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Abstract

We introduce techniques of Suslin, Voevodsky, and others into the study of singular
varieties. Our approach is modeled after Goresky–MacPherson intersection homology.
We provide a formulation of perversity cycle spaces leading to perversity homology
theory and a companion perversity cohomology theory based on generalized cocycle
spaces. These theories lead to conditions on pairs of cycles which can be intersected and a
suitable equivalence relation on cocycles/cycles enabling pairings on equivalence classes.
We establish suspension and splitting theorems, as well as a localization property. Some
examples of intersections on singular varieties are computed.
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Introduction

In this paper, we initiate an investigation of pairings on cycle groups on singular algebraic
varieties over a field. We utilize the approach to motivic cohomology developed by Suslin and
Voevodsky [SV00], blended with the philosophy of intersection homology theory as introduced
by Goresky and MacPherson [GM80]. An important source of insight for the approach we take
comes from ‘semi-topological cohomology and homology,’ especially from the foundations of
Lawson homology due to Lawson [Law89].

Our goal is to provide contexts in which there is a good formulation of the intersection
product of cycles on singular varieties. This is an age-old problem, one that motivated the original
introduction of cohomology and in some sense culminated with intersection homology theory
for stratified topological spaces. In the context of algebraic varieties, the moving techniques for
stratified spaces (for example, those of [McC75]) do not apply. Indeed, we know of no means of
improving intersections occurring within the singular locus of a given variety.
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If X is a smooth projective variety, then Poincaré duality provides a ring structure on the
singular homology of X. This product admits a purely algebro-geometric description on
the fundamental classes of algebraic cycles α and β: by the method of Chow, one can move
α within its rational equivalence class (to α′, say) so that α′ and β intersect properly (i.e. in the
expected dimension). For proper intersections on a smooth variety, multiplicities may be defined
purely algebraically, for example by the Tor formula of Serre. The homology class of the cycle
class α • β represents the product of the homology classes of α and β.

If X is singular, then its homology groups typically cannot be endowed with a reasonable ring
structure. The intersection homology of Goresky–MacPherson rectifies this by defining groups
IH p
∗(X) which, roughly speaking, are the homology groups of a complex of chains with controlled

incidence with the singular locus of X. There are intersection pairings IH p
r(X) ⊗ IH q

s(X) →
IH p+q

r+s−dim(X)(X) (provided some conditions are satisfied) which, in case r+s = dim(X), become

perfect after tensoring with the rationals. The challenge which originally motivated us was to
extend the picture of the previous paragraph, namely the description of the intersection product
of algebraic cycle classes, to intersection homology of singular varieties.

Previous approaches to this problem have not led to an intersection pairing lifting the
Goresky–MacPherson pairing. Gajer defined a semi-topological version of intersection homology
and established some of its structural properties [Gaj97]. Corti and Hanamura gave a definition
of intersection Chow groups by incorporating information obtained from a resolution of
singularities [CH07]; they provided also a motivic lifting of the decomposition theorem of [BBD82]
assuming various conjectures on algebraic cycles [CH00]. Wildeshaus used weight structures to
define a motivic intersection complex, and proved its existence in some cases [Wil12]. In the
topological setting, intersection homology may be defined geometrically, using a subcomplex of
the complex of singular chains [GM80], or sheaf-theoretically, using the constructible derived
category [GM83]. In the algebraic setting, it would be interesting to relate our geometrically
oriented approach to the categorical constructions.

Introducing cycle (and cocycle) spaces and defining homotopy pairings on these spaces guides
the formulation of equivalence relations on cycles and gives pairings on homotopy groups. The
equivalence relations which arise are necessarily finer than rational equivalence: even if one
restricts attention to cycles which meet ‘properly’ and whose intersection meets the singular locus
properly, one must take care in defining equivalence relations so that cup and cap product pairings
are well defined on equivalence classes. Our primary interest is the intersection of fundamental
classes of algebraic cycles, corresponding to a pairing on connected components of our cycle and
cocycle spaces.

We work with an algebraic variety X equipped with a stratification; such a stratification
might arise from a resolution of singularities of X or a ‘platification’ of a family of coherent
sheaves on X. Fixing a perversity function p, we introduce perversity cycles on X and
generalized cocycles on X with values in Y . These are cycles which meet the strata of X
(or X × Y ) in a manner controlled by p. The discrete abelian groups of perversity cycles
(and generalized cocycles) for a given variety X determine presheaves which lead to singular
complexes (i.e. simplicial abelian groups) as first conceived by Suslin (see [SV00]). Our
homology/cohomology theories are the homotopy groups of these singular complexes, doubly
graded in a manner compatible with the grading in motivic homology and cohomology [MVW06].

We show that our theories satisfy good properties including suspension isomorphisms
(a projective analogue of A1-invariance), a splitting theorem, and a suitable form of localization.
These theorems enable our definition of a cup product in perversity cohomology, extending
the cup product in motivic cohomology; and a cap product relating perversity cohomology
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Intersections via motivic complexes

and perversity homology. To do this, we introduce the condition (∗, c) on a pair of cycles and
a perversity c which permits a sensible intersection of cycles meeting especially nicely; this
intersection product is compatible with that of Goresky–MacPherson intersection homology.

For the reader’s convenience, we briefly outline the contents of each section of this paper.
In § 1, we revisit various sheaves and presheaves of relative cycles as investigated by Suslin

and Voevodsky. We discuss to what extent and how these sheaves are represented by Chow
varieties. These (pre)sheaves are defined on (Sch/k) so that we may apply results of Voevodsky
on sheaves for the cdh-topology; the cycle sheaves are evaluated on the standard cosimplicial
scheme whose constituents are affine spaces ∆n. In fact, one is naturally led to another of
Voevodsky’s Grothendieck topologies, the h-topology, when the characteristic of the ground field
is positive.

We begin our study of cycles on a stratified (possibly singular) variety X in § 2. Following
Goresky–MacPherson, we fix a ‘perversity’ p and consider U -relative cycles on U × X whose
specializations at points u ∈ U meet the strata of Xu in codimension controlled by the perversity
p. Applying our sheaves to ∆•, we obtain our perversity motivic homology groups Hp

n(X,Z(r)) as
the homotopy groups of the associated simplicial abelian group (or, equivalently, as the homology
of the associated chain complex). There is a natural map to motivic Borel–Moore homology
Hp
n(X,Z(r))→HBM

n (X,Z(r)) induced by an inclusion of simplicial abelian groups. Furthermore,
when our ground field k is the complex field C, we verify in Proposition 2.5 that there is a
natural map from the bidegree perversity homology group corresponding to π0 to the Goresky–
MacPherson intersection homology group. In Theorem 2.10, we use techniques of Voevodsky to
prove a form of localization for our perversity motivic homology groups.

A central theme of our work is the interplay between the sheaf-theoretic foundations
of Suslin–Voevodsky and constructions using Chow varieties as first considered by Lawson
in [Law89]. In particular, in § 3, we employ the constructions introduced by Lawson to prove
suspension theorems for our homology groups. These theorems are first proved in Theorem 3.1
for projective varieties (for Chow varieties are defined for projective varieties) and then extended
to quasi-projective varieties using the localization theorem of the previous section. The proofs
require verification that ‘Lawson moving constructions’ preserve perversity of cycles.

In § 4, we relate our groups to the problem of intersecting cycles on a stratified singular
variety. We introduce the condition (∗, c) on a pair of cycles which allows (static) intersection
with good properties, especially suitable behavior with respect to specialization. For example,
Corollary 4.4 verifies that this intersection commutes with specialization, the formal analogue of
being continuous. We analyze in detail the resulting intersection pairing for the standard example
due to Zobel of the cone on P1 × P1.

The ‘generalized cocycles’ introduced in Definition 5.1 pair well with perversity cycles.
Perversity cycles satisfy an incidence condition with the strata of a given stratified variety X,
whereas generalized cocycles on X with values in some Y are cycles on X × Y more general
than cocycles (i.e. not necessarily equidimensional over X) whose fiber dimensions over points
of X are controlled by the perversity p. Algebraic cocycles first appeared in the work of the
first author and Lawson [FL92] as an algebraic model for cocycles in algebraic topology; our
groups are a stratified variant of groups briefly considered by the first author and Gabber
in [FG93] (a more sophisticated form of which is presented in the paper of the first author and
Voevodsky [FV00].) These bivariant perversity motivic cohomology groups satisfy a suspension
theorem (Theorem 5.6) which leads to perversity motivic cohomology by setting the covariant
variable equal to a projective space. As we describe, generalized cocycles arise from resolutions
and from coherent sheaves (with stratification determined by the resolution or the sheaf).
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The second author has investigated the possibility of using resolutions to define an intersection
theory for perversity cycle classes on singular varieties [Ros15]. The geometric approach of [Ros15]
produces pairings in several interesting cases.

In the final section of this paper, we lay the foundations for applications by establishing a cup
product on perversity motivic cohomology and a cap product pairing relating perversity motivic
cohomology and perversity motivic homology. For example, in Theorem 6.4 we establish the
(motivic) perversity version of the splitting theorems established for semi-topological cohomology
by the first author and Lawson. We conclude by verifying in Proposition 6.14 that our cup product
pairing is compatible with the intersection product in intersection homology.

Throughout, we work over an infinite field k of characteristic p > 0. When we apply
Voevodsky’s acyclicity theorem, we must additionally impose that k is perfect. In positive
characteristic, we try to avoid inverting p wherever possible. For us, a k-scheme is a separated
scheme of finite type over k, and a variety is an integral k-scheme.

1. Roadmap for cycle presheaves

We employ a plethora of presheaves and sheaves of algebraic cycles. Our invariants are homotopy
groups of simplicial abelian groups (equivalently, homology groups of associated normalized
chain complexes) obtained by evaluating an abelian (pre)sheaf on a cosimplicial scheme. Our
geometric constructions are correspondences among Chow varieties of r-dimensional cycles on
a projective variety X. The presheaves represented by Chow varieties are closely related to the
Suslin–Voevodsky presheaves zequi(X, r) and z(X, r). To extend our results to quasi-projective X,
we employ the technology developed by Suslin and Voevodsky for sheaves for the cdh-topology.

For a scheme X, the Suslin–Voevodsky cdh-sheaf z(X, r) on (Sch/k)cdh sends a k-scheme U
to the abelian group of U -relative cycles on U × X (of relative dimension r) with well-defined
specializations and universally integral coefficients [SV00, Lemma 3.3.9]. If k admits resolution
of singularities, this sheaf has the important localization property (see [SV00, Theorem 4.3.1]
and [FV00, Remark 5.10]): if Y ↪→ X is closed with Zariski open complement U , then the triple
of simplicial abelian groups

z(Y, r)(•)→ z(X, r)(•)→ z(U, r)(•)

yields a long exact sequence of homotopy groups, where F(•) ≡ F(∆•) is the simplicial abelian
group whose associated chain complex is (by definition) the Suslin complex of F .

Assume now that X is projective and consider the subsheaf zeff(X, r) ⊂ z(X, r) whose value
on U is the monoid of those U -relative cycles which are effective. When char(k) = 0, cycles in
zeff(X, r)(U) can be identified with the graphs of homomorphisms from the semi-normalization
of U into the Chow monoid Cr(X),

zeff(X, r)(U) ' Hom(U sn, Cr(X)) ' Hom(U sn, Cr(X)sn), char(k) = 0; (1.0.1)

this is the h-representability of the sheaf zeff(X, r) (see [SV00, Corollary 4.4.13]) and the fact that
zeff(X, r)→ zeff(X, r)h and z(X, r)→ z(X, r)h are isomorphisms in characteristic zero [SV00,
Theorem 4.2.2].

In arbitrary characteristic, the h-sheafifications may be computed using continuous algebraic
maps (see [Fri94, Proposition 4.1] and [SV00, Corollary 4.4.13]), so that

zeff(X, r)h(U) ' Hom(U, Cr(X))h ' Homc.alg(U, Cr(X)).
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(This h-sheafification admits a description as a limit of morphisms of schemes even though
in positive characteristic the object h-representing a sheaf is not unique; see [Voe96,
Proposition 3.2.11].) Note also that p is invertible in Homc.alg(U, Cr(X)) if U is equidimensional,
since then the relative Frobenius FU/k : U → U (1) is generically flat of degree pdimk(U),

and the continuous algebraic map U (1)
FU/k
←−−− U

f−→ Cr(X) corresponds to 1/pdimk(U) · f .
Since zeff(X, r)[1/p] and z(X, r)[1/p] are h-sheaves [SV00, Theorem 4.2.2], this implies
zeff(X, r)h(U)[1/p] ' Homc.alg(U, Cr(X)) for U ∈ Sm/k.

The presheaf zeff(X, r) admits a reasonable description in terms of Chow varieties before
inverting p. If X is projective and char(k) = p > 0, then for U smooth and quasi-projective, the
subgroup zeff(X, r)(U) ⊂ Hom(U, Cr(X)) consists of those morphisms f : U → Cr(X) such that,
for every generic point η ∈ U , the cycle classified by f(η) is defined over k(f(η)); in general,
the cycle classified by f(u) is defined over a finite radicial extension of k(f(u)) (see [FV00,
Proposition 2.3]). For details on the concept of field of definition of a cycle, we refer the reader
to [Kol96, Definition I.3.1.7]; this reference also contains examples of what can go wrong in
positive characteristic (see for example [Kol96, Example I.4.1.1]).

