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The breaking and energy distribution of mode-1 depression internal solitary wave
interactions with Gaussian ridges are examined through laboratory experiments.
A series of processes, such as shoaling, breaking, transmission and reflection, are captured
completely by measuring the velocity field in a large region. It is found that the maximum
interface descent (amax) during wave shoaling is an important parameter for diagnosing
the type of wave–ridge interaction and energy distribution. The wave breaking on the ridge
depends on the modified blockage parameter ζm, the ratio of the sum of the upper layer
depth and amax to the water depth at the top of the ridge. As ζm increases, the interaction
type transitions from no breaking to plunging and mixed plunging–collapsing breaking.
Within the scope of this experiment, the energy distribution can be characterized solely
by ζm. The transmission energy decreases monotonically with increasing ζm, and there
is a linear relationship between ζ 2

m and the reflection coefficient. The value of amax can
be determined from the basic initial parameters of the experiment. Based on the incident
wave parameters, the depth of the upper and lower layers, and the topographic parameters,
two new simple methods for predicting amax on the ridge are proposed.
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1. Introduction

Internal solitary waves (ISWs) are typical nonlinear waves that occur in the stratified
ocean, with a maximum amplitude located in the oceanic interior; these waves can
propagate over long distances after generation while maintaining their basic wave
characteristics (Grimshaw et al. 1998, 2010; Helfrich & Melville 2006; Alford et al. 2010;
Ramp et al. 2019). They are characterized by large amplitudes, strong velocities, strong
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shear and short periods, which can draw the thermocline downwards or upwards for tens
to hundreds of metres, resulting in surface velocities of 1–2 m s−1 (Pinkel 2000; Alford
et al. 2010; Farmer et al. 2011; Huang et al. 2016). Due to these characteristics, ISWs
have an important impact on the safety of underwater vehicles and marine structures
(Song et al. 2011; Wang et al. 2018, 2022). As ISWs shoal and break over the seabed
topography, they release considerable amounts of energy that can promote local turbulent
mixing and the resuspension of sediments and nutrients in the ocean (Sandstrom & Elliott
1984; Reeder, Ma & Yang 2011; Boegman & Stastna 2019). ISWs are also an effective
pathway for transferring energy from large-scale barotropic tides to small-scale turbulence,
and cumulatively this energy is an integral part of the oceanic energy budget (Bourgault
& Kelley 2003; Zhang et al. 2023).

The ISWs generated by barotropic tides over varying seabed topographies are common
in marginal seas worldwide (Jackson 2007). The onshore propagation of ISWs interacts
with the seabed topography and eventually dissipates on the continental shelf slope (Lamb
2014; Davis et al. 2020; Jones et al. 2020). In the process of wave shoaling, fission, polarity
conversion and other evolutionary processes will occur (Orr & Mignerey 2003; Ramp et al.
2022; Sinnett et al. 2022), as well as the breaking and mixing process caused by shear
instability, convection instability and benthic boundary layer instability (Moum et al. 2003;
Barad & Fringer 2010; Lien et al. 2014; Boegman & Stastna 2019; Xu & Stastna 2020;
Chang et al. 2021). All these processes promote the dissipation of ISWs and transform
their energy into microscale turbulence.

Due to the importance of ISW shoaling and breaking, how to characterize the breaking
of ISWs in terms of predetermined factors has become a hot topic. Several studies
have analysed the shoaling, breaking and energy distribution of ISWs on uniform slopes
(Helfrich 1992; Michallet & Ivey 1999; Boegman, Ivey & Imberger 2005; Bourgault
& Kelley 2007; Lamb & Nguyen 2009; Aghsaee, Boegman & Lamb 2010; Sutherland,
Barrett & Ivey 2013; Carr et al. 2019; Nakayama et al. 2019; Hartharn-Evans et al.
2021). Through laboratory experiments, Boegman et al. (2005) found that the breaking
mechanism of internal waves depends on the ratio of the topographic slope to the incident
wave slope. Referring to the breaking type of surface waves, they classified internal wave
breaking into spilling, plunging and collapsing, and introduced the internal Iribarren
number (Ir) to delineate different breaking types:

Ir = s√
sw

, (1.1)

where s is the topographic slope, sw = a/Lw is the wave slope, a is the incident wave
amplitude, and Lw is the wavelength. Sutherland et al. (2013) adjusted and expanded the
classification scheme of ISW breaking, which can be separated into no breaking, surging
breaking, collapsing breaking, plunging breaking and plunging–collapsing breaking.
By analysing previous experimental and numerical results, Nakayama et al. (2019)
defined a dimensionless parameter based on weakly nonlinear theory (KdV theory)
BISW = (s/sw) Re2

ISW , which depends on the wave slope, topographic slope and wave
Reynolds number (ReISW ≡ αah0/ν, where α is the coefficient of the nonlinear term
in the KdV equation, h0 is the harmonic mean of the water depth, and ν is the
kinematic viscosity). Plunging breaking occurs when BISW > 7 × 106, while collapsing
breaking occurs when BISW < 7 × 106. Hartharn-Evans et al. (2021) combined numerical
simulations and experiments to explore the influence of stratification on the shoaling and
breaking of ISWs, and found that surface stratification (density gradient throughout the
upper layer) can inhibit plunging, while a broad tanh profile can simultaneously inhibit
collapsing and plunging.
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Breaking and energy distribution of ISWs over a ridge

When an ISW breaks on a slope, part of the energy dissipates locally, and part is
reflected. Regarding the reflection coefficient on uniform slopes, the experimental results
of Helfrich (1992) and Michallet & Ivey (1999) showed that the ratio of reflected energy
generated by ISWs impinging on the slope to total energy depends on the wavelength
and topographic scale ratio. The numerical simulation of Bourgault & Kelley (2007)
showed that Michallet & Ivey (1999) underestimated the reflection coefficient due to
ignoring the friction effect, and proposed a parametrization scheme dependent on Ir,
namely R = 1 − e−Ir/Ir0 , where Ir0 = 0.78 ± 0.02 (95 % confidence intervals). Lamb &
Nguyen (2009) combined the available potential energy flux with the kinetic energy flux to
calculate the reflection coefficient, and found that compared to the approximate calculation
method of Bourgault & Kelley (2007), the correct estimation of available potential energy
flux could reduce the predicted reflection coefficient by a maximum of 0.1. Aghsaee et al.
(2010) believed that the calculation of the reflection coefficient at the toe of the slope
would ignore the energy dissipation caused by viscosity before incident wave breaking and
after reflection wave generation. The reflection coefficient based on the breaking point has
been introduced, and the coefficient Ir0 of the parametrized scheme of Bourgault & Kelley
(2007) was revised to 0.65.

The breaking location of ISWs on slopes can be predicted by the initial stratification
conditions and the incident wave parameters (Helfrich 1992; Vlasenko & Hutter 2002;
Aghsaee et al. 2010; Sutherland et al. 2013; Cavaliere et al. 2021). The experimental
results of Helfrich (1992) showed that breaking occurs when the non-dimensional wave
amplitude (a/(hb − hm), where hb is the water depth at the breaking point, and hm is
the depth of the undisturbed interface) exceeds 0.4. Vlasenko & Hutter (2002) proposed
an ISW breaking criterion that is dependent on the topographic slope (represented by
slope angle γ = arctan(s)), which was based on the selection of stratification conditions,
topography and wave parameters of the Andaman Sea and Sulu Sea:

a
hb − hm

≥ 0.8◦

γ
+ 0.4. (1.2)

For the prediction of the maximum interfacial descent (amax) at the breaking depth,
Sutherland et al. (2013) approximated the waveforms of internal waves before breaking
into a right triangle shape (especially for plunging–collapsing breaking). Assuming that
the area of the right triangle (the volume per unit width of the upper layer fluid below
the initial depth of the interface) is equal to the approximate area of the incident wave
(SISW = aLw), a prediction formula for amax has been established:

amax =
√

4saLsw, (1.3)

where Lsw is half of the width at half-amplitude. Based on the analysis method of
Sutherland et al. (2013), Cavaliere et al. (2021) modified the area of the initial wave by
using extended KdV and Miyata–Choi–Camassa theories to obtain the prediction formula
of the breaking location and depth.

