruction that was suggested in the work of Manohar
et al. (2018). This is implemented by simply taking the leading 2r columns of a matrix
containing all remaining possible sensors after a random column permutation. These
columns are then concatenated to the sampling matrix P used to build the projector. For
the sake of comparison, we also build interpolatory projectors using 3r random sensors
and orthogonal projectors for the subspaces spanned by the POD modes and by the
eigenvectors of W,. Orthogonal projectors provide the lower bound in reconstruction
error for interpolatory projectors onto the same subspace. Leveraging the EOFs, the
reconstruction using tailored sensors explains a large portion of the energy in the flow
field, and even with random sensors, 50 % of the energy is captured from measurements
of 1.5 % of the state variables, as shown in figure 6(c). Furthermore, this is achieved in a
data-free manner, requiring only knowledge of the mean flow.

6. Conclusions

The main contribution of this work is the introduction of interpolatory input and output
projections along with numerical examples that demonstrate their use for sensor and
actuator placement and open-loop control. The presented approach leverages the leading
stochastic optimals (SOs) and empirical orthogonal functions (EOFs) that are known to be
optimal bases for orthogonal input and output projections for linear stable systems (Rowley
2005; Dergham et al. 2011a). This is also motivated by the connection between SOs and
EOFs and resolvent forcing and response modes, for which we offer a brief review. The
sampling points for our interpolatory projections are selected conveniently using the fast
greedy algorithm developed by Manohar et al. (2018).

The SOs provide an orthonormal basis of forcing modes that are ordered hierarchically
by their contribution to the response. This means that the response of a system that is
being excited by high-dimensional disturbances can be approximated by the response to
the projection of those disturbances onto the leading SOs. In fact, if all disturbances are
equally likely, then these modes provide the optimal basis of the forcing for response
prediction (Dergham et al. 2011a). Although this is certainly not the case for turbulent
flows, where there are preferred disturbances because nonlinearity provides coloured
forcing, we still expect these modes to provide an excellent, albeit sub-optimal, forcing
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Figure 6. (a) Spatial locations of sensors designed to reconstruct the velocity fluctuations in minimal channel
flow at Re; = 185. Sensors selected via pivoted QR (Manohar et al. 2018) are tailored to the leading r POD
modes (top) and the leading » EOFs (bottom). Sensors can measure streamwise (black circles), spanwise
(cyan squares) or wall-normal (magenta triangles) velocity components. (b) Mean velocity profile in wall
units (bottom) and distribution of sensors in the wall-normal direction for r» = 800 using POD (top) and
EOFs (middle). (¢) Normalized output projection error as a function of the projector rank r (left) and of
the percentage of sensors over the total number of state variables (right). Three interpolatory projectors are
considered for each basis, using: r tailored sensors complemented with 2r random sensors (dashed), 37 random
sensors (dash-dotted), and all possible sensors (solid), which is equivalent to an orthogonal projector.

basis for highly non-normal systems. This is supported by the bulk of resolvent literature
for the case of wall-bounded turbulence (McKeon 2017), since resolvent forcing modes and
the SOs span the same subspaces. For instance, Bae, Lozano-Duran & McKeon (2021)
showed that turbulence in a minimal channel flow is inhibited if the leading resolvent
forcing mode (corresponding to the most dangerous frequency) is projected out of the
nonlinear forcing at each time step of a numerical simulation. We hypothesize that the
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same would occur if the leading SO were projected out instead, since both of these modes
share almost identical spatial footprints. In the context of this work, this projection can be
interpreted as feedforward control with full disturbance measurements (the full nonlinear
forcing is known at each time step) and spatially distributed actuators (body forcing with
the spatial footprint of the forcing mode). However, in the work of Bae et al. (2021), the
mean flow is kept constant, which is unphysical. In a realistic setting, the controlled flow
would develop a new mean with a different linearization. Therefore, whether the SOs based
on the uncontrolled mean retain any control authority after mean deformation has yet to
be explored.