Now we consider possibly ineffective cycles, retaining the hypothesis that X be projective. A
subtlety arises in comparing the presheaf zeff(X, r)+ to the sheaf z(X, r), one that arises because
not every element of z(X, r)(U) is a difference of elements of zeff(X, r)(U). In general, there is
an intermediate presheaf

zeff(X, r)+ ⊂ zequi(X, r) ⊂ z(X, r)

consisting of U -relative cycles on X each component of which has relative dimension r.
Examples show that zequi(X, r)(U) can strictly contain zeff(X, r)+(U) and be strictly contained in
z(X, r)(U). Nevertheless, by [SV00, Corollary 3.4.4] we have

zeff(X, r)+(U) = zequi(X, r)(U), U geometrically unibranch.

Consequently,
zequi(X, r)|(Sm/k) ⊆ (Hom(−, Cr(X))+)|(Sm/k)

with equality if char(k) = 0 and with image consisting of morphisms satisfying the field of
definition condition described above if char(k) = p > 0.

The cycle sheaves z(X, r) and z(X, r)h for X projective can be described in terms of
continuous algebraic maps to the group completion Zr(X) := Cr(X)2/R of the Chow monoid
Cr(X); here, R is the usual relation (V,W ) ∼ (V ′,W ′) if and only if V + W ′ = W + V ′

(see [Fri94, Proposition 4.1] and [SV00, Proposition 4.4.15]). We remind the reader that a
continuous algebraic map to the group completion is (up to a bicontinuous algebraic map) a
pair of rational maps to the Chow monoids which induces a well-defined set-theoretic map (on
k-points) to Zr(Xk). This permits fibers of dimension > r (which may occur outside the domains
of definition of the rational maps) to cancel. Then as sheaves on (Sch/k), we have (see [Fri94,
Proposition 4.1] and [SV00, Proposition 4.4.15])

z(X, r) = z(X, r)h = Homc.alg(−,Zr(X)), char(k) = 0,

z(X, r)[1/p] = z(X, r)h = Homc.alg(−,Zr(X))[1/p], char(k) = p.

By the above, we have Homc.alg(U,Zr(X))[1/p] = Homc.alg(U,Zr(X)). Furthermore, for
char(k) = p and U ∈ Sm/k, the image z(X, r)(U) ⊂ Homc.alg(U,Zr(X)) consists of those
continuous algebraic maps U → Zr(X) which are induced by a pair of morphisms from an
open dense subset of U (i.e. the bicontinuous algebraic map is an isomorphism), both of which
satisfy the field of definition condition.
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What ties all of this together is a fundamental acyclicity result of Voevodsky [FV00,

Theorem 5.5(2)] which asserts that the map of presheaves zequi(X, r) → z(X, r) induces a

quasi-isomorphism on associated Suslin complexes provided k admits resolution of singularities.

Thus, the localization property for z(X, r) can be ‘transported’ to presheaves ‘represented’ by

Chow varieties. In positive characteristic, the same is true after inverting the characteristic.

Using Gabber’s theorem on the existence of smooth alterations of degree prime to ` (see [Ill09,

Theorem 1.3] and [ILO12, Theorem 3.2.1]), recent work of Kelly establishes that if k is a perfect

field of exponential characteristic p, and F is a presheaf with transfers on Sch/k such that

Fcdh[1/p] = 0, then the Suslin complex C∗(F)[1/p] is acyclic [Kel13, Theorem 5.3.1]. Thus, our

methods apply to an arbitrary infinite perfect field k once perversity homology and cohomology

groups are tensored with Z[1/p].

In § 5, we consider a ‘bivariant’ version of these constructions. Namely, we consider quasi-

projective varieties X,Y of pure dimension d, n. We have subpresheaves and subsheaves

zt,eff(X,Y ) ⊂ zeff(X × Y, d+ n− t), zt(X,Y ) ⊂ z(X × Y, d+ n− t)

which guide us to various ‘cohomological’ theories on X (taking Y to be projective space).

This paper is concerned with versions of these presheaves and sheaves for stratified varieties

and a given perversity. Thus, the presheaves and sheaves we consider will be elaborations of

those mentioned above, taking into account the stratification and perversity.

2. Motivic theories with perversity

2.1 Stratifications and perversities

We assume X and Y are equidimensional k-schemes of dimension d and n, respectively.

A stratified variety is a variety X equipped with a filtration by closed subsets Xd ↪→Xd−1 ↪→

· · · ↪→ X2 ↪→ X1 ↪→ X such that Xi has codimension at least i in X. If X and Y are stratified,

we say f : Y → X is a stratified morphism if f is a morphism of schemes such that f(Y i) ⊆ Xi

for all i. A perversity is a non-decreasing sequence of integers p1, p2, . . . , pd such that p1 = 0

and, for all i, pi+1 equals either pi or pi + 1. Perversities are denoted p, q, etc. The perversities

we consider range from the zero perversity 0, with pi = 0 for all i, to the top perversity t, with

pi = i− 1 for all i. Our convention differs from that of Goresky and MacPherson [GM80, § 1.3]

since over the complex numbers our strata always have even real dimension; our pi corresponds

to their p2i.

Let Zr(X) denote the group of r-dimensional algebraic cycles on X. Suppose X is stratified.

We say an r-cycle α is of perversity p (or satisfies the perversity condition p) if for all i, the

dimension of the intersection |α| ∩ Xi is no larger than r − i + pi. When the codimension of

Xi in X is exactly i, the perversity of a cycle measures its failure to meet properly the closed

sets occurring in the stratification of X. Let Zr,p(X) ⊂ Zr(X) denote the group of r-dimensional

cycles of perversity p on the stratified variety X. Often, X1 is taken to be the singular locus

of X, and then the condition p1 = 0 means that no component of the cycle is contained in the

singular locus.

Since elements of z(X, r)(U) are required to have well-defined specializations for u ∈ U , we

may define subpresheaves by imposing incidence conditions on the fibers over all u ∈ U . Let

T be an irreducible locally closed subset in X and p an integer. For U ∈ Sch/k, we define

z(X, r)T,p(U) ⊆ z(X, r)(U) to be the subgroup of U -relative cycles α ↪→ U × X satisfying the

additional condition that, for all u ∈ U , the intersection of the support of αu with Tu in Xu has
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excess at most p. This condition is topological, hence insensitive to the field of definition of the
various αu.

If f : U ′ → U is a morphism in Sch/k and α ∈ z(X, r)(U) is a cycle, then for all
u′ ∈ U ′, by functoriality the cycle (f∗α)u′ coincides with the cycle (αu)u′ , where f(u′) = u. Since
the morphism fu′ : Spec(k(u′)) → Spec(k(u)) is universally open, by [SV00, Lemma 3.3.8(1)]
the support of (αu)u′ is the base change via fu′ of the support of αu. Therefore, the assignment
U 7→ z(X, r)T,p(U) defines a presheaf z(X, r)T,p(−) ⊆ z(X, r)(−). The behavior of supports
under base change also implies that if f : U ′ → U is an h-cover and α ∈ z(X, r)(U) satisfies
f∗α ∈ z(X, r)T,p(U ′), then α ∈ z(X, r)T,p(U). Therefore, z(X, r)T,p ⊆ z(X, r) is a cdh-subsheaf.

Similarly we may define a sheaf

z(X, r)T ,p(−) ⊆ z(X, r)(−) (2.0.2)

where T is a collection of irreducible locally closed subsets of X and p is a Z>0-valued function
on T : we require the excess with T ∈ T to be bounded by p(T ). We refer to such a pair (T , p) as
an incidence datum on X. The equidimensional version is denoted zequi(X, r)T ,p. If (T , p) and
(T ′, p′) are incidence data with T ⊆ T ′ and p′|T 6 p, there is a canonical presheaf inclusion
z(X, r)T ′,p′ ⊆ z(X, r)T ,p. We say an incidence datum (T , p) is finite if T consists of finitely many
elements.

IfX is stratified and p is a perversity, we denote by zequi(X, r)p and z(X, r)p the subpresheaves
of z(X, r) consisting of cycles whose excess intersection with (each component of) Xi is bounded
by pi (for all i). In other words, if T is the set of irreducible components of strata of the stratified
variety, then z(X, r)p = z(X, r)T ,p for the function p taking value pi on every component ofXi (for
every i). Put differently, α ∈ z(X, r)(U) belongs to z(X, r)p(U) if for all u ∈ U , the specialization
αu belongs to Zr,p(Xu).

Lemma 2.1. The cdh-sheafification of zequi(X, r)T ,p is z(X, r)T ,p. Therefore,

z(X, r)p ∼= (zequi(X, r)p)cdh.

Proof. The cdh-sheafification of zequi(X, r) is z(X, r) (see [SV00, Theorem 4.2.9]), so any cycle
α ∈ z(X, r)T ,p(U) belongs to zequi(X, r)(U

′) for some cdh cover p : U ′ → U . Since the support
of αu′ coincides with that of αp(u′), in fact the base change of α lies in zequi(X, r)T ,p(U

′). 2

We prove two elementary functoriality properties for X 7→ z(X, r)p. We remark that proper
push-forward is defined only under restrictive conditions; since disjoint closed sets in the source
of a morphism may have images which intersect, the push-forward of a perversity cycle via a
stratified morphism need not satisfy the same perversity condition. In the following proposition,
the perversity p∗c captures the interaction between the perversity of the cycle and the perversity
describing the behavior of the stratification under the morphism.

Proposition 2.2. Let f : W → X be a flat, stratified morphism of relative dimension e. Then
for any perversity p and any r > 0, f induces maps of (pre)sheaves

f∗ : z(X, r)p→ z(W, r + e)p, f∗ : zequi(X, r)p→ zequi(W, r + e)p.

If f : W → X is a proper morphism with the property that W i−ci = f−1(Xi) for some
perversity c, then for any perversity p and any r > 0, f induces maps of (pre)sheaves

f∗ : z(W, r)p→ z(X, r)p∗c, f∗ : zequi(W, r)p→ zequi(X, r)p∗c,
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where p ∗ c is the perversity with (p ∗ c)i = pi−ci + ci.
In particular, if i : W → X is a closed immersion and i(W ) meets each Xi properly, then

such proper push-forward maps exist for i if we take each ci equal to zero.
The pull-back and push-forward operations are compatible.

Proof. The existence statements for the presheaves with no perversity condition are [SV00,
Lemma 3.6.4] (flat pull-back) and [SV00, Corollary 3.6.3] (proper push-forward). Therefore, the
first assertion follows from the observation that for any locally closed subset T ⊂X, any flat map
f : W → X, and any r-cycle β on X, we have that |f∗(β)| ∩ f−1(T ) = f−1(|β| ∩ T ). The second
assertion follows from the observation that, for any r-cycle α on W , we have dim(|f∗(α)|∩Xi) 6
r − i+ ci + pi−ci since f(|α| ∩W i−ci) = |f∗(α)| ∩Xi.

The flat pull-back and proper push-forward transformations are compatible [SV00,
Proposition 3.6.5]. 2

2.2 Motivic homology theories
The algebraic n-simplex is the affine variety Spec(k[x0, . . . , xn]/

∑
i xi − 1) and is denoted by

∆n. The schemes ∆n fit together into a cosimplicial scheme ∆•. If F is an abelian presheaf
on Sm/k, we denote by F(•) the simplicial abelian group obtained by evaluation at ∆•. For
example, z(X, r)p(•) denotes the simplicial abelian group whose abelian group of n-simplices is
z(X, r)p(∆

n). We denote by C∗(F) (the ‘Suslin complex’ of F) the normalized chain complex of
F(•); thus, πi(F(•)) = Hi(C∗(F)).

For n ∈ Z, r ∈ Z>0, the Borel–Moore motivic homology HBM
n (X,Z(r)) of X ∈ Sch/k is the

homology in degree n−2r of the complex C∗(z(X, r)); for r < 0, HBM
n (X,Z(r)) is the homology

in degree n− 2r of C∗(z(X × A−r, 0)) (see [FV00, Definitions 4.3 and 9.1]). This motivates the
following definition.

Definition 2.3. The perversity p (Borel–Moore) motivic homology of a stratified variety X,
written Hp

n(X,Z(r)), is the homology in degree n−2r of the complex C∗(z(X, r))p. Equivalently,

Hp
n(X,Z(r)) ≡ πn−2r(z(X, r)p(•)).

The group HBM
2r (X,Z(r)) is the Chow group Ar(X) of r-dimensional cycles on X. The group

Hp
2r(X,Z(r)) admits a similar description.

Proposition 2.4. Consider W0,W1 ∈ Zr,p(X) = z(X, r)p(k). The following are equivalent:

(1) W0,W1 determine the same element in π0(z(X, r)p(•)) = Hp
2r(X,Z(r));

(2) W0,W1 determine the same element in π0(zequi(X, r)p(•));
(3) there exists an (r+1)-dimensional cycleW ↪→X×A1 satisfying the following properties:

(i) W is flat over A1;

(ii) for all t ∈ A1, Wt ∈ Zr,p(Xt); and

(iii) W0 =W • (X × 0) and W1 =W • (X × 1);

(4) there exists an effective (r + 1)-dimensional cycle W ↪→ X × A1 satisfying (i) and (ii),
and a cycle E ∈ Zr,p(X) such that W • (X × 0) = W0 + E and W • (X × 1) = W1 + E.