For the evolution of ISWs over submerged obstacles (Wessels & Hutter 1996; Sveen
et al. 2002; Chen 2007, 2009; Sutherland, Keating & Shrivastava 2015), the blockage
parameter (ζ ) was identified as another important parameter:

ζ = a + h1

h1 + h2 − Hr
, (1.4)

where h1 and h2 represent the upper and lower water depths, respectively, and Hr
represents the height of the ridge. The laboratory experiment of Sveen et al. (2002) studied
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the interaction of ISWs with triangular ridges, classifying the degree of interaction (as
weak, moderate or strong) according to the blockage parameter and the dimensionless
velocity over the ridge crest. Strong interaction occurs when ζ > 0.6, and the breaking
of ISWs results in intense turbulent mixing. Chen (2009) also described the degree of
interaction in terms of wave energy based on the blockage parameter, and developed a
statistical method to classify the types of interaction (Chen 2010). For mode-2 ISWs under
symmetric stratification (h1 = h2), a similar blockage parameter (a/(h2 − ht − Hr), where
ht is the pycnocline half-width) is used to classify the wave–ridge interaction strength,
with a parameter exceeding 0.5 indicating wave breaking conditions (Deepwell et al. 2017,
2019). For the evolution and breaking of ISWs over a ridge, Hsieh et al. (2015) and Zhu
et al. (2016) analysed the variation in wave parameters and energy through numerical
simulations, and Lin et al. (2021) analysed the breaking structure and dissipation through
laboratory experiments. In the other case, as the ISW passes over a small-amplitude, broad
ridge, instability occurs near the crest of the topography in the form of a roll-up of vorticity,
whereas the dissipation of wave energy is minimal (Harnanan, Soontiens & Stastna 2015;
Harnanan, Stastna & Soontiens 2017).

The energy distribution of ISWs on the ridge exhibits both reflective and transmissive
characteristics, which distinguishes it from the slope intersecting the pycnocline in the
two-dimensional (2-D) case. Chen (2009) used the blockage parameter to characterize
the transmitted and reflected energy. Zhu et al. (2016) described the varying trends of
energy dissipation, transmission and reflection coefficients through the empirical formula
of multiplying the blockage parameter and nonlinear parameter. Sutherland et al. (2015)
non-dimensionalized the incident amplitude through the critical amplitude (dependent on
topography and initial stratification), and provided a parametrized scheme for calculating
the reflection and transmission coefficients.

The breaking and energy distribution of ISWs over a ridge have been investigated in
previous studies based on laboratory experiments and numerical simulations. However,
when selecting the interaction degree factor, the influence of the ridge height was mainly
considered without considering the ridge slope simultaneously. At the field scale, the
fractal structure of the seafloor gives rise to the presence of multiscale superposition of
the topography. For example, gentler shelf slope areas have average slope about 0.03 to
0.07 (Cacchione, Pratson & Ogston 2002), which is much larger than the wavelength
scale of ISWs. In the case of steeper slopes, the characteristic width of the bumpy
topography, underwater banks and seamounts are comparable to the wavelengths of
typical large-amplitude ISWs (Smith 1988; Wessel 2001; Vlasenko 2005; Xie et al.
2019). The variable horizontal and vertical scales of the seafloor result in a broad range
of dimensionless parameters that control the type of interaction between the ISW and
topography (table 1). Consequently, it is imperative to examine the combined effects
of variations in topographic height and slope. This paper focuses on the case where
the horizontal scale of the topography is comparable to the ISW wavelength, and the
topographic height is comparable to the total water depth, a condition under which the
topography has the most noticeable effect on the ISW (Sveen et al. 2002; Sutherland et al.
2015).

Regarding laboratory experiments, the research still lacks a complete description
of the wave–ridge interaction. In this paper, a series of processes, such as shoaling,
breaking, transmission and reflection of the interaction between the ISW and the Gaussian
topography, are captured completely by measuring the velocity field in a large region.
The laboratory experiments were used to systematically analyse the breaking types and
dynamic processes of the wave–ridge interaction to study the energy distribution, the

1000 A79-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

69
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.692


Breaking and energy distribution of ISWs over a ridge

Range

Dimensionless parameter This experiment Laboratory scale Field scale

Amplitude (a/h1) 0.48–2.36 0.2–2.1 0.1–3.0
Blockage parameter (ζ ) 0.32–1.23 0.1–1.4 0.33–1.75
Iribarren number (Ir) 0.50–2.20 0.2–2.8 O(10−3)–2.8
Wavelength/topographic length (Lw/Ls) 0.50–1.73 0.08–∞ O(10−2)–O(100)

Table 1. The dimensionless parameter ranges in this experiment and a comparison between the predominant
ranges of dimensionless parameters in laboratory scale and field scale. The parameter ranges in laboratory
scale and field scale refer to figures and tables from previous studies (Michallet & Ivey 1999; Sveen et al. 2002;
Boegman et al. 2005; Vlasenko 2005; Chen 2009; Aghsaee et al. 2010; Alford et al. 2010; Bourgault, Janes
& Galbraith 2011; Sutherland et al. 2013, 2015; Xie, He & Cai 2019; Davis et al. 2020; Ghassemi, Zahedi &
Boegman 2021; Hartharn-Evans et al. 2021).

spatiotemporal structure of the turbulence, and the details of the breaking process.
A dimensionless parameter that accounts for both ridge height and slope is introduced to
characterize the degree of interaction. The study of the distribution trends of the breaking
type, breaking position and breaking depth is helpful in analysing the mixing process,
sediment resuspension process, and transport of material caused by internal waves. It can
also be used to assist in the exploration of the energy distribution, which is useful for
analysing the effect of internal waves on the oceanic energy budget.

The paper is structured as follows. The experimental set-up, definition and calculation
of the basic parameters are introduced in § 2. In § 3, the basic characteristics and evolution
of the ISW over the ridge are evaluated, and the breaking type and breaking time scale are
analysed. In § 4, a method for predicting the maximum interface descent that can reflect
the shoaling effect of internal waves is given. In addition, a prediction scheme for the type
of breaking and energy distribution based on the maximum interface descent is also given.
Finally, the results are summarized in § 5.

2. Experimental methods

2.1. Experimental set-up
Mode-1 depression ISWs were generated in an approximately two-layer stratified fluid
using the standard lock-release method (Kao, Pan & Renouard 1985). The flume was
6 m long, 0.5 m high and 0.24 m wide (figure 1). The left-hand side of the flume was a
wave-generating region. Before entering the observation region, the fluid that was released
by the lock-release method had evolution distance up to 2 m, which made it adaptable
to the characteristics inherent to an ISW. The centre of the flume was an experimental
observation region with a 2-D Gaussian ridge, and the right-hand side was placed with a
uniform slope for wave absorption.

The Gaussian ridge has constant height Hr = 16 cm and a variable standard deviation
of the Gaussian function (σ ) to account for changes in the topographic length and slope.
Following the definition of Hult, Troy & Koseff (2011), the topographic characteristic
slope was defined as s = Hr/2σ . The characteristic length of the ridge was defined as
Ls = 2σ . Three topographic characteristic slopes were designed in the experiment, 0.20,
0.33 and 0.50, which are comparable to bathymetric slopes 0.07–0.5, where enhanced
diapycnal diffusivities have been observed (Kunze & Sanford 1996; Toole et al. 1997).
The densities of the two-layer stratified fluid remained constant, with density 1020 kg m−3

1000 A79-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

69
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.692


Y. Guo, X. Chen, Q. Li and J. Meng

Conductivity probe
Observation region

Wave

absorber

CCD

2.6 m

0.2 m

6 m

Gate

ρ1

ρ1

ρ2

hc

Hr

Ls

h1

h2

1020
–0.10

–0.08

–0.06

–0.04

–0.02

0

1030 1040

ρ (kg m–3)

Z 
(m

)

(a) (b)

exp

tanh

Figure 1. (a) Schematic diagram of the experimental set-up (not to scale). The fluids in the upper and lower
layers are shown in light and dark blue, respectively. The green area and the red dotted box represent the particle
image velocimetry observation regions for the large-region experiments and high-resolution experiments,
respectively. The left-hand side is a wave-generating region by the standard lock-release method, and hc is
the collapse height. Here, Hr and Ls represent the height and characteristic length of the Gaussian ridge,
respectively. The right-hand side is placed with a uniform slope for wave absorption (the slope is 0.33, with
no porosity). (b) The measured density profile before the H2S1 run. The measured values are represented by
circles, while the fitted results are represented by black lines.

in the upper layer (ρ1) and 1040 kg m−3 in the lower layer (ρ2). The depth of the upper
layer (h1) remained constant at 4 cm in all cases, and the lower layer (h2) varied from 20
to 32 cm. The background stratification was measured with a conductivity probe before
each experiment. The thickness of the interface 2ht was obtained by fitting a hyperbolic
tangent function to the measured profile (ρ̄(z) = ρ0 − (�ρ/2) tanh((z − z0)/ht), where
ρ0 = 1030 kg m−3 is the reference density, �ρ = ρ2 − ρ1 = 20 kg m−3, z0 = h1, and ht is
obtained by fitting). In this experiment, ht ranged from 0.007 to 0.012 m. The width of the
lock region was 20 cm, and the collapse height ranged from 4 to 24 cm (hc), depending on
the depth of the lower layer and the stratification conditions. The experimental conditions
were a combination of different stratification conditions, topographic slopes and collapse
heights, with a total of 60 experimental groups (table 2).