The EOFs provide an orthonormal basis of flow structures that are ordered hierarchically
by their accounting of the response. In other words, they provide a basis for the response of
a forced system that is optimal, in the case of white noise forcing, for state reconstruction.
In fact, these modes coincide with POD modes for a linear stable system where every state
is being disturbed (Rowley 2005). However, for turbulent flows, the EOFs of the mean-flow
linearization form a sub-optimal basis for state reconstruction because of the coloured
forcing statistics. Nevertheless, for a high-dimensional system with disturbances applied
everywhere, obtaining converged POD modes requires long data sequences, whereas the
EOFs require only knowledge of the base state (steady or mean flow). This is particularly
appealing for the case of turbulent flows, where fully space- and time-resolved velocity
field data snapshots can be obtained only numerically, whereas the mean flow can be
obtained from experiments. Importantly, we showed that, for a minimal channel flow, the
state reconstruction performance of the EOFs follows closely that of POD, even though
this is achieved without any data snapshots and requiring only knowledge of the mean flow.
Our findings also support the recent results by Cavalieri & Nogueira (2022), who built
accurate and numerically stable reduced-order models of plane Couette flow via Galerkin
projection onto the EOFs. Therefore, for turbulent flows, the presented approach based on
the EOFs of the mean-flow linearization and QR-pivoting is an attractive equation-based
alternative to the POD-based data-driven framework introduced by Manohar et al. (2018).

This work opens up several avenues of future research, including practical improvements
of the proposed sensor and actuator placement strategy, its experimental application, and
theoretical extensions to the connections reviewed. For example, the presented method
for sampling point selection, which leverages the Gramian eigenmodes and QR pivoting
(Manohar et al. 2018), is not able to account for the fact that in experiments, some
sensor and/or actuator configurations may be undesirable or even unfeasible. Therefore,
penalizing or promoting certain sensor or actuator locations is of practical interest. This
might be achieved using the SOs and EOFs in conjunction with the method developed by
Clark et al. (2018) to incorporate cost constraints. Another interesting research direction is
to investigate the case of time-periodic flows, exploring if the connections presented extend
to the harmonic resolvent (Padovan, Otto & Rowley 2020) and the frequential Gramians
arising from the linearization about a periodic base flow (Padovan & Rowley 2022).
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strategies: equispaced points and QR pivots.
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Appendix A. Example of interpolatory projection

Here, we present an example of interpolatory projection in the context of polynomial
interpolation. A similar example is presented in Manohar et al. (2018).

We consider the problem of interpolating the function f(x) = 1/(1 + 16x%) on the
interval x € [—1.01, 1.01] from r = 17 discrete measurements using a polynomial basis
V(x) ={l,x,...,x"1}. This problem is taken from Trefethen (2000), where it appears
in the context of interpolation using clustered grids. We discretize the function interval
using n = 405 points, and the function and basis are expressed as a vector f € R”
and a Vandermonde matrix ¥V € R"*". Given a list of distinct indices y € N" for the
interpolation points, and using (p) to denote evaluation at these points, the interpolated
function f can be computed numerically as

F=mwm,ro). (A1)

Alternatively, a sampling matrix P can be formed from rows of the identity at the indices
¥, which allows expressing evaluation at the interpolation points as multiplication with
PT. Therefore, the solution (A1) to the interpolation problem is also given by

fF=v@E V) Pl =P.rf, (A2)

which is equivalent to the interpolatory projection of the original function f.

The interpolation problem is solved with two different sampling strategies: using
equispaced points and using the QR pivots as interpolation points, as shown in figure 7.
As is well-known, interpolation onto a Vandermonde basis using equispaced points is
notoriously ill-conditioned and gives rise to the Runge phenomenon. On the other hand,
the QR pivots are clustered towards the edges, resembling Chebyshev points and providing
a well-conditioned interpolation.
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