If W0,W1 satisfy these conditions, then we say that they are rationally equivalent as r-
cycles of perversity p, written W0 ∼p W1. We denote by Ar,p(X) the quotient of Zr,p(X) by the
relation ∼p:

Ar,p(X) ≡ Zr,p(X)/∼p . (2.4.1)
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Proof. The equivalence of (1) and (2) follows from the observation that relative cycles are
automatically flat (hence, equidimensional) over a smooth base of dimension at most one.

To show the equivalence of the second and third conditions, observe that elements of
zequi(X, r)p(∆

1) are in bijective correspondence with (r + 1)-dimensional cycles W ↪→ X × A1

satisfying the conditions (i) and (ii) of the third condition.
The equivalence of the third and fourth conditions is essentially verified in [Ful98,

Example 1.6.2]. 2

Forgetting the stratification ofX determines a group homomorphism from Ar,p(X) to rational
equivalence classes of r-cycles on X, Ar,p(X)→ Ar(X), which need not be injective or surjective.

The following proposition establishes a perverse cycle class map from our perversity p
Chow group to the Goresky–MacPherson group. We ignore a slight notational conflict; our
pi corresponds to p2i in the Goresky–MacPherson convention. We use the geometric model for
intersection homology as developed in [GM80, § 1.3]: instead of considering the usual complex
of (locally finite) chains, one considers the subcomplex of chains whose excess intersection with
the strata is controlled by p, and with boundary satisfying a similar condition. The homology
groups of this complex are the intersection homology groups of perversity p; these turn out to
be independent of the stratification, as established via the sheaf-theoretic approach in [GM83,
§ 4, Corollary 1].

Our original hope was to define purely algebro-geometrically a pairing Ar,p(X)×As,q(X)→
Ar+s−d,p+q(X) which agrees with the Goresky–MacPherson pairing via the perverse cycle class
map. The construction of such a pairing, and the study of the dependence of our groups on the
stratification, seem to require additional geometric input.

Proposition 2.5. Let X be a stratified variety of dimension d over C, and suppose the
stratification is sufficiently fine to compute the intersection homology groups IH p

∗(X). Let
Ar,p(X) (2.4.1) denote the perversity p Chow group with respect to the same stratification.
Then there is a canonical perverse cycle class map

Ar,p(X)→ IH p
2r(X,Z).

Proof. If α is an algebraic cycle in Zr,p(X), then a triangulation of α determines a cycle in the
intersection chain complex. It suffices to show that if α ∼p α′, then the difference α−α′ goes to

zero in IH p
2r(X,Z). If α ∼p α′, then there exists a cycle W on X × P1 such that W0 = α + E

and W1 = α′ + E, with α, α′, E ∈ Zr,p(X).
We equip X × P1 with the stratification given by pulling back the stratification of X. We

claim W determines a class in IH p
2r+2(X × P1,Z). This follows from the observation that if

Y ↪→ X is a Cartier divisor, β is an (r+ 1)-dimensional cycle on X not contained in Y , T ↪→ X
is closed, and the r-cycle β ∩ Y has excess 6 e with T ∩ Y ↪→ Y in Y , then β itself has excess
6 e with T ↪→ X.

We utilize the intersection pairing

H2(X × P1,Z)× IH p
2r+2(X × P1,Z)→ IH p

2r(X × P1,Z).

The pair (X × 0,W) intersects properly in each stratum Xi × P1 since Xi × 0 does not contain
W∩ (Xi×P1), and the same holds for the pair (X×∞,W). Therefore, the product [X×0] · [W]
is represented by the class of W0, and similarly [X × ∞] · [W] = [W∞]. The divisors X × 0,
X ×∞ ↪→ X × P1 determine the same class in H2(X × P1,Z), so [W0] = [α + E] = [α′ + E] =
[W∞] ∈ IH p

2r(X × P1,Z), hence [α]− [α′] = 0 ∈ IH p
2r(X × P1,Z).
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There are push-forward morphisms 0∗,∞∗ : IH p
2r(X,Z)→ IH p

2r(X ×P1,Z) and a projection

morphism p∗ : IH p
2r(X×P1,Z)→ IH p

2r(X,Z) (see [Fri03, Proof of Proposition 2.1]). Both 0 and

∞ are sections to p, so p∗◦0∗ and p∗◦∞∗ are both the identity, and this completes the proof. 2

Remark 2.6. For X projective, Flannery constructed a morphism from the homotopy groups

of the space of algebraic cycles of some perversity (i.e. semi-topological intersection homology

groups) to the Goresky–MacPherson groups [Fla94].

2.3 Applications of Voevodsky acyclicity

We now use Voevodsky’s results on the cohomology of pretheories to relate z(X, r)p(•) and

zequi(X, r)p(•). A pretheory is a presheaf equipped with push-forward maps along relative divisors

in relative smooth curves (over smooth bases). Here we show the subpresheaves defined by

incidence data are in fact subpretheories.

Lemma 2.7. Let X be an equidimensional k-scheme, and let (T , p) be an incidence datum on X.

The subpresheaves zequi(X, r)T ,p and z(X, r)T ,p are subpretheories inside zequi(X, r) and z(X, r).

Proof. We recall that both zequi(X, r) and zequi(X, r)cdh = z(X, r) admit canonical structures

of pretheories (in the sense of Voevodsky) in such a way that the canonical morphism

zequi(X, r) → zequi(X, r)cdh is a morphism of pretheories [FV00, Remark 5.10]. The pretheory

structure is defined using intersection followed by push-forward along a finite morphism [FV00,

Proposition 5.7]. For notational simplicity we treat here only the case z(X, r). So suppose U is a

smooth k-scheme, C → U is a smooth curve, and Z ∈ cequi(C/U, 0) with morphisms f : Z → C

and p : Z → U . (We use c instead of z to indicate that the support of Z is proper over U ;

see [SV00, Lemma 3.3.9].) For W ∈ z(X, r)(C), we first form the intersection WZ of W ↪→ C×X
with the Cartier divisor Z × X ↪→ C × X. The cycle φC/U (Z)(W ) ∈ z(X, r)(U) is then the

push-forward (p× id)∗(WZ) of WZ along (the proper morphism) p × id : Z × X → U × X. In

particular, the support of φC/U (Z)(W ) at u ∈ U is contained in the union of the supports of Wc

for c ∈ f(p−1(u)). Therefore, W ∈ z(X, r)T ,p(C) implies φC/U (Z)(W ) ∈ z(X, r)T ,p(U), and the

subpresheaves zequi(X, r)T ,p and z(X, r)T ,p are subpretheories inside zequi(X, r) and z(X, r). 2

Remark 2.8. The pretheory structure may be phrased as a coherent system of morphisms

cequi(C/U, 0) → Hom(z(X, r)(C), z(X, r)(U)) for all relative curves C → U . A presheaf with

transfers F has push-forwards along all Z ∈ c(U ×Y/U, 0) for U, Y ∈ Sm/k, i.e. is equipped with

a coherent system of morphisms c(U × Y/U, 0)→ Hom(F(Y ),F(U)), hence has more structure

than a pretheory [Voe00, Proposition 3.1.11]. Since the construction in the proof of Lemma 2.7

works with Z ∈ c(U × Y/U, 0), the presheaves zequi(X, r)p and z(X, r)p are in fact presheaves

with transfers.

Proposition 2.9. Let X be a quasi-projective variety, and let (T , p) be an incidence datum on

X. Assume k admits resolution of singularities. Then the canonical morphism zequi(X, r)T ,p →

z(X, r)T ,p induces a quasi-isomorphism of Suslin complexes.

Proof. Since the canonical morphism of pretheories zequi(X, r)T ,p → z(X, r)T ,p becomes an

isomorphism after cdh-sheafification, Voevodsky’s results on the cohomology of pretheories imply

C∗(zequi(X, r)T ,p)→ C∗(z(X, r)T ,p) is a quasi-isomorphism [FV00, Theorem 5.5(2)]. 2
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The key additional property satisfied by z(X, r) and not zequi(X, r) is the following
localization property. By [SV00, Theorem 4.3.1], if i : X∞ ↪→ X is a closed immersion with
open complement j : U ⊂ X, there is an exact sequence of cdh-sheaves:

0→ z(X∞, r)
i∗−→ z(X, r)

j∗−→ z(U, r)→ 0. (2.9.1)

There is not such a short exact sequence with z(−) replaced by zequi(−).

Theorem 2.10. Let X be a quasi-projective variety, and let (T , p) be an incidence datum on X.
Suppose j : X ⊂ X is an open immersion with X projective, and let i : X∞ ↪→ X denote the
closed complement. Assume k admits resolution of singularities. There is an exact sequence of
cdh-sheaves:

0→ z(X∞, r)
i∗−→ z(X, r)T ,p

j∗−→ z(X, r)T ,p→ 0 (2.10.1)

which determines a distinguished triangle of Suslin complexes

C∗(z(X∞, r))
i∗−→ C∗(z(X, r)T ,p)

j∗−→ C∗(z(X, r)T ,p)→ C∗(z(X∞, r))[1]

and hence a long exact sequence of the corresponding homology groups.

Proof. The exactness of the asserted exact sequence is clear except at the final term. Given
α ∈ z(X, r)T ,p(U) ⊂ z(X, r)(U), by (2.9.1) there exists a cdh-cover p : U ′ → U and an
element α′ ∈ z(X, r)(U ′) such that j∗(α′) = p∗(α). But p∗(α) ∈ z(X, r)T ,p(U ′), so by definition
α′ ∈ z(X, r)T ,p(U ′). The distinguished triangle now follows from [FV00, Theorem 5.5(2)]. 2

Remark 2.11. As alluded to towards the end of § 1, Proposition 2.9 and Theorem 2.10 hold
unconditionally with Z[1/p] coefficients over a perfect field of positive characteristic p by the
result of Kelly [Kel13, Theorem 5.3.1].

3. Suspension theorems

In this section, we adapt the proof of Lawson [Law89] (formulated in more algebraic
terms in [Fri91] and adapted further in [FV00]) to establish ‘Lawson suspension theorems’
(A1-invariance) for perversity cycles. Gajer [Gaj97] used similar ideas in the semi-topological
setting.

Let X be a projective variety of dimension d equipped with an embedding X ↪→ PN . There
is an induced embedding Σ(X) ↪→ Σ(PN ) = PN+1, where Σ(−) denotes the algebraic suspension.
If PN ↪→ Σ(PN ) is defined by the vanishing of the suspension coordinate, then the identification
X = Σ(X) ∩ PN allows us to view subvarieties of X as subvarieties of PN+1. If X ′ ⊂ X is
an open subscheme of a projective variety X with complement X∞, then we define Σ(X ′) ≡
Σ(X)− Σ(X∞); this is an open subscheme of Σ(X).

If (T , p) is an incidence datum on X, then we define Σ(T ) := {Σ(T )}T∈T and we consider
both (T , p) and (Σ(T ), p) as incidence data on Σ(X).

Our arguments in this section use geometric constructions on the Chow monoids and therefore
our results concern presheaves of equidimensional cycles and their cdh-sheafifications. To obtain
the results for zequi(X, r)T ,p, we apply the functor Hom (−, Cr+1(Σ(X)))+ (or the subfunctor of
morphisms satisfying the field of definition condition) to our constructions. For z(X, r)T ,p, we
apply the functor Homc.alg(−,Zr+1(Σ(X))) or its field of definition subfunctor. For both cases
we observe our constructions respect the field of definition condition.
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Theorem 3.1. Let X be a projective variety, and let (T , p) be a finite incidence datum on X.
The fiberwise suspension morphism of presheaves

ΣX : zequi(X, r)T ,p→ zequi(Σ(X), r + 1)Σ(T ),p

sending an effective cycle W ⊂ U × X to the effective cycle ΣX(W ) ⊂ U × Σ(X) induces a
homotopy equivalence

zequi(X, r)T ,p(•)
∼
→ zequi(Σ(X), r + 1)Σ(T ),p(•). (3.1.1)

The fiberwise suspension also induces a homotopy equivalence

z(X, r)T ,p(•)
∼
→ z(Σ(X), r + 1)Σ(T ),p(•).

We establish this homotopy equivalence (3.1.1) by factoring ΣX as a composition

zequi(X, r)T ,p→ zequi(Σ(X), r + 1)X,T ,p→ zequi(Σ(X), r + 1)Σ(T ),p, (3.1.2)

showing in Proposition 3.3 (respectively, in Proposition 3.4) that the first (respectively, second)
morphism induces a homotopy equivalence upon evaluation at ∆•. The presheaf zequi(Σ(X),
r+1)X,T ,p consists of cycles meeting X properly, and having excess intersection with T no larger
than p(T ).

Before giving the proof of Theorem 3.1, we state explicitly the special case of primary interest,
the suspension isomorphism for perversity cycles on a stratified projective variety.

Corollary 3.2. Let X be a stratified projective variety, and let p be a perversity. Equip Σ(X)
with the stratification {Σ(Xi)}, where {Xi} is the given stratification of X. Fiberwise suspension
induces homotopy equivalences

ΣX : zequi(X, r)p(•)
∼
→ zequi(Σ(X), r + 1)p(•) and

ΣX : z(X, r)p(•)
∼
→ z(Σ(X), r + 1)p(•).

The proof of our first homotopy equivalence uses the technique of deformation to the normal
cone (see [Ful98, ch. 5]), called ‘holomorphic taffy’ by Lawson in [Law89].

Proposition 3.3. Retain the notation and hypotheses of Theorem 3.1. The morphism
ΣX : zequi(X, r)T ,p→ zequi(Σ(X), r+1)X,T ,p induces a homotopy equivalence zequi(X, r)T ,p(•)

∼
→

zequi(Σ(X), r + 1)X,T ,p(•). The same result holds for the cdh-sheafification.