Particle image velocimetry (PIV) was used to measure the velocity field of the
interaction between the ISWs and the Gaussian ridge. For large-region measurement
experiments, three lasers (power 3 W, wavelength 532 nm) and three CCD cameras (Basler
acA1920-155 µm) formed an experimental measuring range of up to 2.6 m (larger than the
longest topography in this experiment), which could fully capture the incidence, shoaling,
breaking, reflection and transmission processes of the ISWs. Images were taken at 50 Hz
using 1920 × 1200 pixels for each CCD camera, to give spatial resolution 0.6 mm.

We used PIVlab (Thielicke 2014; Thielicke & Stamhuis 2014; Thielicke & Sonntag
2021), a MATLAB program package, to analyse the raw images. For cross-correlation
algorithms, the multi-pass starting from the interrogation area 64 × 64 pixels, ending with
a smaller interrogation area of 24 × 24 pixels with a 50 % overlap, resulted in spatial
resolution of the flow field at 7.2 mm (table 3). Consult Thielicke (2014) to estimate
the magnitude of errors for the PIV analysis (detailed information is provided in § 1 of
the supplementary material available at https://doi.org/10.1017/jfm.2024.692). The relative
errors of the flow velocity are 0.8 % and 3.8 % for bias error and random error, respectively.
According to Dalziel et al. (2007), the particle displacement caused by the index of
refraction is a maximum of 1.1 mm (less than 2 pixels), based on the maximum buoyancy
frequency in this experiment (N2 = 11 s−2).
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Breaking and energy distribution of ISWs over a ridge

Run H (m) s hc (cm) a/h1 Interaction type

H1S1 0.24 0.20 4, 8, 12, 16 0.48–1.62 F, PC, PC, PC
H1S2 0.24 0.33 4, 8, 12, 16 0.58–1.63 PC, PC, PC, PC
H1S3 0.24 0.50 4, 8, 12, 16∗ 0.52–1.61 PC, PC, PC, PC
H2S1 0.28 0.20 4, 8, 12, 16, 20 0.59–1.94 N, F, P, PC, PC
H2S2 0.28 0.33 4, 8, 12, 16, 20 0.54–1.93 N, T, P, PC, PC
H2S3 0.28 0.50 4, 8, 12, 16, 20 0.61–1.88 N, T, PC, PC, PC
H3S1 0.32 0.20 4, 8, 12, 16, 20 0.59–2.06 N, N, F, P, P
H3S2 0.32 0.33 4, 8, 12, 16, 20∗ 0.62–2.05 N, N, T, P, P
H3S3 0.32 0.50 4, 8, 12, 16, 20 0.65–2.01 N, N, T, P, P
H4S1 0.36 0.20 4, 8, 12, 16, 20, 24 0.61–2.29 N, N, N, N, T, P
H4S2 0.36 0.33 4, 8, 12, 16, 20, 24 0.65–2.30 N, N, N, T, P, P
H4S3 0.36 0.50 4, 8, 12, 16, 20, 24 0.64–2.36 N, N, N, T, P, P

Table 2. Experimental parameters, where H is the total water depth, s is the topographic slope, hc is the
collapse height, a is the incident wave amplitude, and h1 is the depth of the upper layer. The letters in
the last column indicate the interaction type (corresponding to hc): N for no breaking, F for fission, T for
transition P for plunging, PC for plunging–collapsing. The asterisks on hc values indicate two additional cases
of high-resolution experiments.

Frame Spatial Minimum Velocity field
rate resolution interrogation resolution Random

Experiment Pixels (Hz) (mm) area (pixels) (mm) error

Large region 1920 × 1200 50 0.6 24 × 24 7.2 3.8 %
High resolution 4096 × 3072 128 0.1 20 × 20 1.1 0.9 %

Table 3. Parameters of PIV analysis.

To assess the breaking and energy dissipation of ISWs on a ridge with greater precision,
two additional cases of high-resolution experiments were conducted (as indicated by the
asterisks in table 2, the experimental set-up was the same as that for the large-region
experiment). However, the shooting area is limited to the upstream slope, as indicated
by the red box in figure 1. Images were taken at 128 Hz using a 4096 × 3072 pixels
CCD camera, to give spatial resolution 0.1 mm. The minimum interrogation area is
20 × 20 pixels with a 50 % overlap, resulting in the spatial resolution of the flow field
being 1.1 mm. The relative errors of the flow velocity are 0.2 % and 0.9 % for bias error
and random error, respectively (table 3).

2.2. Calculation method
The ISW stable propagation on a flat bottom prior to shoaling allowed identification of
the waveform and calculation of basic physical quantities such as amplitude, wavelength
and wave speed by schlieren (Wallace & Wilkinson 1988; Dalziel et al. 2007; Raffel 2015;
Settles & Hargather 2017). The ISW propagation experiment without ridges was carried
out to obtain wave parameters using background stripe schlieren (§ 2 of the supplementary
material provides details on schlieren). The amplitude of the wave was determined by the
maximum vertical displacement of the waveform, and the wavelength was determined by
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the ratio of the integral of the wave profile to the amplitude:

Lw = 1
a

∫ +∞

−∞
η(x) dx. (2.1)

The wave speed (Cp) was determined by the distance of wave propagation within a given
time. The incident amplitude, internal wave phase speed and characteristic wavelength
were non-dimensionalized by the upper layer depth, linear phase speed (C0) and harmonic
mean of the water depth (h0 = h1h2/(h1 + h2)), respectively.

Dimensionless parameters related to this experiment were determined by the wave
parameters and the topography parameters, as shown in table 1. Dimensionless amplitudes
include both weak and strong nonlinearities. The blockage parameter ranges from the weak
interaction of waves that are almost unaffected to the strong interaction with wave breaking
and mixing (Sveen et al. 2002; Chen 2009). The character of ISW breaking can be covered
by Ir (Aghsaee et al. 2010; Sutherland et al. 2013). The experiments include scales of
topographic length larger and smaller than the characteristic wavelength.

Kinetic energy is calculated as

Ek(x, z, t) = 1
2ρ0[u(x, z, t)2 + w(x, z, t)2], (2.2)

where ρ0 is the reference density, and u and w are the horizontal velocity and vertical
velocity retrieved from the PIV measurement, respectively.

The energy density is calculated by the vertical integral of the kinetic energy:

Ekz(x, t) =
∫ H

0
Ek(x, z, t) dz, (2.3)

where H = (h1 + h2) is the total water depth.
Following the method of Michallet & Ivey (1999), the kinetic and available potential

energies are approximated for ISWs with small wave amplitudes (Bogucki & Garrett
1993); thus the total energy can be calculated as

E = 2Cp

∫ t2

t1
Ekz(X, t) dt. (2.4)

The truncation of t1 and t2 is 1 % of the maximum vertical integral of the energy, and
X is a specific horizontal position. To avoid the influence of shoaling and breaking on the
energy calculation, the incident wave energy was calculated before the interaction between
the wave and ridge, and the reflected and transmitted wave energies were calculated after
the ISW stabilized (Michallet & Ivey 1999). The calculated position of the incident wave
and reflected wave is X = −1.0 m, and the transmitted wave is X = 1.0 m (we define the
horizontal position of the top of the ridge as X = 0 m). This distance is half the length
of the longest topography (s = 0.2, σ = 0.4, X = ±2.5σ ), where the transmitted and
reflected waves have developed into stable waveforms.

Since the 2-D velocity field can be obtained by the PIV system, the direct method is used
to calculate the spatial distribution of the turbulent kinetic energy (TKE) dissipation rate.
Based on the isotropic assumption, it can be calculated by the 2-D velocity field (Doron
et al. 2001):

ε = 4ν

[(
∂u′

∂x

)2

+
(

∂w′

∂z

)2

+
(

∂u′

∂x
∂w′

∂z

)
+ 3

4

(
∂u′

∂z
+ ∂w′

∂x

)2
]

, (2.5)

where u′ and w′ are the fluctuation velocities (the instantaneous velocity measured by PIV
is used in this experiment). The kinematic viscosity coefficient is ν = 1.0 × 10−6 m2 s−1
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(at laboratory temperature 20 ◦C). According to Cowen & Monismith (1997) and Liao
et al. (2009), 99 % of the dissipation will be included with finite differencing if the PIV
grid size is smaller than 5.5l0 (where l0 = (ν3/ε)

1/4 is the Kolmogorov scale). Therefore,
the high-resolution experiments are sufficient to estimate the TKE dissipation rate less than
8 × 10−4 m2 s−3. However, numerous factors can lead to anisotropic turbulence in the case
of breaking interfacial waves. The estimates of dissipation obtained using various methods
(dissipation from 2-D PIV, stereo-PIV, acoustic Doppler velocimeter data, and log-law
data), parts of which rely on assumptions of isotropy, provide the same order-of-magnitude
values (Zahedi 2021).

3. Results

3.1. Evolution process
In this subsection, a series of dynamic processes, such as shoaling, breaking, transmission
and reflection, as well as the evolution of wave energy, are presented through several sets
of typical experiments.

The superposition of the vorticity and flow fields is presented in figure 2 to provide a
detailed view of the structure of the breaking process. As shown in figure 2, the process of
interaction of plunging–collapsing breaking can be divided into the following four stages
(sketches of each stage are presented in Appendix A).

(1) In figure 2(a), the wave trough propagates to the toe of the slope, at which time the
bulk of the wave starts to contact the topography. A vorticity structure forms at the
interface due to the mode-1 velocity field of the depressed ISW.

(2) Due to topographic modulation, the propagation speed of the trailing edge of the
wave is greater than that of the wave trough, making the trailing edge steeper.
The maximum horizontal velocity of the upper layer moves to the trailing edge
of the wave. The waveform on the left-hand side of the ridge is parallel to the
topography, the downslope velocity of the lower layer increases, and part of the
wave is transmitted through the top of the ridge (figure 2b).

(3) The ISW becomes unstable, and the velocity of the water particle on the trailing
edge of the wave exceeds the wave speed (Vlasenko & Hutter 2002; Lien et al.
2014), resulting in convective instability and flow separation at the benthic boundary
layers in the adverse pressure gradient region (red arrow in figure 2c). The two types
of instability processes generate distinct positive vorticities above and below the
pycnocline.

(4) In figures 2(d,e), the ISW breaks, and the vortices resulting from the initial
instability split into smaller scales, generating strong turbulent mixing on the
ridge. Simultaneously, generated reflected waves (figure 2e, positive vorticity, x =
−0.6 m) and transmitted waves (figure 2d, negative vorticity, x = 0.7 m) have left
the topography. The transmitted wave is followed by a significant dispersive wave
tail, whereas the reflected wave is not. In the weak interaction with a small blockage
parameter, ISWs do not break, only the waveform is modulated by the topography,
and no reflected wave generation occurs.

For ISWs breaking, not only convective instability and bottom boundary instability
are present, but also Kelvin–Helmholtz billows generated by shear instability can be
identified via high-resolution experiments (figure 3). During the upwelling of the fluid
mass induced by plunging in plunging–collapsing breaking, strong flow still exists in the
lower layer. Consequently, billows induced by strong shear are continuously generated
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Figure 2. Evolution of the interaction between ISWs and topography. The image is a superposition of the
vorticity and flow fields for values of t (a) 0 s, (b) 3.0 s, (c) 5.0 s, (d) 11.0 s, (e) 11.0 s, ( f ) 28.2 s. The
experimental conditions are as follows: the water depth is H = 0.28 m, the slope is s = 0.50, and the incident
wave amplitude is a = 0.075 m. In (a) and (b), the yellow dots represent the waveforms identified by the vertical
position of the extremes of the velocity shear in each column, and the red lines represent the composite Froude
number. The red dashed lines in (b) and (e) represent the depth of the incident amplitude. The red arrow in (c)
indicates the adverse pressure gradient region.
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Figure 3. The evolution vorticity field of plunging–collapsing breaking in high-resolution experiments,
H = 0.24 m, s = 0.50 and a = 0.064 m, for (a) t = 13.7 s, and (b) t = 14.9 s. Red arrows indicate
Kelvin–Helmholtz billows.

initially as 2-D vortices and subsequently split into three-dimensional (3-D) states (red
arrows in figure 3). In this instance, the billow was generated at a location different
from that in previous observations, with the billow appearing only at the trailing edge
of the wave (Moum et al. 2003; Chang et al. 2021). For ISWs, the breaking threshold is
Lx/2Lw = 0.86, where Lx is the horizontal length of the region in which the Richardson
number is less than 0.25 (Fructus et al. 2009; Barad & Fringer 2010; Carr, King &
Dritschel 2011). The numerical simulation of Xu, Stastna & Deepwell (2019) indicated that
when Lx/2Lw ≈ 0.88, the shear instability occurs spontaneously, without any externally
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Figure 4. Time series showing the vertical integral of kinetic energy along the length of the observation region.
(a) The water depth is H = 0.24 m, the slope is s = 0.20, and the incident wave amplitude is a = 0.019 m.
(b) The water depth is H = 0.28 m, the slope is s = 0.50, and the incident wave amplitude is a = 0.075 m.
The black dashed lines represent the maximum value of the energy density of different wave rays. The white
dashed lines correspond to the five moments in figure 2. The square and triangle in (b) correspond to the start
times (horizontal coordinates indicate the breaking position) of plunging breaking and collapsing breaking,
respectively.

imposed physical noise. In the absence of direct density measurements in this experiment,
visual vortex development was relied upon for this part of the analysis of the process of
shear instability and Kelvin–Helmholtz billows. According to the definition of Carr et al.
(2017), the dimensionless billow wavelength in figure 3(b) is λb/2ht = 2.0 (ht = 0.8 cm),
and the dimensionless vertical extent of the billow at x = −0.09 m is Lb/2ht = 0.73. Both
of these scales are significantly smaller than the billow at the trailing edge of the wave
as shown in Carr et al. (2017, tables 2 and 3). This may be due to the wavelength of the
fastest growing wave of disturbance being determined by velocity shear and stratification
(Xu 2015).

Figure 4 shows the evolution of ISWs over the ridge by using the vertical integral of the
kinetic energy (2.3). In figure 4(a), with a small incident amplitude, the ISW will not break
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when it passes through the topography, but its propagation speed is clearly modulated by
the topography. The wave speed slows at the top of the ridge, and gradually returns to a
constant speed after passing over the ridge. As the lower water depth at the ridge becomes
shallower, the shear at the interface is enhanced. The energy is decreased in the laminar
flow by the viscosity, as there are no instability processes during the evolution. This leads
to a significant decrease in the energy density after the wave passes over the ridge. In
this case, following the usual definition for stratified shear flows, a Reynolds number is
introduced as Re = �u ht/2ν = 88, where �u is the velocity jump across the pycnocline
when the wave trough passes over the top of the ridge. For Re ≤ 100, viscosity reduces the
growth rate and damps the high wavenumber perturbations (Hogg & Ivey 2003; Fructus
et al. 2009).

The experimental conditions in figure 4(b) are the same as in figure 2. The white dashed
lines in figure 4(b) correspond to the five moments in figure 2, and the black dashed
lines represent the positions of the maximum energy density of different wave rays. The
ISW will be broken when interacting strongly with the ridge, generating transmitted and
reflected waves, accompanied by mode-2 ISW generation. The wave speed was calculated
by the slope of the maximum energy density curve, and the incident wave speed was
0.104 m s−1, the transmitted wave speed was 0.093 m s−1, and the reflected wave speed
was 0.091 m s−1. The propagation speed of the mode-2 wave measured in the experiment
was 0.0283 m s−1. The three-layer model of Yang et al. (2010) was used to evaluate the
propagation speed of mode-2 solitary waves. Taking the middle layer thickness as 2.4 cm
(2ht), the theoretical calculation result was 0.0299 m s−1, which was consistent with the
experimental result. The energy of this mode-2 ISW (calculated by multiplying the kinetic
energy integral for x = 0.63–0.73 m in figure 2( f ) by 2) is 0.42 % of the incident wave
energy.