Proof. Let Cr+1,d(Σ(X))X denote the open subset of the Chow variety consisting of cycles α
such that α ∩ X has dimension r, i.e. α is not contained in X. The suspension morphism
ΣX : Cr,d(X)→ Cr+1,d(Σ(X)) factors through Cr+1,d(Σ(X))X . As shown in [Fri91, Proposition 3.2],
there is a continuous algebraic map (i.e. a morphism on semi-normalizations)

ϕ : Cr+1,d(Σ(X))X × A1
→ Cr+1,d(Σ(X))X

with the following properties [Fri91, Proposition 3.2] (here ϕt denotes the restriction of ϕ to
Cr+1,d(Σ(X))X × {t}):

(1) ϕ0 is the identity on Cr+1,d(Σ(X))X ;

(2) ϕ1 has image contained in ΣX(Cr,d(X)), in fact ϕ1(α) = ΣX(α ∩X);
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(3) ϕt acts as the identity on ΣX(Cr,d(X)) for all t ∈ A1, in fact ϕt (for t 6= 1) is induced by an
automorphism of PN+1 fixing the suspension hyperplane PN ;

(4) ϕ does not depend on the degree d.

From properties (2) and (3) it follows that ϕ preserves the field of definition of a cycle. For
t 6= 1, we use that the automorphism is defined over the ground field k. For t = 1, the operation
α 7→ ΣX(α ∩X) may be described as eliminating all instances of the suspension coordinate in
the equations defining α.

We adapt this construction as follows. For any U∈ Sm/k, let zequi(Σ(X), r + 1)X,T ,p(U) ⊂
zequi(Σ(X), r+1)(U) consist of those U -relative cycles with the property that each specialization
meets X properly and meets T ∈ T with excess at most p(T ). We proceed to show that ϕ induces
a morphism of presheaves (on Sm/k):

ϕT ,p : zequi(Σ(X), r + 1)X,T ,p(−)→ zequi(Σ(X), r + 1)X,T ,p(−× A1) (3.3.1)

with the following properties:

(1) (ϕT ,p)0 is the identity on zequi(Σ(X), r + 1)X,T ,p;

(2) (ϕT ,p)1 has image contained in ΣX(zequi(X, r)T ,p), in fact (ϕT ,p)1(α) = ΣX(α∩X) for any
α ∈ zequi(Σ(X), r + 1)X,T ,p(U); and

(3) (ϕT ,p)t acts as the identity on ΣX(zequi(X, r)T ,p) for all t ∈ A1, in fact (ϕT ,p)t (for t 6= 1)
is induced by an automorphism of PN+1 fixing the suspension hyperplane PN .

(Here (ϕT ,p)t denotes ϕT ,p followed by restriction to (−×{t}).) There is a canonical inclusion
of presheaves of abelian monoids on Sm/k:

zeff
equi(Σ(X), r + 1)X,T ,p(−)→ Hom(−, Cr+1(Σ(X))X)

which induces
zequi(Σ(X), r + 1)X,T ,p(−)→ Hom(−, Cr+1(Σ(X))X)+.

Now ϕ induces a natural transformation

Hom(−, Cr+1(Σ(X))X)+
→ Hom(−× A1, Cr+1(Σ(X))X)+ (3.3.2)

sending a morphism f : U → Cr+1(Σ(X))X to the composition ϕ ◦ (f × idA1) : U × A1
→

Cr+1(Σ(X))X . We claim that this restricts to our desired morphism ϕT ,p. Properties (2) and (3)
of ϕ imply that for all α ∈ Cr+1(Σ(X))X and all t ∈ A1, we have ϕt(α) ∩ T = α ∩ T, so the
incidence conditions with the sets appearing in T are preserved. We have already observed that
ϕ preserves the field of definition of a cycle.

We are now in a position to apply [FV00, Lemma 6.6], and this completes the proof
for the equi-theory. If we work with continuous algebraic maps into Zr+1(Σ(X)) instead of
Hom(−, Cr+1(Σ(X))X)+, we obtain the result for the (non-equidimensional) cdh theory
z(−,−). 2

The proof of our second homotopy equivalence uses the technique first introduced by Lawson
in [Law89], which he calls ‘magic fans’.

Proposition 3.4. Retain the notation and hypotheses of Theorem 3.1. The canonical inclusion
zequi(Σ(X), r + 1)X,T ,p→ zequi(Σ(X), r + 1)Σ(T ),p induces a homotopy equivalence

zequi(Σ(X), r + 1)X,T ,p(•)
∼
→ zequi(Σ(X), r + 1)Σ(T ),p(•).

The same result holds for the cdh-sheafification.
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Proof. Let α ∈ Zr,p(X), and suppose α = α+ − α−, where α+ and α− are effective cycles with
no components in common. Then Zr,6d,p(X) ⊂ Zr,p(X) consists of those cycles α such that
deg(α+) 6 d and deg(α−) 6 d (with respect to the given closed embedding X ⊂ PN ). Since the
degree is invariant under field extensions, this pointwise condition defines a subpresheaf in our
cycle presheaves.

As shown in [Fri91, Proposition 3.5], for every d > 0, there exists an integer ed such that for
every e > ed there exists a morphism of semi-normal schemes

ψe : Cr+1,6d(Σ(X))× A1
→ Cr+1,6de(Σ(X)) (3.4.1)

with the following properties:

(1) ψe(α, 0) = e · α for all α ∈ Cr+1,6d(Σ(X)); and

(2) ψe(α, t) ∈ Cr+1,6de(Σ(X))X , for all α ∈ Cr+1,6d(Σ(X)) and all t 6= 0 ∈ A1.

Since the A1 corresponds to a family of divisors defined over the ground field, and the
suspension and projection operations preserve the field of definition of a cycle, the morphism ψe
preserves the field of definition condition.

For ease of exposition we introduce some notation. Let F ′6d denote the presheaf zeff
equi(Σ(X),

r + 1,6 d)X,T ,p, and let F6d denote the presheaf zeff
equi(Σ(X), r + 1,6 d)Σ(T ),p. We have the

following commutative diagram of canonical inclusions of presheaves on Sm/k.

F ′6d //

��

Hom(−, Cr+1,6d(Σ(X))X)

��
F6d

// Hom(−, Cr+1,6d(Σ(X)))

We let zequi(Σ(X), r + 1,6 d)Σ(T ),p denote the quotient of F6d × F6d by the evident relation:
(a, b) ∼ (a′, b′) if a + b′ = a′ + b as cycles. Note that zequi(Σ(X), r + 1)Σ(T ),p =

⋃
d zequi(Σ(X),

r + 1,6 d)Σ(T ),p. We employ the analogous notation with the subscript X, T , p.
We claim that ψe of (3.4.1) restricts to a morphism of presheaves (ψe)T ,p : F6d(−) →

F6de(−× A1) with the following properties:

(1) ((ψe)T ,p)0(α) = e · α for all α ∈ F6d(U); and

(2) ((ψe)T ,p)t(α) ∈ F ′de(U) for all α ∈ F6d(U) and all t 6= 0 ∈ A1.

Since the operation ψe affects only the suspension coordinate, it follows that

(ψe)t(α) ∩ Σ(T ) = (ψe)t(α ∩ Σ(T ))

for all α ∈ Cr+1(Σ(X)), t ∈ A1. The right-hand side is controlled by hypothesis, and a bound on
the dimension of the left-hand side defines F6de. Therefore, ψe restricts to a morphism on the
subpresheaf F6d.

The first property is immediate from the corresponding condition of ψe. The second property
means that ψe improves the incidence with T ↪→ Σ(T ) and with X ↪→ Σ(X). The improvement
with X ↪→ Σ(X) is due to [Fri91, Proposition 3.5], and the incidence with T is handled similarly.
Namely, given a bounded family of cycles {α} on Σ(X) satisfying the (Σ(T ), p) condition, we
consider the bounded families of (r+ 1− codimX(T ) + p(T ))-dimensional cycles {|α∩Σ(T )|} for
all T ∈ T . Following [Fri91, Proposition 3.5] we find a P1-family of hypersurfaces (of large degree
e depending on these bounded families) through e ·PN+1 such that no member (besides e ·PN+1)
contains any of the cycles in the bounded families. (The finiteness of T guarantees we can find
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a family which works uniformly.) This guarantees that the moved cycle satisfies the (stronger)
(X, T , p) condition.

The rest is formal. The morphism of presheaves

(F6d ×F6d)(−)→ zequi(Σ(X), r + 1)Σ(T ),p(−× A1)

defined by
(a, b) 7→ ((ψe+1)T ,p(a)− (ψe)T ,p(a))− ((ψe+1)T ,p(b)− (ψe)T ,p(b))

determines a natural transformation

zequi(Σ(X), r + 1,6 d)Σ(T ),p(−)→ zequi(Σ(X), r + 1)Σ(T ),p(−× A1) (3.4.2)

which relates the identity (at t = 0) to a morphism factoring (for all t 6= 0) through
zequi(Σ(X), r + 1)X,T ,p. Now [FV00, Lemma 6.6] completes the proof, as in the conclusion of
the proof of Proposition 3.3. 2

We next extend Theorem 3.1 and Corollary 3.2 to quasi-projective varieties. The proof
employs the localization theorem for z(X, r)T ,p and the comparison of zequi(X, r)T ,p with
z(X, r)T ,p, and thus requires that k admits resolution of singularities, or inverting char(k) = p > 0
in the coefficients. Localization provides us with the distinguished triangles of Proposition 2.10
which we use to reduce the case of X quasi-projective to the consideration of the projective
closure X of X and the projective complement X∞ = X −X.

Theorem 3.5. Let X be a quasi-projective variety, and let (T , p) be a finite incidence datum
on X. Assume that k admits resolution of singularities. Then the morphism of presheaves

ΣX : zequi(X, r)T ,p→ zequi(Σ(X), r + 1)Σ(T ),p

induces a homotopy equivalence

zequi(X, r)T ,p(•)
∼
→ zequi(Σ(X), r + 1)Σ(T ),p(•).

Consequently, ifX is a stratified quasi-projective variety and p is a perversity, then the suspension
morphism of presheaves induces homotopy equivalences

ΣX : zequi(X, r)p(•)
∼
→ zequi(Σ(X), r + 1)p(•) and

ΣX : z(X, r)p(•)
∼
→ z(Σ(X), r + 1)p(•).

Proof. By Proposition 2.9, it suffices to prove the statements for the morphism ΣX : z(X, r)T ,p→
z(Σ(X), r + 1)Σ(T ),p.

Choose a projective compactification X of X, and regard (T , p) as an incidence datum on
X. The morphism ΣX∞ : z(X∞, r) → z(Σ(X∞), r + 1) induces a quasi-isomorphism of Suslin
complexes by the usual A1-homotopy invariance [FV00, Theorem 8.3(1)] and the isomorphism of
sheaves z(Σ(X∞), r+1) ∼= z(X×A1, r+1). The morphism ΣX : z(X, r)T ,p→ z(Σ(X), r+1)Σ(T ),p

induces a homotopy equivalence after evaluation at ∆• by Theorem 3.1.
The suspension map determines a map of distinguished triangles of Suslin complexes as in

Proposition 2.10 which determines a map of long exact sequences of homology groups. We view
these homology groups as the homotopy groups of the simplicial abelian groups obtained by
applying to ∆• the short exact sequences of sheaves of the form (2.10.1). Thus, the 5-Lemma
enables us to conclude the asserted isomorphisms. 2

Remark 3.6. Theorem 3.5 holds unconditionally over a perfect field of positive characteristic p
with Z[1/p] coefficients.
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4. Some intersection products

Let X be a possibly singular variety of pure dimension d with smooth locus Xsm open in X and
singular locus Xsing = X −Xsm. For the remainder of the paper we assume that X is equipped
with a stratification such that the singular locus of X is contained in X1.

Let V,W be closed irreducible subvarieties of X of dimension r, s, respectively, and assume
that the dimension of the intersection of the supports |V | ∩ |W | is 6 r+ s−d (i.e. V,W intersect
properly). Assume that no component of |V | ∩ |W | ∩Xsing has dimension > r + s− d. Then we
justify in Theorem 4.2 our view that a good candidate for V •W on X is the closure in X of the
usual intersection product of V ∩Xsm,W ∩Xsm on the smooth variety Xsm.

With this in mind, we first formalize a stratified version of ‘proper’ intersection of cycles on
a possibly singular variety X.

Definition 4.1. Let X be a stratified variety of pure dimension d, let α, β be algebraic cycles
on X of dimension r, s, and let c be a perversity. Then (α, β) is said to satisfy condition (∗, c)
provided that

dim(|α| ∩ |β| ∩Xi) 6 r + s− d− (i− ci), for all i = 1, . . . , d

and dim(|α| ∩ |β|) 6 r + s− d.

As we shall see in § 6 (Propositions 6.8 and 6.9, and Corollary 6.11), such pairs are provided
by cycles of perversity p and generalized cocycles of perversity q, if p + q 6 t, where t denotes
the top perversity.

Theorem 4.2. Let X be a stratified variety of pure dimension d. Let zr∗s,c(X)⊂ z(X, r)×z(X, s)
denote the subsheaf on (Sch/k) consisting of pairs satisfying condition (∗, c). Then the closure
of the intersection pairing on the smooth locus of X defines a morphism of functors on (Sch/k):

• : zr∗s,c(X)→ z(X, r + s− d)c.