3.2. Breaking types
The ISW shoaling on the slope has two typical characteristics: (1) the trailing edge of
the wave becomes steeper; (2) the lower layer fluid flows downwards and increases in
velocity under the compression of the wave and topography (figure 2b) (La Forgia, Adduce
& Falcini 2018). As shown in figures 2(a–c), the cumulative effect of nonlinearity in a
shoaling ISW leads to a steepening and overturning of the rear wave face (Vlasenko &
Hutter 2002). Because the ridge does not coincide with the pycnocline, the varying rate
of the stratification nonlinear coefficient is determined by a combination of ridge slope
and height. Fluid can be replenished from the other side of the ridge during shoaling (the
height of the ridge can adjust the width of the lower layer channel), making the velocity of
the lower fluid layer much higher than that of shoaling on the uniform slopes. Therefore,
the ridge height and slope are two important parameters in controlling the breaking type.

The shoaling of ISWs on uniform slopes is regulated by the wave slope and the
topographic slope, resulting in plunging breaking, collapsing breaking, surging breaking,
plunging–collapsing breaking and fission (Boegman et al. 2005; Aghsaee et al. 2010;
Sutherland et al. 2013; Nakayama et al. 2019). Given that breaking on uniform slopes
has been defined clearly, the type of breaking on ridges is classified in terms of the
dynamic processes of shoaling on uniform slopes. However, different from the uniform
slope, the wave–ridge interaction not only has shoaling breaking and reflection, but also
has a transmission process when passing through the ridge (Sveen et al. 2002; Chen
2009; Sutherland et al. 2015). The interaction types were classified into the following
five categories by analysing the experimental data (figure 5, plus sketches in § 3 of the
supplementary material).
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Figure 5. Different types of ISWs interact with ridges: (a,b) fission, (c,d) transition, (e, f ) plunging breaking,
and (g,h) plunging–collapsing breaking. The raw PIV images are shown in (a,c,e,g), with corresponding
superimposed vorticity and flow fields in (b,d, f,h). Experimental conditions: (a) h1 = 0.04 m, h2 = 0.24 m,
s = 0.20, a = 0.040 m, ζ = 0.65, Ir = 0.65; (c) h1 = 0.04 m, h2 = 0.28 m, s = 0.33, a = 0.055 m, ζ = 0.58,
Ir = 0.95; (e) h1 = 0.04 m, h2 = 0.32 m, s = 0.33, a = 0.092 m, ζ = 0.63, Ir = 0.82; (g) h1 = 0.04 m,
h2 = 0.24 m, s = 0.50, a = 0.075 m, ζ = 0.91, Ir = 1.30.

(1) Weak interaction. When ζ < 0.5, the waveform is almost unaffected by the ridge or
is slightly deformed.

(2) Fission. This occurs when both the slope and the incident amplitude are smaller.
Significant fluctuations at the top of the ridge (figure 5a) cause alternating positive
and negative vorticity at the interface (figure 5b); meanwhile, the bulk of the wave
energy is transmitted past the ridge.

(3) Transition. There is a transition state between ISW breaking and no breaking. During
the shoaling process, the trailing edge of the wave becomes steeper and almost
perpendicular to the horizontal direction. However, simultaneously, the tail of the
wave is located close to the top of the ridge (figure 5c), and the cumulative effect of
nonlinearity no longer continues, so the trailing edge of the wave does not reach an
overturned state when it passes over the ridge topography. In this state, if the incident
amplitude or the topographic slope is increased, breaking will occur. This process
does not occur in the interaction of ISWs with uniform slopes, where the continued
cumulative effect of nonlinearity will cause convective instability (Boegman et al.
2005; Sutherland et al. 2013).

(4) Plunging. The rear face of the wave overturns, resulting in convective instability
in the horizontal direction, leading to plunging breaking. This breaking process is
dominated by the dynamics on the pycnocline and is independent of the benthic
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boundary dynamics. The vortex at the top of the ridge represents the flow separation
of the lower layer fluid around the topography without encountering the pycnocline.

(5) Plunging–collapsing. The rear face of the wave overturns, and the separation bubble
is generated on the ridge, resulting in plunging–collapsing breaking, similar to the
same breaking type on a uniform slope (Aghsaee et al. 2010; Sutherland et al.
2013) and the strong interaction of the mode-2 ISW with a narrow ridge (Deepwell
et al. 2017). In this condition, ζ > 0.75, and the maximum interfacial vertical
displacement of the ISW increases significantly. The generated vortices in the
benthic boundary layer and the rear face of the wave cause global breaking and
mixing on the left-hand side of the ridge.

Both plunging and plunging–collapsing breaking result in the dissipation of significant
wave energy over the ridge. The analysis of the high-resolution flow field data to show
the distribution of the TKE dissipation rate characteristics of wave breaking has greater
significance. In figures 6(e–h), for plunging breaking, the high-value region of dissipation
is generated primarily by velocity shear and wave breaking at the pycnocline in the
interior, as well as by instability processes at the benthic boundary layer. A straightforward
spatial delineation of the high-value dissipative areas can be identified within these two
regions. Figures 6(e–g) correspond to the three peaks of the space integration of the
ε time series in figure 6(h), respectively (represented by triangles). The initial peak is
indicative of the generation of vortices at the bottom boundary, with dissipation originating
primarily from this region, which accounts for 67 % of the space. By the second peak,
the vortices generated at the bottom boundary broke into smaller vortex structures due
to the instability in 3-D effects. The convection-induced plunging breaking, on the other
hand, is sufficiently developed so that the dissipation percentage near the pycnocline is
larger than that at the bottom boundary. (Due to the limitation of the observation region,
some of the processes are already out of the field of view, which will underestimate
the dissipation percentage near the pycnocline.) The third peak represents the maximum
moment of dissipation for plunging breaking. Initially generated 2-D vortices are fully
transformed into complex 3-D structures, with the dissipation percentage induced by the
bottom boundary being 18 % greater than that near the pycnocline upstream of the ridge.
In general, the dissipation percentage of the interior is lower than that of the bottom
boundary during plunging breaking. This finding is similar to the results of Arthur &
Fringer (2014), who found that the ratio of dissipation in the interior and bottom boundary
is approximately 1 : 2 for the ISW breaking on a uniform slope.

For plunging–collapsing breaking, the dissipation at the pycnocline and the bottom
boundary are superimposed on each other due to the ISW directly impinging upon the
ridge. The high-value region is mainly distributed upstream of the ridge. Figures 6(a–c)
correspond to the three typical moments of the space integration of ε in figure 6(d),
respectively. In figure 6(a), the dissipation is attributed primarily to vortices generated by
collapsing breaking (purple dashed rectangle) and enhanced shear (blue dashed rectangle).
Subsequently, in figure 6(b), the dissipation due to collapsing breaking decreases, while
the dissipation due to plunging breaking increases rapidly, resulting in a nearly one-fold
increase in the total dissipation rate within 1.7 s (figure 6(d), 10.5–12.2 s). After the
peak, the upwelling of the fluid mass induced by plunging (x = −0.2 to −0.1) maintains
dissipation at a high value (figure 6c). The rate of increase in the dissipation rate of
plunging–collapsing breaking is much greater than that of plunging breaking because
the dissipation in plunging–collapsing breaking is caused by the sudden release of
available potential energy accumulated upstream (figures 6a,b), whereas the dissipation in
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Figure 6. The evolution of the TKE dissipation rate of (a–d) plunging–collapsing breaking, H = 0.24 m, s =
0.50, a = 0.064 m, and (e–h) plunging breaking, H = 0.32 m, s = 0.33, a = 0.082 m, for values of t (a) 10.5 s,
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rate, which is dimensionless by the mean dissipation at the pycnocline of the wave trough before ISW breaking
(ε0 = 1.4 × 10−4 m2 s3 in plunging–collapsing breaking, and ε0 = 1.2 × 10−4 m2 s3 in plunging breaking).
(d,h) The black line is the time series of the spatial integration of the TKE dissipation rate, and the three
triangles correspond to the three moments in (a–c,e–g). The purple and blue lines correspond to the time series
of the spatial integration of TKE dissipation rate points in the matching coloured dashed boxes in (a) and (e),
respectively. The box in (a) is fixed in time, while that in (e) moves with the flow.
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No breaking
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Figure 7. Types of wave–ridge interactions in relation to ζ and the maximum Froude number. The two
horizontal dashed lines correspond to Fr2

max = 0.40 and Fr2
max = 0.75. The vertical dashed line corresponds

to ζ = 0.75. Crosses indicate no breaking, diamonds indicate fission, hollow circles indicate transition state,
squares indicate plunging breaking, and triangles indicate plunging–collapsing breaking.

plunging breaking is attributed mainly to relatively slow overturning and bottom boundary
instability.

3.3. Breaking criterion
The strength and breaking type of the wave–ridge interaction depends on the topography
and wave parameters. Different interactions and breaking types are accompanied by
different turbulent mixing and energy dissipation. In the experiment, the dimensionless
parameters controlling ISW breaking were varied by adjusting the topographic slope, the
stratification condition and the internal wave amplitude, totaling 60 sets of experimental
data. This subsection considers the effect of both ridge height (introducing the blockage
parameter) and the variation in the flow field during wave shoaling (introducing the Froude
number) on ISW breaking. The effects of considering both ridge height and slope will be
discussed in § 4.

Figure 7 considers the blockage parameter. When ζ < 0.5, the ISW is almost unaffected
by the ridge, and no breaking occurs. When the blockage parameter is sufficiently
large (ζ > 0.75), only plunging–collapsing breaking occurs on the ridge. Four different
interaction types may occur within the range 0.5 < ζ < 0.75.

Convective instability appears in both plunging breaking and plunging–collapsing
breaking (figures 5f,h), which resembles field observations as shown in Lien et al. (2014,
their figure 3) and Chang et al. (2021, their figure 2), and previous numerical simulations
in the shoaling of internal waves (Lamb 2002, 2003; Lamb & Farmer 2011; Rivera-Rosario
et al. 2020, 2022). The convection in this experiment is generally stronger than the field
observations because the topographic slope of the ocean is milder and the internal waves
have sufficient time to adjust waveforms. In field observations, convective breaking is
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often examined by the along-wave current velocity exceeding the wave speed. Laboratory
measurements provide the spatiotemporal structure of the velocity, and the character of
the flow regimes of wave shoaling can be characterized by the composite Froude number
(Maderich et al. 2010):

Fr2 = U2
1

g′(h1 − η)
+ U2

2
g′(h2 + η)

, (3.1)

where U1 and U2 are the average horizontal velocities in the upper and lower layers,
respectively, and g′ is the reduced gravity. The maximum Froude number (Frmax) increases
significantly during the wave–ridge interaction (figures 2a,b), providing a clear distinction
between the different interaction types (figure 7). In the case of no breaking, Fr2

max <

0.40. For fission and transition, 0.40 < Fr2
max < 0.75, ζ < 0.75. For plunging breaking,

Fr2
max > 0.75. Plunging–collapsing breaking occurs for ζ > 0.75 and Fr2

max > 0.40.

3.4. Breaking time scale
Two kinds of dynamic processes lead to the breaking of the ISW interaction with the
ridge: onshore overturning of the trailing edge (plunging breaking), and flow separation
on the topography (collapsing breaking). To evaluate the breaking process, the trough of
the wave reaching the toe of the slope (X = −Ls) was taken as the starting point of time,
and two types of time scales were calculated. The time needed for plunging breaking (Tp)
is governed by the time when positive vorticity appears in the wave tail. The time needed
for collapsing breaking (Tc) is governed by the time when the separated bubble contacts
the pycnocline, leading to instability (Aghsaee et al. 2010).

Figure 8(a) shows the time scale of plunging breaking, which is dimensionless through
the time (Ls/Cp) of the internal wave propagating over the topographic scale (where Ls
is the horizontal distance from the toe to the top of the ridge) without the topography.
Compared to the time of the internal wave passing through the topographic scale, the
larger the blockage parameter or the smaller the Iribarren number, the earlier the trailing
edge overturning leads to breaking. Figure 8(b) shows the ratio of plunging breaking and
collapsing breaking time scales (Tp/Tc), revealing that the larger ζ and Ir, the earlier
collapsing breaking occurs. The experimental results show that most collapsing breaking
occurs earlier than plunging breaking. If plunging breaking occurs too early, then the
maximum interfacial descent will dampen and be located far from the ridge, which is
not sufficient to cause collapsing breaking. In figure 8, there is a monotonic relationship
between dimensionless Tp and Tc, and Ir and ζ , indicating that the time scale of breaking
can be predicted by an empirical formula based on Ir and ζ (see § 4 of the supplementary
material).

4. Discussion

In § 3, the basic characteristics and energetics of ISWs passing over ridges are described by
means of the velocity field in a large region, and the types of interaction are classified. The
dynamic mechanisms of different breaking types are studied, and a preliminary analysis
of the breaking criterion of the wave–ridge interaction is presented based on the Froude
number and the blockage parameter.

Furthermore, a clear understanding of the energy distribution of wave–ridge interactions
allows for a better evaluation of the oceanic energy budget and serves parametrization.
Hence previous studies have defined different parameters to examine the energy
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Figure 8. (a) The dimensionless plunging breaking time scale; the numbers on the triangles and squares are
Tp/(Ls/Cp). (b) Ratio of the plunging breaking time scale to the collapsing breaking time scale; the numbers
on the triangles are Tp/Tc. The legend is the same as in figure 7, with the background colour obtained by
interpolation.

distribution of the interaction of ISWs with the ridge, considering the effect of ridge height
– Chen (2009) by means of the blockage parameter, Zhu et al. (2016) using the empirical
formula for multiplying the degree of blocking with the nonlinear factor (Bm = B(a/h1)

α0 ,
B = Hr/h2, α0 is a constant), and Sutherland et al. (2015) with the exponential fitting curve
based on the critical amplitude (Ac0 ≡ 1

2 (h2 − Hr − h1) + √
h1(h2 − Hr)) – to evaluate

the energy distribution. However, none of these methods accounts for the effect of the
topographic slope, so the data points are scattered when calculating the energy distribution
for this experiment (see § 5 of the supplementary material). Moreover, there is regional
overlap when using the blockage parameter to separate breaking types. Therefore, it is
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Figure 9. (a) Snapshot of the PIV image (in false colour); the blue arrows show the depth of the lower fluid
layer at the location of breaking, and the red arrows show the maximum interface vertical displacement.
(b) Breaking depth criterion of plunging and plunging–collapsing. The black line is the fitting result of
Vlasenko & Hutter (2002). The horizontal coordinates of the three sets of red dots (γ = 11.3◦, 18.4◦ and
26.6◦) correspond to the characteristic slopes of the three ridges in this experiment. The horizontal coordinates
of the black circles correspond to the local topographic slope at the breaking position. The red dashed line is a
linear fit to the red dots.

necessary to introduce a new breaking criterion to characterize the degree of interaction
to diagnose the energy distribution and to distinguish the type of breaking.

Note that the amplitude of the ISW changes during shoaling, which affects the degree
of wave–ridge interaction. Therefore, the combined effects of ridge height and slope are
accounted for to introduce an important parameter that represents the effect of wave
shoaling: the maximum interface descent (amax). A prediction scheme for amax is given
in § 4.1. A new breaking criterion is derived based on amax, namely the modified blockage
parameter, which is used to analyse the type of breaking and energy distribution in §§ 4.2
and 4.3, respectively.

4.1. The maximum interface descent
To examine the maximum interface descent of ISWs shoaling on the slope, Sutherland
et al. (2013) assumed that the area of the incident wave was equal to the critical state
before breaking (1.3). For ISWs breaking over the ridge, the area equation can also be
established. Assuming that the rear face of the wave is perpendicular to the horizontal
direction before breaking, the waveform on the left-hand side of the ridge is consistent
with the topographic slope (figure 9a), and the transmitted wave slope is consistent with
the incident wave slope. The critical waveform of the ISW before breaking is approximated
as the quadrilateral in figure 10.
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L0

a∗
max – L0s

amax

a∗
max

s

s Hbreak

Hr – Hbreak

sw

Hr

∗∗

L0

Figure 10. An approximate diagram of the waveform before the breaking of the ISW on the ridge, where a∗
max

is the maximum interface descent, L0 is the horizontal distance between the breaking location and the top of
the ridge, s and sw are the topographic slope and wave slope, Hr is the topographic height, and Hbreak is the
topographic height at the breaking location. The dashed curve is a portion of the inscribed circle of the triangle
enclosed by the left-hand waveform and the chain line, and a∗∗

max is the modified maximum interface descent.

The incident wave parameters and ridge parameters can be obtained before the
wave–ridge interaction, and the breaking location can be calculated with reference to
the work of Vlasenko & Hutter (2002) (see (1.2)). As shown in figure 9(b), the depth
of breaking in this experiment (red dots) is consistent with the ocean-scale numerical
simulations for seabed topographic slopes less than 20◦ (black line).