Proof. A pair (α, β) ∈ z(X, r)(U) × z(X, s)(U) belongs to zr∗s,c(X)(U) provided that every
specialization (αu, βu) satisfies (∗, c) on Xu. If U ′ → U is a morphism in Sch/k, then the
specialization of (α, β)U ′ at u′ ∈ U ′ has support equal to the base change via u′ → u of the
support of |αu| ∩ |βu|, hence satisfies (∗, c). Therefore, the condition (∗, c) defines a presheaf.

The morphism of functors is determined by the intersection product on the smooth locus of
X. For the moment assume U is integral with generic point η. We send (α, β) to α • β, defined
to be the closure in X × U of the r + s − d-dimensional cycle (αη)

sm•Xsm
η

(βη)
sm in Xsm

η . This
is a cycle on X × U whose generic points lie over η, so we need to show it has well-defined
specializations.

Every pair (αu, βu) satisfies (∗, c), therefore |αu|∩ |βu| has its generic points in Xsm
u for every

u ∈ U . The intersection product on smooth varieties is compatible with specialization, so the
specialization of α•β along a fat point (x0, x1) over u ∈ U is the closure in Xu of the intersection
product of ((x0, x1)∗(α))sm and ((x0, x1)∗(β))sm in Xsm

u . By hypothesis the specializations of α
and β are independent of the choice of fat point, so the same is true of α•β. Since the intersection
product preserves integral coefficients, if α and β have universally integral coefficients then so
must α • β.

If U has several irreducible components, we define α • β by the procedure above on each
component. Where the components of U meet, the specializations agree since they may be
described in terms of specializations of α and β, which agree by hypothesis. 2
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Remark 4.3. We remind the reader that a Z-bilinear pairing A•×B•→ C• of simplicial abelian
groups factors as a map of simplicial sets through the smash product of A• and B•,

A• ×B•→ A• ∧B•→ C•

and thus determines a pairing on homotopy groups

πi(A•)⊗ πj(B•)→ πi+j(C•). (4.3.1)

Theorem 4.2 identifies a subsheaf of z(X, r)× z(X, s) on which intersections can be formed.
The maps z(X, r) × z(X, s)← zr∗s,c(X)→ z(X, r + s − d)c then determine a partially defined
pairing on homotopy groups.

We make explicit the following special case of the functoriality of Theorem 4.2. In fact, much
of the above proof of Theorem 4.2 can be interpreted as confirming the commutativity of the
diagram in the following corollary.

Corollary 4.4. Retain the notation and hypotheses of Theorem 4.2. Let C be a smooth and
connected curve, let η ∈ C be the generic point of C, and let γ ∈ C be a closed point of C. Then
the following diagram commutes.

zr∗s,c(X)(η)
• // z(X, r + s− d)c(η)

zr∗s,c(X)(C)

��

OO

• // z(X, r + s− d)c(C)

OO

��
zr∗s,c(X)(γ)

• // z(X, r + s− d)c(γ)

Proposition 4.5. Let X be a projective variety of dimension d with only isolated singularities
and stratified by Xsing = Xd = · · · = X1. Let p and q be perversities such that p + q = t,
and let r and s be positive integers such that r + s − d > 0. Then the canonical inclusion
zr∗s,p+q(X)→ z(X, r)p × z(X, s)q induces a homotopy equivalence

zr∗s,t(X)(•) ∼→ (z(X, r)p × z(X, s)q)(•)

and hence there is an intersection pairing

Hp
n(X,Z(r))⊗Hq

m(X,Z(s))→ Hn+m−2d(X,Z(r + s− d)).

Proof. First we consider the case that the perversities both permit intersection with the singular
locus. This means that r − d + pd and s − d + qd are both non-negative, hence r + s − d >
d − (pd + qd). Since pd + qd 6 d − 1 this implies r + s − d > 1. In this situation we use the
functor isomorphisms z(X−Xsing, r) ∼= z(X, r) = z(X, r)p (and similarly with r replaced by s or
r+ s− d) and we are reduced to the case where X is smooth. Then the equivalence and pairing
are consequences of the Friedlander–Lawson moving lemma for families [FL98, Theorem 3.1], as
in [FV00, Proposition 8.6].

The hypothesis p+q = t implies that at least one of the perversity conditions allows incidence
with the singular locus; without loss of generality we suppose this is p, and q disallows incidence
with the singular locus. Let α ∈ z(X, r)p(T ) and β ∈ z(X, s)q(T ) be bounded families.
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Now [FL98, Theorem 1.7] implies that we can find a sequence of projections X → Pd such

that the iterated residual cycle of every αt meets properly every βt except in the singular locus.

But every βt is disjoint from the singular locus, so every αt meets properly every βt. Using moves

in projective space one obtains the desired move parameterized by a non-empty open subset of

A1. To obtain an honest A1-family, we use the trick of Voevodsky (as in the proof of [FV00,

Theorem 6.1]). The existence of this A1-family implies the equivalence upon evaluation at ∆•

by the usual argument [FV00, Lemma 6.6]. 2

Remark 4.6. The iterated residual cycle construction does not seem adequate to move a bounded

family of cycles α all of whose elements are disjoint from Xsing into general position (with

respect to another bounded family β) while preserving disjointness from Xsing. Let s ∈ Xsing be

a singular point of X, and let p1(α) ⊂ X denote the ‘sweep’ of α, i.e. the image of the morphism

α ↪→ X×T → X. Let Y ↪→ G(1, N) denote the set of lines connecting s to a point in the sweep,

i.e. {`(s, z) | z ∈ p1(α)}. Now α→ X cannot be surjective since every αt misses s, but it can be

dense, and if it is dense, then dimY = d := dimX.

Any projection p : X → Pd arises from an embedding X ↪→ PN and a choice of linear space

V ∼= PN−d−1 ↪→ Pn, i.e. a point [V ] ∈ G(N − d− 1, N). The residual cycle of α with respect to p

is disjoint from s exactly when p(s) /∈ p(α), which means the corresponding linear space V must

be disjoint from all lines in Y .

Now consider the incidence correspondence I ↪→ G(1, N)×G(N−d−1, N). The codimension

of I is d. If dimY = d the morphism I ∩ (Y × G(N − d − 1, N))→ G(N − d − 1, N) may be

surjective, i.e. the union of the codimension d sets Iy ↪→ G(N − d− 1, N) (as y ranges over Y )

could comprise all of G(N − d− 1, N). In this situation the projection required for the residual

cycle construction does not exist.

Example 4.7. We consider a simple example due to Zobel [Zob61] of a singular variety X on

which there is no decent intersection product on usual rational equivalence classes of cycles.

Namely, X is the cone on a quadric surface Q ↪→ P3, i.e. on P1×P1 ∼= Q. We refer to the unique

singular point of X as its vertex v.

We use the ‘obvious’ stratification, namely, v = X3 = X2 = X1 ↪→ X. Since p3 6 p2 + 1 and

p3 6 p1 + 2, the condition on the incidence with X3 determines the perversity. Therefore, we

abuse notation and write p for any perversity with p3 = p, where p ∈ {0, 1, 2}.
By the A1-invariance of Chow groups, we have:

• A2(X) = A2,1(X) = A2,2(X) ∼= Z ⊕ Z, with generators corresponding to cones on the two

rulings of P1 × P1; and

• A1(X) = A1,2(X) ∼= Z, with generator corresponding to the cone on a point in P1 × P1.

The classes of the lines L = P1 × q, M = p × P1 ↪→ Q ↪→ X are equal in A1(X), and each

generates. Note that each is rationally equivalent to N = C(p × q). The lines L and M are

contained in Xsm but N is not. Consider the divisor D = C(P1 × q′) in A2(X) for some q′ 6= q.

We have |D| ∩ |L| = ∅ while |D| ∩ |M | = p × q′ ∈ Q ↪→ X, and surely the coefficient of p × q′

should be 1. Therefore, there is no reasonable pairing A2(X)× A1(X)→ A0(X)
deg−−→ Z, even if

we consider only intersections which occur in the smooth locus of X. Note that Proposition 4.5

implies that any rational equivalence between L and M passes through the vertex, and that the

classes of L and M must be distinct in A1,0(X).

We proceed to compute the intersection pairing (guaranteed by Proposition 4.5) on the

intersection Chow groups.
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To calculate the zero perversity groups, we use that X is birational to P1 × Q, and that
geometry away from the vertex corresponds to geometry away from∞×Q. Taking the birational
transform of divisors and rational equivalences (all missing the vertex) identifies A2,0(X) with

the relative Picard group Pic(P1 × Q,∞ × Q). We have Pic(P1 × Q,∞ × Q) ∼= Z (generated
by O(1) of the fiber of P1 × Q → Q) since line bundles pulled back from Q have nontrivial
intersections with the divisor ∞×Q. In essence, we use the exact sequence

Γ(P1 ×Q,O∗)→ Γ(∞×Q,O∗)→ Pic(P1 ×Q,∞×Q)→ Pic(P1 ×Q)→ Pic(∞×Q)

in which the first arrow is an isomorphism and the last may be identified with a projection
Z3
→ Z2. The map Z ∼= A2,0(X)→ A2(X) ∼= Z ⊕ Z sends 1 to (1, 1). Proposition 4.5 yields a

pairing (in the notation of (2.4.1))

A2,0(X)×A1(X)→ A0(X) ∼= Z, (D,α) 7→ deg(O(D)|α).

The same assignment determines a pairing A2,0(X)×A1,0(X)→ A0(X) ∼= Z; we proceed to
calculate the group A1,0(X) by a similar procedure. The birational transform identifies A1,0(X) =

A1,1(X) with 1-cycles on P1 × Q disjoint from ∞ × Q, modulo rational equivalences avoiding
∞ × Q. To calculate this group, note that an integral 1-cycle C disjoint from ∞ × Q must
be contained in p × Q for some p 6= ∞ ∈ P1. Such 1-cycles C,C ′ (contained in p × Q, p′ × Q,
respectively) are rationally equivalent on P1 × Q if and only if they are rationally equivalent
avoiding ∞ × Q. Since C ↪→ p × Q can be moved (avoiding ∞ × Q) to 0 × Q, say, we find
A1,0(X) ∼= A1(P1 × P1) ∼= Z⊕ Z.

The map Z⊕ Z ∼= A1,0(X) = A1,1(X)→ A1,2(X) = A1(X) ∼= Z sends both (1, 0) and (0, 1)
to 1. The pairing A2(X) × A1,0(X)→ A0(X) ∼= Z may be thought of as sending (D,C) to the
degree of O(D ∩Xsm)|C since the Weil divisor D is Cartier along C ↪→ Xsm.

There are also pairings between divisors. Intersection with a Cartier divisor determines
pairings A2,0(X) × A2,0(X) → A1,0(X) and A2,0(X) × A2,1(X) → A1,1(X). Finally, there is
a pairing A2,1(X)×A2,1(X)→ A1,2(X) which is the closure of the intersection product formed
in the smooth locus, given in coordinates by (a, b), (c, d) 7→ ad+ bc.

Example 4.8. More generally, if Y is the cone on a smooth projective variety X of dimension d−1,
given the stratification v = Y d = · · · = Y 1, we have the following computation of the intersection
Chow groups and product of Theorem 4.2. We write p for any perversity with pd = p. There are
two types of groups:
• Ar,p(Y ) = Ar(Y ) ∼= Ar−1(X) (for r > 0 and r− d+ p > 0, so that incidence with the vertex

is allowed); and
• Ar,p(Y ) = Ar,0(Y ) ∼= Ar(X) (for r > 0 and r− d+ p < 0, so that incidence with the vertex

is disallowed).
There are three kinds of pairings:
• Ar,p(Y )×As,q(Y )→ Ar+s−d,p+q(Y ), with p > d− r and q > d− s, provided r+ s− d > 1;

via the identification above this product is given by the intersection product on X:

Ar−1(X)×As−1(X)
•X−→ Ar−1+s−1−(d−1)(X)

• Ar,p(Y )×As,q(Y )→ Ar+s−d,p+q(Y ), with p < d− r and q > d− s; this is given by

Ar(X)×As−1(X)
•X−→ Ar+s−1−(d−1)(X) ∼= Ar+s−d,0(Y )

followed by the canonical morphism Ar+s−d,0(Y )→ Ar+s−d,p+q(Y );
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• Ar,p(Y )×As,q(Y )→ Ar+s−d,p+q(Y ), with p < d− r and q < d− s; this is given by

Ar(X)×As(X)
•X−→ Ar+s−(d−1)(X) ∼= Ar+s−d+1,0(Y )

followed by intersecting with the Cartier divisor X ↪→ Y , which maps Ar+s−d+1,0(Y ) to
Ar+s−d,0(Y ). (Note this pairing is not guaranteed by Proposition 4.5.)

The last pairing is an instance of the following well-known general principle. If i : X ↪→ Y
is a Cartier divisor, and a, b ∈ A∗(X), then i∗(a) · i∗(b) = i∗(a · b) · X in A∗(Y ) provided that
both sides are defined. This identity follows from the projection formula, the associativity of the
intersection product, and the self-intersection formula [Ful98, Corollary 6.3].