The horizontal distance between the breaking location and the top of the ridge (L0) can
be calculated from the prediction results in figure 9(b):

L0 = Hr − Hbreak

s
, (4.1)

Hbreak = H − hb, (4.2)

where Hbreak is the topographic height at the breaking location, and hb, the critical depth
of breaking, can be calculated using (1.2) (equating the left-hand side to the right-hand
side, a/(hb − hm) = 0.8◦/γ + 0.4). Also, L0 should be obtained by integration if the
topographic slope changes greatly (Sutherland et al. 2013). The minimum value on the
right-hand side of (1.2) is 0.4. However, the calculations in this experiment indicate that
the result will be less than 0.4 as the slope of the topography increases. Therefore, (4.2)
can be replaced by the fitting results in figure 9 when the topographic slope is greater than
20◦.

Given the incident wave area (SISW = aLw), incident wave slope (sw), topographic slope
and breaking location, the equation can be established based on the assumption that the
area of the incident wave was equal to the critical state before breaking to obtain the
predictions of maximum interface descent (a∗

max):

SISW = (a∗
max)

2

2s
+

(
a∗

max − L0s
2

) (
a∗

max − L0s
sw

− a∗
max − L0s

s

)
. (4.3)

The right-hand side of (4.3) corresponds to the area of the quadrilateral in figure 10. The
first and second terms represent the areas of the white and grey triangles, respectively.

Equation (1.3) is valid on a uniform slope that intersects the pycnocline. However, due
to the transmission process of ISWs passing over the ridge, not all of the wave energy
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Figure 11. Maximum interface descent predictions versus measurements. (a) Predictions obtained by
assuming that the incident waveform area and the area before breaking are equal. (b) Results predicted by
the empirical formula. Blue, green, yellow and red indicate the upper and lower water depth ratios 4 : 20, 4 : 24,
4 : 28 and 4 : 32 (the units are in cm), respectively. Triangles, squares and circles indicate topographic slopes
0.50, 0.33 and 0.20, respectively.

accumulates in front of the ridge, as illustrated in figure 10, where the grey shaded region
is behind the ridge (relative to the direction of wave propagation), so the amplitude growth
is less than the uniform slope. The left-hand side and the first term on the right-hand
side in (4.3) (SISW = (a∗

max)
2/2s) are consistent with (1.3), while the second term on the

right-hand side, as an additional term, represents the difference between predictions on
ridges and slopes. Consequently, the prediction scheme for the slope cannot be used to
estimate the maximum interface descent on the ridge. (In this experiment, the wave slope
is smaller than the topographic slope, which would increase the prediction.) Shifting (4.3),
we obtain

1
2sw

(a∗
max)

2 +
(

L0s
s

− L0s
sw

)
a∗

max+
[
(L0s)2

2sw
− (L0s)2

2s
− SISW

]
= 0. (4.4)

The a∗
max value can be obtained by solving (4.4). The waveform is curved at the

maximum interface displacement (figure 9a), and approximating the shape as a triangle
will skew the calculated results. Therefore, the inscribed circle of the triangle (the
triangle enclosed by the left-hand waveform and the chain line in figure 10) is used to
approximate the waveform near the maximum interface displacement and then calculate
the modified maximum interface descent (a∗∗

max). A comparison of the predicted (a∗∗
max) and

experimentally measured (amax) results is shown in figure 11(a).
For (4.4), the predictions from the implementation of the geometric approximation are

applicable only to the case where the rear face of the wave is overturned. Therefore, to
broaden the parameter range, another prediction method based on (1.3) is introduced by
considering that the increase in the wave amplitude is influenced by the wavelength and
the topographic scale. Considering the impact of the topographic slope, (1.3) is assumed
to be accurate as s tends to 0. As s tends to infinity, it is similar to a wave impinging on a
vertical wall (undergoes total reflection), and the maximum interface descent is assumed to
be twice the incident amplitude, written as aef 0 = √

2saLw/(1 + √
s/2sw) (s → 0, aef 0 =
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√

2saLw; s → ∞, aef 0 = 2a). At the same time, considering the effect of the topographic
height on the wave–ridge interaction, the degree of blocking was included to correct the
result, written as 2B, B = Hr/h2. The newly established empirical formula is

aef =
√

2saLw

1 +
√

s
2sw

2B. (4.5)

The comparison between the predicted (aef ) and experimental results is shown in
figure 11(b). This empirical formula applies to all the results of this experiment, regardless
of whether the ISWs break over the ridge.

4.2. New breaking criterion
The blockage parameter is calculated from the incident wave, but the interface descent
increases significantly or slightly for different wave shoaling conditions (figures 2 and 5).
Therefore, to better evaluate the wave–ridge interaction, the maximum interface descent,
which can be determined from the initial parameters, is introduced to modify the
blockage parameter (ζm, modified blockage parameter, replacement of incident amplitude
by maximum interface descent) to obtain the effective blockage parameter before ISW
breaking:

ζm = amax + h1

h1 + h2 − Hr
. (4.6)

As shown in figure 12, ζm provides a clear separation of the types of wave–ridge
interactions. Although the maximum interface descent increases slightly for plunging
breaking, the maximum interface descent for the transition state is almost unchanged.
Therefore, for plunging breaking, ζm will be greater than ζ , and for the transition
state, ζm is essentially consistent with ζ . For this reason, ζm = 0.65 can be used to
distinguish plunging breaking and the transition state (figure 12). Here, ζm = 1 implies
that the maximum interface descent is just enough to touch the top of the ridge;
hence plunging–collapsing breaking occurs for ζm > 1. In addition, ζm = 0.50 can also
distinguish the no breaking and transition states. As a result, the modified blockage
parameter has a clear physical meaning. Nevertheless, the type of wave–ridge interaction is
almost independent of Ir. The relationship between the type of interaction and ζm suggests
that the degree of interaction is largely dependent on the distance between the wave trough
and the ridge crest. And Ir only acts as an adjustment to the blockage parameter (note that
Ir is related to the topographic slope, which can modify amax).

Notably, plunging–collapsing breaking (ζm ≈ 0.8) occurs in the interval of the
distribution of plunging breaking (0.65 < ζm < 1.00) when Ir > 1.3. The two triangles
in figure 12 (for ζm ≈ 0.8, Ir = 1.40 and Ir = 2.20) correspond to the case of minimum
amplitudes at h2 = 0.20 m, with s = 0.33 and s = 0.50, respectively. At this depth,
h2 − Hr = 4 cm, the narrow lower layer channel as the ISW passes through leads to
significant enhancement of the lower flow velocity, which can cause plunging–collapsing
breaking even when ζm does not reach 1 (the lower layer is only 1.6 cm wide at ζm = 0.8
for this stratification condition). In the case of the circle at ζm = 0.70 and Ir = 1.63, a
stronger vortex is generated at the top of the wave tail. However, no overall overturning
occurs at the rear face of the wave, so we still define it as a transition state. For this and a
few other cases, the interaction types will deviate slightly from the criterion.

In this experiment, the interaction of the mode-1 ISW with the ridge is similar to the
shoaling and breaking of the mode-2 ISW, particularly the vortex structure at the top
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Figure 12. Types of wave–ridge interactions in relation to ζm and Ir. The three vertical dashed lines correspond
to ζm = 0.50, ζm = 0.65 and ζm = 1.00. Crosses indicate no breaking, hollow circles indicate the transition
state, squares indicate plunging breaking, and triangles indicate plunging–collapsing breaking. The segments
of lines on the left show the distribution intervals between the type of breaking of the ISW on a uniform slope
and the corresponding Ir. With reference to Aghsaee et al. (2010) and Sutherland et al. (2013), the slope range
is s = 0.15–0.42.

of the ridge and the bottom boundary (Deepwell et al. 2017, 2019; Carr et al. 2019).
Deepwell et al. (2017) demonstrated that the interaction between mode-2 ISWs and
narrow ridges occurs rapidly, with an initial evolution of the lower half similar to that
of mode-1 wave–ridge interactions, and that the dimensionless parameters for assessing
the interaction strength are essentially the same. Hence the newly established modified
blockage parameter can also be extended. Nevertheless, there are discrepancies in the
evolution of the two modes: as the lower half-waveform varies, the upper half-layer
becomes unstable, thus the subsequent development of mode-2 ISWs will involve different
processes, such as the shear instability confined in the pycnocline (Deepwell et al. 2019,
their figure 13).