5. Generalized cocycles

In this section, X will denote a quasi-projective variety of pure dimension d and Y will denote
a quasi-projective variety of pure dimension n. In Definition 5.1, we define the cdh-sheaf on
Sm/k of codimension t cocycles of perversity p on X with values in Y , zt,p(X,Y ). Following this
definition for a general quasi-projective variety Y , we shall often assume that Y is projective so
that we can interpret zs,p(X,Y ) in terms of maps to Chow varieties.

We recall that an effective algebraic t-cocycle on X with values in Y is the cycle Zf ↪→X×Y
associated with some morphism f : X → Cn−t(Y ). Part of the motivation for considering such
cocycles is that the ith homotopy group of some formulation of the ‘space’ of t-cocycles on X
with values in Pt modulo (t− 1)-cocycles on X with values in Pt−1 represents H2t−i(X,Z(i)) as
in [FV00] (or, in the semi-topological context, LtH2t−i(X) as in [FL92]). An important feature of
cocycle groups is that there are natural cup product pairings on cocycle groups and cap product
pairings relating cocycle groups and cycle groups.

We proceed to develop a theory of ‘generalized cocycles’ on a stratified variety X with values
in Y . As the name suggests, an effective generalized cocycle is given by weakening the condition
that it is the graph of some morphism; instead, in the case Y is projective, we require that it be
the graph of some rational map f : X 99K Cn−t(Y ).

One should view generalized cocycles on X as cycles (on X × Y for some Y ) which are
generically equidimensional over X (i.e. generically satisfy the cocycle condition) and whose
failure to be equidimensional over strata of X is governed by a perversity p. Thus, there is an
additional constraint on a generalized cocycle of a given perversity p to be a generalized cocycle
of some perversity q < p, with usual cocycles satisfying the full equidimensionality condition.
The cap product pairing of § 6 will show that a generalized cocycle of perversity p taken together
with a cycle of perversity q will essentially satisfy the condition (∗, c) with c = p + q. As the
perversity condition p of the generalized cocycle is weakened (i.e. as p increases), such a weakened
generalized cocycle pairs with the perversity q cycles satisfying a stronger perversity condition
(i.e. q decreases).

One formal difference between cycle theories and cocycle theories is that one should not
expect localization in the contravariant variable X. Thus, the proof of the suspension theorem
for generalized cocycle spaces does not proceed by first considering X projective and then using
localization. Instead, one assumes that the covariant variable Y is projective and observes that
the constructions of algebraic homotopies as in § 3 can be employed on Chow varieties of Y .

If X is stratified, then X×Y inherits a stratification from that of X, with (X×Y )i ≡Xi×Y .
We define the group of perversity p cocycles on X with values in Y ,

Zt,p(X,Y ) ⊆ Zd+n−t,p(X × Y ),
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to be the group of (d + n − t)-dimensional cycles α on X × Y with the property that for

x ∈ Xi −Xi+1, the dimension of |α| ∩ (x× Y ) is no larger than n− t+ pi (for i = 1, . . . , d), and

for x ∈ X −X1 the dimension of |α| ∩ (x× Y ) is n− t. Because this condition is a constraint on

the support |α| of α, this does not permit ‘large’ fibers to cancel. Roughly speaking, a cycle lies

in Zd+n−t,p(X × Y ) if its excess with each stratum Xi × Y is not too large; it lies in the smaller

group Zt,p(X,Y ) if in addition this excess is distributed evenly over each stratum Xi −Xi+1.

Definition 5.1. Let p be a perversity, and let t be an integer 0 6 t 6 n. We define

zt,p(X,Y ) ⊆ z(X × Y, d+ n− t)p ⊆ z(X × Y, d+ n− t)

to be the subpresheaf (on Sch/k) whose value on U consists of U -relative cycles with Z-coefficients

W ↪→ U ×X × Y such that for all u ∈ U , the specialization Wu ∈ Zd+n−t(Xu × Y ) belongs to

Zt,p(Xu, Y ). By allowing Z[1/p]-coefficients, we obtain the presheaf zt,p(X,Y )[1/p]. We define

the subpresheaves zt,pequi(X,Y ) ⊆ zequi(X × Y, d+ n− t)p similarly.

We define the bivariant perversity p motivic cohomology group of bidegree (i, t) to be the

group

H i,t,p(X,Y ) ≡ π2t−i(z
t,p(X,Y )(•)).

These groups are contravariantly functorial with respect to flat, stratified morphisms f :X ′→X,

and covariantly functorial with respect to proper morphisms g : Y → Y ′: we have f∗ :H i,t,p(X,Y )

→ H i,t,p(X ′, Y ) and g∗ : H i,t,p(X,Y )→ H i+2r,r+t,p(X,Y ′), where r = dim(Y ′)− dim(Y ).

Lemma 5.2. Let X be a stratified quasi-projective variety and let p be a perversity. The

homotopy class of the map

i` : zt−1,p(X,Pt−1)(•)→ zt,p(X,Pt)(•)

induced by the embedding ` : Pt−1 ↪→ Pt of a hyperplane is independent of the choice of

hyperplane ` (i.e. independent of the choice of linear embedding).

Similarly, the homotopy class of the quotient map

p` : zt,p(X,Pt)(•)→ zt,p(X,Pt)(•)/zt−1,p(X,Pt−1)(•)

is independent of the choice of hyperplane `.

Proof. Let `, `′ : Pt−1
→ Pt be two linear embeddings and let θ ∈ PGLt+1 satisfy the condition

that θ◦` = `′. Choose a map f : A1
→ PGLt+1 with f(0) = id, f(1) = θ. The action of PGLt+1 on

Pt and the morphism f determine a morphism A1 × Pt→ Pt. Pulling back along this morphism

determines a morphism of sheaves

Θ : zt,p(X,Pt)(−)→ zt,p(X,Pt)(−× A1)

such that the composition

Θ ◦ i` : zt−1,p(X,Pt−1)(−)→ zt,p(X,Pt)(−× A1)

is a homotopy relating i` (restriction to (−× {0})) and i`′ (restriction to (−× {1})).
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To prove the second observation, observe that we have a commutative square

zt,p(X,Pt)(•) p` //

θ
��

zt,p(X,Pt)(•)/zt−1,p(X,Pt−1)(•)

θ
��

zt,p(X,Pt)(•) p`′
// zt,p(X,Pt)(•)/zt−1,p(X,Pt−1)(•).

(5.2.1)

Here, θ is the map on quotients induced by θ; both θ, θ are isomorphisms. Since θ is homotopic
to the identity, we conclude that p`, p`′ are homotopic. 2

Definition 5.3. First we define a simplicial abelian group

zt,p(X)(•) := zt,p(X,Pt)(•)/zt−1,p(X,Pt−1)(•);

this is canonical by Lemma 5.2. The perversity p motivic cohomology groups are then defined
to be its homotopy groups:

H i,t,p(X) ≡ π2t−i(z
t,p(X)(•)).

If Voevodsky acyclicity is available, there is a canonical homotopy equivalence

(zt,p(X,Pt)/zt−1,p(X,Pt−1))cdh(•) ∼→ zt,p(X,Pt)(•)/zt−1,p(X,Pt−1)(•)

and so one is not really forced to choose between the quotient simplicial abelian group and
evaluating the quotient sheaf on ∆•.

Remark 5.4. If X is smooth, k admits resolutions of singularities, and p is the zero perversity,
then we recover the motivic cohomology groups of Friedlander–Voevodsky: H i,t,0(X) = H i(X,
Z(t)). This follows from [FV00, Proposition 6.4, Theorems 8.1 and 8.2]. One reason this
comparison is likely to fail for singular X is that the zero perversity condition on a cycle does
not imply it has well-defined specializations (let alone with universally integral coefficients),
whereas the groups H i(X,Z(t)) are defined using cycles which have well-defined specializations
for all x ∈ X. If X is smooth, then the zero perversity condition on a cycle (i.e. the condition

used to define H i,t,0(X)) implies it has well-defined specializations for all x ∈ X by [SV00,
Corollary 3.4.5].

The following proposition relates generalized cocycles to Chow varieties when the covariant
variable is projective.

Proposition 5.5. Let X be a stratified quasi-projective variety of dimension d and Y, T be
projective varieties of dimension n,m respectively. Let W ↪→ U × X × Y be an element of
zt,p(X,Y )(U).

(1) For every u ∈ U , every component of the specialization Wu is the closure of the cycle
associated to a rational map fu : Xu 99K Cn−t(Y ) defined on (X −X1)u.

(2) For any fat point (x0, x1, R) over u ∈ U there is a rational map f̃ : XR 99K Cn−t(Y )
defined on (X −X1)R such that the compositions (set K := FracR):

Xk
idX ×x0−−−−−→ XR

f̃
99K Cn−t(Y ) and XK → XR

f̃
99K Cn−t(Y )

coincide with

Xk → Xu
fu
99K Cn−t(Y ) and XK → XηU

fηU
99K Cn−t(Y ).
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(3) For any continuous algebraic map g : Cn−t(Y ) → Cm−s(T ), the closure of the cycle

associated to g ◦ fηU : XηU 99K Cm−s(T ), denoted Wg, is an element of zs,p(X,T )(U).

(4) For any continuous algebraic map h : Cn−t(Y ) × A1
→ Cm−s(T ), the closure of the

cycle associated to h ◦ (fηU × idA1) : XηU × A1 99K Cm−s(T ), denoted (WA1)h, is an element

of zt,p(X,T )(U × A1). The formation of (WA1)h is compatible with restriction to t ∈ A1 in the

sense that the image of (WA1)h in zt,p(X,T )(U × {t}) coincides with Wht .

Proof. Let W ′u ↪→ Xu × Y denote a component of the specialization of W at some u ∈ U .

Since X −X1 is smooth, the restriction W ′u|(X−X1)u is an element of zequi(Y, n− t)((X −X1)u)

(see [SV00, Corollary 3.4.5]), and there is a canonical inclusion zequi(Y, n − t)((X − X1)u) ⊆
Hom((X −X1)u, Cn−t(Y ))+. This establishes part (1).

The perversity condition implies that for any u ∈ U , all of the generic points of Wu lie in

(X −X1)u × Y , so to verify part (2) we may restrict to X −X1, where all of the rational maps

are defined. Since Y is projective the pullbacks on zequi(Y, n − t) correspond to composition of

morphisms to Chow varieties.

Now we show Wg has well-defined specializations. The specializations are determined by the

generic points of the cycle (Wg)η ↪→Xη×Y , where η denotes the union ∪ηU of the generic points

of U . But both Wη and (Wg)η have their generic points in (X −X1)η × Y , so we may restrict

to X −X1. Since specialization corresponds to restriction of morphisms to Chow varieties, the

specializations of (Wg)η are determined by those of Wη. Since the latter do not depend on the

fat point, the former are independent as well.
To verify part (3), it remains to show the perversity condition is preserved. We may assume

U is the spectrum of a field. Let X ′ ↪→ X × Cn−t(Y ) be the graph of the rational map, and
let π : X ′ → X, c : X ′ → Cn−t(Y ) denote the induced morphisms. For any x ∈ X we have the
following formulas for the dimensions of the fibers Wx, (Wg)x:

dim(Wx) = (n− t) + dim(im(c : π−1(x)→ Cn−t(Y ))),

dim((Wg)x) = (m− s) + dim(im(g ◦ c : π−1(x)→ Cm−s(T ))).

Clearly dim(im(g◦c : π−1(x)→ Cm−s(T ))) 6 dim(im(c : π−1(x)→ Cn−t(Y ))), so the perversity of

Wg is no worse than that of W . The verification of part (4) is similar and we omit the details. 2

We denote by zt,p(X,Σ(Y ))Y ⊂ zt,p(X,Σ(Y )) the subpresheaf consisting of U -relative cycles

W none of whose specializations Wu ↪→ Xu × Σ(Y ) have components contained in the Cartier

divisor Xu×Y ↪→Xu×Σ(Y ), and satisfy the property that Wu∩(Xu×Y ) belongs to Zt,p(Xu, Y ).

In the proof of the following theorem, we employ the same moving constructions which we

used in the proof of Theorem 3.1.

Theorem 5.6. Let X be a stratified quasi-projective variety, let Y be a projective variety, and
let p be a perversity. Equip Σ(X) with the stratification {Σ(Xi)}, where {Xi} is the given
stratification of X. Fiberwise suspension induces homotopy equivalences

ΣY : zt,pequi(X,Y )(•) ∼→ zt,pequi(X,Σ(Y ))(•),
ΣY : zt,p(X,Y )(•) ∼→ zt,p(X,Σ(Y ))(•).

Therefore we have an induced isomorphism H i,t,p(X,Y ) ∼= H i,t,p(X,Σ(Y )).
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Proof. The overall strategy is similar to that employed in the proof of Theorem 3.1: deformation
to the normal cone and the projecting cones construction provide A1-homotopies and allow us
to conclude that each of the morphisms:

zt,p(X,Y )(•) ΣY−−→ zt,p(X,Σ(Y ))Y (•)→ zt,p(X,Σ(Y ))(•) (5.6.1)

is a homotopy equivalence. We explain why the constructions given in the proofs of
Propositions 3.3 and 3.4 suffice, and we do not repeat the arguments which require only
modification of notation. We write the proof for zt,p(X,Y ), but the same argument works
for zt,pequi(X,Y ).

The deformation to the normal cone of Proposition 3.3 defines a continuous algebraic map
ϕ : Cn−t(Σ(Y ))Y × A1

→ Cn−t(Σ(Y ))Y . By Proposition 5.5(4), this provides a morphism:

ϕ : zt,p(X,Σ(Y ))Y (−)→ zt,p(X,Σ(Y ))Y (−× A1).

Let ϕt denote the composition of ϕ with restriction to (−× {t}). We must show:
• ϕ0 is the identity;
• ϕ1 has image contained in ΣY (zt,p(X,Y )); and
• ϕt acts as the identity on ΣY (zt,p(X,Y )) for all t ∈ A1.

The morphism ϕ0 is induced by the identity on the Chow variety, and W = Wid, so the first
property is clear. The third property follows for a similar reason.

To see that the second property holds, note that any specialization (Wϕ1)u is associated to the

rational map Xu 99K Cn−t+1(Σ(Y ))
ϕ1−→ ΣY (Cn−t(Y )) ↪→ Cn−t+1(Σ(Y )). Therefore, (Wϕ1)u|X−X1

is a suspension, and the closure of a suspension is a suspension (namely, it is the suspension of the
closure). Alternatively, the fiber of (Wϕ1)u over x ∈X is the image of (Wϕ1◦c)u∩(π−1(x)×Y )→
x × Y , and ϕ1 ◦ c : X ′ → Cn−t+1(Σ(Y )) factors through ΣY (Cn−t(Y )), so all of the fiber cycles
of Wϕ1◦c → X ′ are suspensions. The image is therefore a suspension as well. This proves the
generalized cocycles analogue of Proposition 3.3 and establishes that the first arrow in 5.6.1 is a
homotopy equivalence.

We proceed to analyze the second arrow in 5.6.1. The projecting cones are slightly more
delicate for the simple reason that Cn−t+1(Σ(Y ))Y ⊂ Cn−t+1(Σ(Y )) is open rather than closed,
so that we cannot conclude that X lands in Cn−t+1(Σ(Y ))Y simply because X −X1 does. The
construction of Proposition 3.4 provides a morphism:

ψ := ψe : zt,p(X,Σ(Y ),6 d)(−)→ zt,p(X,Σ(Y ),6 de)(−× A1)

where d bounds the degree of the cycles on Y and e depends on d. We must show that:
• ψ0 is e times the identity;
• ψt carries zt,p(X,Σ(Y ),6 d) into zt,p(X,Σ(Y ),6 de)Y for general t ∈ A1.

We have a morphism ψ : Cn−t+1,6d(Σ(Y )) × A1
→ Cn−t+1,6de(Σ(Y )) which restricts to a

closed immersion (namely, e times the identity) at t = 0. Therefore, there is an open subscheme
S ⊂ A1 such that ψt is a closed immersion for t ∈ S by [Kol96, Lemma I.1.10.1]. We may assume
1 ∈ S, and then given W ∈ zt,p(X,Σ(Y ))(U), our task is to show Wψ1 ∈ zt,p(X,Σ(Y ))Y (U).

Since ψ1 is a closed immersion, the graph of X 99K Cn−t+1,6d(Σ(Y ))
ψ1−→ Cn−t+1,6de(Σ(Y ))Y ⊂

Cn−t+1,6de(Σ(Y )) is isomorphic to the graph X ′ ↪→ X × Cn−t+1,6d(Σ(Y )). This implies that all
of the specializations of the cycle Wψ1 ↪→ U × X × Σ(Y ) are covered by (birational, proper)
surjections (Wψ1◦c)u→ (Wψ1)u. The support of (Wψ1◦c)u over some x′ ∈X ′ is the cycle ψ1(c(x′)),
and none of these (n − t + 1)-dimensional cycles are contained in Y ↪→ Σ(Y ). Therefore, the
cycle (Wψ1◦c)u ∩ (π−1(x)u × Σ(Y )) is not contained in Xu × Y ↪→ Xu × Σ(Y ). 2
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We will need the following particular case of the proper push-forward morphism. If X
is a stratified variety and i : Y ↪→ Y ′ is a closed immersion of pure codimension c, then
the push-forward along i determines a morphism of presheaves zt,p(X,Y ) → zt+c,p(X,Y ′). In
particular, the inclusion of a hyperplane i : Ps−1 ↪→ Ps induces a morphism i∗ : zs−1,p(X,Ps−1)→
zs,p(X,Ps) of presheaves on Sch/k. The existence of i∗ follows from the existence of proper
push-forward functors on the presheaves z(X, r) and zequi(X, r) (see [SV00, Corollary 3.6.3]).
Alternatively, i∗ is the morphism provided by Proposition 5.5(3) for the continuous algebraic map
C0(Ps−1)→ C0(Ps).

Lemma 5.7. LetX be a stratified quasi-projective variety, and let p be a perversity. The following
square is homotopy commutative.

zt−1,p(X,Pt−1)(•) //

Σi

��

zt,p(X,Pt)(•)

Σi

��
zt−1,p(X,Pt+i−1)(•) // zt,p(X,Pt+i)(•)

(5.7.1)

Proof. The two compositions of the square (5.7.1) are given by first embedding Pt−1 in Pt, then
suspending i-times; and by first suspending i-times, then embedding Pt+i−1 in Pt+i. These are
readily seen to be related by an A1-family of automorphisms of Pt+i, and the required homotopy
is obtained by composing with these automorphisms. 2

Theorem 5.8. Let X be a stratified quasi-projective variety, and let p be a perversity. The
fiberwise suspension map (with respect to Pt) induces a homotopy equivalence

zt,p(X)(•) ∼→ zt,p(X,Pt+i)(•)/zt−1,p(X,Pt+i−1)(•).

Proof. This follows from Theorem 5.6, by applying the 5-Lemma to the map of short exact
sequences (arising from Definition 5.3) of the form

0→ zt−1,p(X,Pt−1)(•)→ zt,p(X,Pt)(•)→ zt,p(X)(•)→ 0

determined by Lemma 5.7. 2

Two natural sources of cocycles are flat morphisms and vector bundles. Here we explain how
arbitrary morphisms and coherent sheaves give rise to generalized cocycles (for a stratification
and perversity determined by the morphism and sheaf respectively).

5.1 Morphisms
Let X and Y be quasi-projective k-varieties. If f : Y → X is a dominant flat morphism, then
taking the cycle associated to the scheme-theoretic fiber f−1(x) determines an effective d-cocycle
on X with values in Y . As we see in the following example, general morphisms provide examples
of generalized cocycles.

Example 5.9. With the notation as above, we define

ZHomp(−× Y,X) ⊂ zd,p(X,Y )(−)

to be the subsheaf whose value on U is the free abelian group on the morphisms f : U ×Y → X
with the property that the induced map fu : Yu → Xu is dominant and the transpose of the
graph Γtfu ⊂ Xu × Yu lies in Zd,p(Xu, Yu) (for all u ∈ U).
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Our next proposition shows how ZHomp(Y,X) acts on generalized cocycles.

Proposition 5.10. Let X,Y be projective varieties, let W be a quasi-projective variety, suppose
X is stratified, and let p be a perversity. Then there is a natural pairing given by proper push-
forward

ZHomp(Y,X)× zt,0(Y,W )→ zd+t−n,p(X,W ).

Proof. It suffices to define the pairing for a pair (f, β) ∈ Homp(Y,X)(U) × zt,0(Y,W )(U)
consisting of a morphism f : U × Y → X and a cycle β ↪→ U × Y ×W with specializations βu
equidimensional over Yu. Now f induces a proper morphism f : U×Y ×W → U×X×W , and we
claim f∗(β) belongs to zt,p(X,W )(U). Set w = dim(W ). By hypothesis, for any (u, y) ∈ U × Y ,
we have dim(|βu|y) = w − t. Therefore, for any (u, x) ∈ U × X, we have dim(|f∗(β)u|x) 6
dim(f−1(x)) + w − t. By assumption, x ∈ Xi − Xi+1 implies dim(f−1(x)) 6 (n − d) + pi, and
the claim follows. The formation of f∗(β) is functorial in U , so the pairing defines a natural
transformation. 2

As mentioned in the introduction, cycle classes on a resolution determine generalized cocycles
on the variety being resolved. We say a morphism f : Y → X determines a stratification S and
perversity p if f does not belong to Homq(Y,X) for any stricter incidence datum (T, q), with T
a stratification.

Proposition 5.11. If f : Y → X is a resolution of singularities, push-forward along f defines
a morphism HBM

2n−i(Y,Z(n− t))→ H i,t,p(X) for the stratification and perversity determined by
the resolution (and, hence, for any less strict incidence datum).

Proof. We have a push-forward f∗ : H i,t,0(Y )→ H i,t,p(X) by Proposition 5.10, an identification

H i,t,0(Y ) ∼= H i(Y,Z(t)) by Remark 5.4, and Friedlander–Voevodsky duality H i(Y,Z(t)) ∼=
HBM

2n−i(Y,Z(n− t)) (see [FV00, Theorems 8.2 and 8.3(1)]. 2

5.2 Coherent sheaves
Suppose F is a globally generated coherent sheaf on X with generic rank r. There is an exact
sequence of sheaves on X:

0→ K→ H0(X,F)⊗k OX → F → 0.

If U ⊂ X is the locus over which F is locally free, then the projectivization of the locally free
sheaf K|U may be viewed as an element of Zr(U,Pn) with n = h0(X,F)− 1.

We shall show in Proposition 5.12 below that the closure in X ×Pn of this Pr−1-bundle over
U , denoted P(K), is an element of Zr,p(X,Pn) for a stratification and perversity which may be
expressed in terms of F itself. Namely, stratify X according to the rank-jumping behavior of F .
Then there exists a sequence of integers p1, . . . , pd such that x ∈Xi if and only if rk(F|x) > r+pi
and x ∈ Xi−Xi+1 if and only if rk(F|x) 6 r+ pi. We say that this stratification and perversity
are determined by F .

Proposition 5.12. Let F be a globally generated coherent sheaf on X with generic rank r, and
set n = h0(X,F)− 1. Then P(K) ∈ Zr,p(X,Pn) for the stratification and perversity determined
by F .
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Proof. Let P(F) ↪→ X × Pn denote the closure in X × Pn of the Pr−1-bundle over U classified
by the surjection H0(X,F)⊗k OU → F|U ; the Pn which appears here is dual to the one which
houses P(K). Then the fiber of P(F) over x ∈ X is contained in the projectivization of the vector
space F|x, in fact P(F) is the main component of the (possibly reducible) projectivization of F ,
hence the perversity of P(F) is controlled by the rank-jumping behavior of F .

To prove the lemma, then, it suffices to show the perversity of P(K) is identical to that
of P(F). Let X ′ ↪→ X × G(n − r, n) denote the graph of the rational map X 99K G(n − r, n)
determined by K|U , and let X ′′ ↪→ X ×G(r − 1, n) denote the graph of the map determined by
F|U .

Note that P(K) is the push-forward via X ′ → X of the codimension r cocycle on X ′ with
values in Pn classified by the morphism X ′→ G(n−r, n), and similarly P(F) is the push-forward
via X ′′ → X of the cocycle determined by X ′′ → G(r − 1, n). Furthermore, X ′ ∼= X ′′ via the
isomorphism G(n− r, n) ∼= G(r − 1, n).

Let F ′x ↪→ X ′, F ′′x ↪→ X ′′ denote the fibers over x ∈ X. The dimension of the fiber of P(K)
over x ∈ X is equal to the dimension of the image of the morphism F ′x→ X ′→ G(n− r, n) plus
n− r. Similarly the dimension of the fiber of P(F) over x ∈ X is equal to the dimension of the
image of F ′′x → X ′′ → G(r − 1, n) plus r − 1. By the previous paragraph, F ′x

∼= F ′′x compatibly
with the isomorphisms of Grassmannians, hence the perversities agree. 2

We denote by zr,p(X,P∞)(•) the simplicial abelian group colimn z
r,p(X,Pn)(•). Note that

the transition maps in the colimit are the suspension weak equivalences ΣPn : zr,p(X,Pn)(•)→
zr,p(X,Pn+1)(•).

Proposition 5.13. The class of P(K) in π0(zr,p(X,P∞)(•)) is independent of the choice of
generating sections of F .

Proof. Suppose given exact sequences

0→ Kf → H0(X,F)⊗k OX
f−→ F → 0,

0→ Kg → H0(X,F)⊗k OX
g−→ F → 0.

The section t · f + (1 − t) · g determines an exact sequence of coherent sheaves on X × A1

(let p : X × A1
→ X denote the projection):

0→ KA1 → H0(X,F)⊗k O2
X×A1 → p∗F → 0.

The perversities of P(p∗F) and P(KA1) agree by the argument in the previous proposition,
and the perversity of P(p∗F) (for the product stratification) is the same as that of P(F)
itself. Therefore, P(KA1) belongs to zr,p(X,P2n+1)(∆1). Furthermore, P(KA1)0 = Σn+1P(Kg) and
P(KA1)1 = Σn+1P(Kf ) since any additional components in the fibers at t = 0, 1 would violate
the perversity condition, hence the elements agree in π0(zr,p(X,P2n+1)(•)). 2

6. Join and cup product

In this final section, we define pairings on sheaves of generalized cocycles or sheaves of perversity
cycles. These pairings determine pairings on the perversity motivic cohomology of Definition 5.3
and perversity motivic homology of Definition 2.3 by Remark 4.3.