4.3. Energy distribution
As the ISW passes over the ridge, a portion of the energy dissipates over the topography,
increasing local turbulent mixing, and the remaining energy propagates away from the
ridge in the form of reflected and transmitted waves. The energy dissipation, transmission
and reflection coefficients of the wave–ridge interaction can be calculated by the equations

Eloss = Ei − Er − Et, (4.7)

T = Et

Ei
, (4.8)

R = Er

Ei
, (4.9)
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where Ei is the incident wave energy, Er is the reflected energy, and Et is the transmitted
energy. As large-region flow field measurements were carried out in this experiment, the
kinetic energy is used to calculate the incident, reflected and transmitted wave energy
(2.4). For steadily propagating nonlinear ISWs of moderate amplitude, the kinetic energy
is slightly greater than the available potential energy (Lamb & Nguyen 2009; Sutherland
et al. 2015). Based on the numerical results of Lamb & Nguyen (2009), the kinetic
energy in the parameter range of this experiment is slightly greater than 5 %–15 % of
the available potential energy; therefore (2.4) is used to calculate the transmission and
reflection coefficient.

The numerical results of Sutherland et al. (2015) and the supplementary material
(figures S8–S10) show that the reflection coefficient is significantly dependent on the
topographic slope, with coefficient differences of up to 0.4 (s = 0.02–0.16) at different
slopes for the same dimensionless amplitude, indicating that different fitting relationships
exist between different slopes.

The new breaking criterion proposed in § 4.2 can effectively characterize the degree
of wave–ridge interaction. Therefore, the modified blockage parameter is introduced
to diagnose the energy distribution. The blockage parameter can be understood as a
dimensionless amplitude since (4.6) contains one power term for the amplitude (maximum
interface descent). Therefore, the modified blocking parameter is squared to describe the
reflected and transmitted energy.

As shown in figure 13(b), the reflection coefficient is no longer dependent on the
topographic slope and satisfies a tight linear relationship with ζ 2

m. The linear fitting result
is R = 0.097ζ 2

m − 0.061. With the introduction of the modified blockage parameter, the
dependence of the reflection coefficient on the topographic slope is implicit in the amax
that can be calculated from the initial parameters, which can improve the parametrized
relationship. The transmission coefficient decreases monotonically with increasing ζ 2

m,
which is also independent of the topographic slope, and satisfies the linear relationship at
ζ 2

m < 1.5 (figure 13a). Both the modified blockage parameter and the predicted maximum
interface displacement can be obtained from the initial conditions so that the energy
reflection and transmission coefficients can be calculated directly before the wave–ridge
interaction.

5. Summary and conclusion

This paper calculates and analyses the shoaling and breaking process of ISW interactions
with Gaussian ridges by means of systematic experiments. The type of breaking, breaking
time scales, horizontal location of breaking, maximum interface vertical displacement, and
energy distribution are evaluated. In the case of gentler topography, the ISW varies slowly
during shoaling. Weakly nonlinear theory is capable of describing the evolution process
(Zhao et al. 2003; Talipova et al. 2015; Bai et al. 2019). Consequently, this study focuses
on the analysis of strong wave–topography interactions where the topographic scale is
comparable to the ISW wavelength. Although the spatial distribution of steeper topography
in the ocean is relatively limited, energy evolution processes are significant and play an
important role in ocean mixing and the energy budget. For example, when ISWs pass
over bumpy topography and underwater banks, the energy decays rapidly and generates
high-frequency waves (Vlasenko 2005; Xie et al. 2019). During ISW interactions with the
fjord, noticeable reflected waves can be observed (Bourgault et al. 2011) (s ≈ 0.55). The
shoaling and breaking of ISWs on shelf breaks, such as the shallow shelf slope of Dongsha,
can result in significant mixing (Davis et al. 2020; Sinnett et al. 2022) (s ≈ 0.15).
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Figure 13. (a) Modified blockage parameter versus transmission coefficient. (b) Modified blockage parameter
versus reflection coefficient. The legend is the same as in figure 11. The dashed line in (b) is the linear fit of the
experimental results, where R = 0.097ζ 2

m − 0.061 and r2 = 0.94.

In the parameter space of this experiment, five types of interactions have been observed:
weak interaction, fission, transition, plunging breaking and plunging–collapsing breaking.
Regarding the type of breaking of ISWs on ridges, the maximum Fr during the wave–ridge
interaction provides a clear distinction between the different interaction types. Similarly,
the dimensionless parameter ζ , which characterizes the strength of the internal waves
with the ridge, is used to distinguish between different shoaling and breaking processes.
Convective instability and shear instability are typical dynamical processes during the
shoaling of internal waves. In this experiment, convective instability occurs in plunging
breaking and plunging–collapsing breaking. However, Kelvin–Helmholtz-like billows
were observed not only in high-resolution experiments but also under conditions where
the ridge slope was 0.20 and the incident amplitude was large, possibly because the gentler
slopes allowed sufficient time for wave shoaling to generate instability.

The maximum interface descent before ISW breaking is predicted in this paper using
two methods. The analysis of types of interaction and energy distribution reveals that the
degree of the ISW interacting with the ridge can be described in terms of the blockage
parameter modified by the maximum interface descent. With the introduced modified
blockage parameter, the dependence of the reflection coefficient on the topographic slope
is implicit in the amax that can be calculated from the initial parameters. The reflection
coefficient satisfies a tight linear relationship with ζ 2

m, and the transmission coefficient
decreases monotonically with increasing ζ 2

m, which is also independent of the topographic
slope, allowing the parametrization scheme of the energy distribution to be optimized.

Within this experiment, the topographic scale is comparable to the ISW scale, resulting
in a relatively noticeable change in the maximum interfacial descent of the ISW, which
adjusts ζm. However, when the topographic scale is considerably larger than the ISW scale
(gentle slopes), the ISW has sufficient time to adjust the waveform and undergo fission
or polarity transformation. This implies that the maximum interface descent prediction
scheme proposed in this experiment needs to be revisited. In the case where the maximum
interfacial descent is known (measured directly or predicted by other methods), ζm can still
be used as a criterion for the type of wave–ridge interaction. However, the applicability of
ζm in energy distribution needs to be re-evaluated.
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The quasi two-layer assumption in this experiment is commonly used in laboratory
experiments and numerical simulations. Although this assumption has also been applied
in many in situ observations, the evolutionary process of ISWs is affected under certain
stratifications. For instance, the surface stratification and the broad tanh profile can inhibit
the breaking of ISWs (Hartharn-Evans et al. 2021), and the near-bottom stratification
provides a means for an enhanced rate of three-dimensionalization of jet roll-up instability
(Harnanan et al. 2017). Therefore, the applicability of the quasi two-layer system should
be considered in observations.

Laboratory scale simulations can satisfy geometrical similarity with the steeper
topography in the ocean, allowing parameters such as ζ , Ir and Fr to have a similar
distribution space. However, the differences in the wave Reynolds numbers between
the laboratory and the ocean and lake environments are approximately 3–4 orders of
magnitude (Aghsaee et al. 2010; Boegman & Stastna 2019). Even with an increase in
water depth and density differences in laboratory experiments, the wave Reynolds number
remains significantly smaller than that at the field scale (Aghsaee et al. 2010; Aghsaee
& Boegman 2015). Consequently, the laboratory is focused primarily on the provision of
evolutionary processes such as shoaling, deformation, and initial 2-D vortex generation,
which can be analogous to real ocean processes. Nevertheless, there is a noticeable scale
disparity between the laboratory and the ocean as the 2-D vortex transforms into a 3-D
process of splitting into smaller vortices that ultimately dissipate as heat. Compared to the
ocean scale, the gap between the length scale of the ISW and the Kolmogorov scale is
unrealistically small in the laboratory (Aghsaee et al. 2010). At the field scale, multiscale
dynamic processes are involved in ISW breaking (Fritts et al. 2016; Dorostkar, Boegman
& Pollard 2017; Boegman & Stastna 2019).

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2024.692.
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Appendix A. Sketch of ISW breaking

A sketch of the four stages of ISW breaking associated with figure 2 is shown in figure 14.

Stage 1: Starting interactions

Stage 2: Shoaling Stage 3: Plunging–collapsing breaking

Stage 4: Transmission and ref lection

Reflection
Turbulence

Transmission
Cp Cp

Cp

(b)

(a)

(c)

(d )

Figure 14. Sketch of the four stages of ISW breaking associated with figure 2.
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