The geometric operation underlying our cup product is the join. The semi-topological
precursor (in the absence of perversities) of our product is the cup product pairing on semi-
topological cohomology defined using the fiberwise join [FL92, Theorem 6.1]; building on this,
an algebraic version for smooth varieties is developed in [FV00, Proposition 8.6].
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Definition 6.1. Let V be a k-scheme. Given α ↪→ V ×Pt and β ↪→ V ×Ps, let JV (α, β) ↪→ V ×
Pt+s+1 denote their fiberwise join. If α (respectively β) is an integral subscheme whose ideal sheaf
is locally generated by {f(x, t)} (respectively {g(x, s)}), then JV (α, β) is the (integral) subscheme
with ideal sheaf locally generated by {f(x, t); g(x, s)}. (Here x, t, s belong to coordinate systems
on V , Pt, Ps, respectively.) We define the join of a general pair of cycles α, β by linear extension.

Proposition 6.2. Let X be a stratified quasi-projective variety. The join defines a morphism
of functors on Sch/k

zs,p(X,Ps)× zt,q(X,Pt)→ zs+t,p+q(X,Ps+t+1)

and similarly for the equi-theory.

Proof. We send the pair (α, β) ∈ zs,p(X,Ps)(U) × zt,q(X,Pt)(U) to the fiberwise join
J := JU×X(α, β) ↪→ U ×X × Ps+t+1 described above.

The join defines a continuous algebraic map C0(Ps) × C0(Pt) → C1(Ps+t+1) determined by
sending (p, q) to the line connecting is(p) and it(q), where is (respectively it) identifies Ps
(respectively Pt) with the ‘first’ s+ 1 (respectively ‘last’ t+ 1) coordinates of Ps+t+1 (see [FL92,
Theorem 6.1]).

The generic points of the join are in one-to-one correspondence with pairs of generic points
of the cycles being joined. Since the generic points of αηU and βηU lie in (X −X1)ηU , the same
is true of JηU . Therefore, it suffices to show that the restriction of J to X −X1 has well-defined
specializations for all u ∈ U . But on X − X1, all of the specializations αu, βu are given by
morphisms fu : (X −X1)u→ C0(Ps), gu : (X −X1)u→ C0(Pt).

Therefore, on X − X1, every specialization Ju is the cycle determined by the morphism
fu#gu : (X −X1)u → C0(Ps) × C0(Pt)→ C1(Ps+t+1). The basic compatibility of morphisms to
Chow varieties and pullbacks of cycles (as discussed in the proof of Proposition 5.5) implies
that J has well-defined specializations. From the definition it is clear that the join preserves
integrality of the cycle coefficients.

Now we verify that J has the required incidence properties, which is a pointwise condition
on U . The relative join is compatible with base change [FOV99, Remark 1.3.3(2)]. Therefore,
if x ∈ X, the support of J(αu, βu)x ↪→ u × x × Pt+s+1 coincides with the support of J(|αu|x,
|βu|x) ↪→ u × x × Pt+s+1. In particular, if αu ∈ Zs,p(Xu,Ps) and βu ∈ Zt,q(Xu,Pt), then the
dimension of the fiber of Ju over x ∈ Xi−Xi+1 is less than or equal to pi+qi+1, as desired. 2

Next we relate the ‘total’ groups zs,p(X,Ps)(•) to the ‘pure’ groups zi,p(X)(•) (Definition 5.3)
which isolate the cycles on X × Ps with no component supported on a hyperplane. The proof
here follows closely the proof of [FL92, Theorem 2.10].

For positive integers s, t with s > t, and K algebraically closed, there is a morphism

π : SP s(P1
K)→ SP (st)(SP t(P1

K))

sending the cycle
∑

i∈I zi to the cycle
∑

J⊂I,|J |=t(
∑

j∈J zj). By Galois descent, the same formula
defines a morphism assuming that K is perfect, or if one works with cycles with Z[1/p]-coefficients
instead of Z-coefficients. (In characteristic zero, one should ignore all instances of 1/p which
appear in the statements below.) Since the symmetric product SPm(X) of a normal variety X
is normal, the symmetric products which appear coincide with the weak normalizations of the
Chow varieties C0,m(X). Therefore, π induces a continuous algebraic map π : C0(Ps)→ C0(Pt).
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Proposition 6.3. Let X be a stratified quasi-projective variety. For every t 6 s, there are
natural maps of presheaves

zs,p(X,Ps)[1/p](−)→ zt,p(X,Pt)[1/p](−)

with the property that for any choice of linear embeddings Pt−1 ⊂ Pt ⊂ Ps the composition

zt,p(X,Pt)[1/p](•)→ zs,p(X,Ps)[1/p](•)→ zt,p(X,Pt)[1/p](•)→ zt,p(X)[1/p](•)

is homotopy equivalent to the natural projection of Lemma 5.2.

Proof. Proposition 5.5(3) implies that π induces, for s > t, a natural transformation
p : zs,p(X,Ps)[1/p]→ zt,p(X,Pt)[1/p]. The flag P0 ↪→ P1 ↪→ · · · ↪→ Ps induces a nested sequence
of presheaves:

z0,p(X,P0)[1/p] ⊂ z1,p(X,P1)[1/p] ⊂ · · · ⊂ zs,p(X,Ps)[1/p].

It suffices to show the composition p ◦ i : zt,p(X,Pt)[1/p] ⊂ zs,p(X,Ps)[1/p] → zt,p(X,Pt)[1/p]
is equal to id +ψ, where ψ : zt,p(X,Pt)[1/p]→ zt,p(X,Pt)[1/p] is a morphism factoring through
zt−1,p(X,Pt−1)[1/p]. For any α ∈ zt,p(X,Pt)[1/p](U) and any u ∈ U , the specialization αu restricts
to a cocycle on (X − X1)u with values in Pt. It follows from [FL92, Lemma 2.11] that the
restriction j∗((p ◦ i)(αu) − αu) of (p ◦ i)(αu) − αu to (X −X1)u lies in (X −X1)u × Pt−1. The
morphism p ◦ i is compatible with the open immersion j : X −X1 ⊂ X, and X −X1 contains all
of the generic points of (p ◦ i)(αu) − αu. Therefore, the closure of j∗((p ◦ i)(αu) − αu), namely
(p ◦ i)(αu)− αu, is contained in Xu × Pt−1. 2

Theorem 6.4. Let X be a stratified quasi-projective variety. The maps of Proposition 6.3 induce
a homotopy equivalence

zs,p(X,Ps)[1/p](•) ∼−→
s∏
i=0

zi,p(X)[1/p](•) (6.4.1)

which is functorial with respect to flat, stratified morphisms.

Proof. The evaluation of the nested sequence of presheaves at ∆• induces a nested sequence of
simplicial abelian groups:

z0,p(X,P0)[1/p](•) ⊂ z1,p(X,P1)[1/p](•) ⊂ · · · ⊂ zs,p(X,Ps)[1/p](•).

Proposition 6.3 implies that the formal hypotheses of [FL92, Proposition 2.13] are satisfied. The
construction involves only the ‘targets’ P0, . . . ,Ps, hence are compatible with flat pull-back via
stratified morphisms. 2

Remark 6.5. One can replace the Ps on the left-hand side of the weak equivalence of Theorem 6.4
with Pr (for any r > s) by appealing to the suspension Theorem 5.8.

Proposition 6.6. Choose a hyperplane Ps−1 ↪→ Ps and a non-negative integer m. Then there
is a split short exact sequence of homotopy groups

0→ πm(zs−1,p(X,Ps−1)[1/p](•))→ πm(zs,p(X,Ps)[1/p](•))→ πm(zs(X)[1/p](•))→ 0.
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Proof. The short exact sequence of simplicial abelian groups

0→ zs−1,p(X,Ps−1)[1/p](•)→ zs,p(X,Ps)[1/p](•)→ zs,p(X,Ps)[1/p](•)
zs−1,p(X,Ps−1)[1/p](•)

→ 0

induces a long exact sequence in homotopy groups (because a surjective homomorphism of
simplicial abelian groups is a Kan fibration). This long exact sequence splits into split short
exact sequences as asserted thanks to Theorem 6.4. 2

Theorem 6.7. The fiberwise join pairings of Proposition 6.2 determine natural (with respect
to X) ‘cup product pairings’

∪ : H i,s,p(X)[1/p]⊗Hj,t,q(X)[1/p]→ H i+j,s+t,p+q(X)[1/p].

Proof. Consider the composition

π2s−i(z
s,p(X,Ps)[1/p](•))⊗ π2t−j(z

t,q(X,Pt)[1/p](•))
→ π2(s+t)−i−j(z

s+t,p+q(X,Ps+t+1)[1/p](•))
→ π2(s+t)−i−j(z

s+t,p+q(X,Ps+t+1)[1/p](•)/zs+t−1,p+q(X,Ps+t)[1/p](•))

given by the map induced by fiberwise join followed by the projection. We consider Ps#Pt−1 and
Ps−1#Pt inside Ps#Pt = Ps+t+1 and apply the short exact sequence of Proposition 6.6 and the
independence statement of Lemma 5.2. It follows that the composition sends both

π2s−i(z
s,p(X,Ps)[1/p](•))⊗ π2t−j(z

t−1,q(X,Pt−1)[1/p](•))

and
π2s−i(z

s−1,p(X,Ps−1)[1/p](•))⊗ π2t−j(z
t,q(X,Pt)[1/p](•))

to zero. Now the pairing is obtained by applying the equivalence of the suspension Theorem 5.8
(as in Remark 6.5). 2

The following proposition can be seen as having its origins in a semi-topological version given
in [FW01, Theorem 2.6]. Recall that t denotes the top perversity.

Proposition 6.8. Let X be a stratified quasi-projective variety, and let Y be a smooth quasi-
projective variety of dimension n. Let p and q be perversities such that p+ q 6 t. Restriction of
correspondences determines a morphism of presheaves:

zt,p(X,Y )× z(X, r)q → z(X × Y, r + n− t)p+q

and therefore a pairing:

H i,t,p(X,Y )⊗Hq
m(X,Z(r))→ HBM

2n+m−i(X × Y,Z(r + n− t)).

Proof. Given α, β ∈ zt,p(X,Y )(U) × z(X, r)q(U), the dimension of αu over any x ∈ Xi −Xi+1

is less than or equal to n− t+ pi. The dimension of βu ∩Xi
u is less than or equal to r − i+ qi.

Therefore, the support of |α| ∩ |β × Y | ∩ (Xi − Xi+1 × Y ) has dimension no larger than
(r − i + qi) + (n − t + pi) = (r + n − t) − i + (pi + qi). This means precisely the pair (α, β)
satisfies the condition (∗, p + q) of Definition 4.1. Then Theorem 4.2 implies the closure of the
intersection product formed in Xsm × Y belongs to z(X × Y, r + n− t)p+q(U), as desired. 2
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Proposition 6.9. Assume that k admits resolution of singularities, or that k is perfect and we
use 1/p coefficients. Let X be a stratified quasi-projective variety, and let p and q be perversities
such that p+ q 6 t. There is a cap product map (morphism of presheaves)

zt,p(X)× z(X, r)q → z(X × At)

which induces a homotopy pairing of simplicial abelian groups

zt,p(X)(•)× z(X, r)q(•)→ z(X, r − t)(•)

and therefore a pairing

∩ : H i,t,p(X)⊗Hq
m(X,Z(r))→ HBM

m−i(X,Z(r − t)).

Proof. Recall that zt,p(X) is the quotient presheaf zt,p(X,Pt)/zt−1,p(X,Pt−1). The pairing of
Proposition 6.8 induces a pairing

zt,p(X)× z(X, r)q → z(X × Pt, r)/z(X × Pt−1, r)

and we have homotopy equivalences z(X × Pt, r)(•)/z(X × Pt−1, r)(•) ∼→ z(X × At, r)(•) ∼←
z(X, r − t)(•) (see [FV00, Theorem 8.3(1)]). 2

Remark 6.10. If one could establish homotopy equivalences

z(X × Pt, r)p+q(•)/z(X × Pt−1, r)p+q(•)
∼
→ z(X × At, r)p+q(•)

∼
← z(X, r − t)p+q(•)

then Proposition 6.9 could be refined in that the targets could be replaced by the perverse
versions (with perversity p + q). Proposition 6.9 is the ‘correct’ statement for complementary
perversities (i.e. p+ q = t).

Proposition 6.8 extends to the case where Y is singular.

Corollary 6.11. Let X be a stratified quasi-projective variety, and let Y be a quasi-projective
variety of dimension n. Let p and q be perversities such that p + q 6 t. Restriction of
correspondences determines a morphism of presheaves:

zt,p(X,Y )× z(X, r)q → z(X × Y, r + n− t)p+q.

Proof. Embed Y as a closed subvariety of codimension c of some open subvariety P of a projective
space. The restriction of the pairing

zt+c,p(X,P)× z(X, r)q → z(X × P, r + dim(P)− t− c)p+q

provided by Proposition 6.8 to the subpresheaf zt,p(X,Y ) × z(X, r)q factors through z(X × Y,
r + n− t)p+q. 2

Remark 6.12. The restriction of the pairing of Corollary 6.11 to the subsheaf ZHomp(Y,X) ⊂
zd,p(X,Y ) may be thought of as sending a pair (f, β) ∈ Homp(Y,X)(U) × z(X, r)q(U) to the
pull-back of β ↪→ U ×X along f : U × Y → U ×X. (Strictly speaking we intersect the graph of
f with the pull-back of β to U ×X × Y .)
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We establish the compatibility of our pairings with those defined by Goresky–MacPherson.
First we construct the analogue of the perverse cycle class map of Proposition 2.5. In the next
two statements, F denotes an arbitrary coefficient field.

Lemma 6.13. Let X be a stratified variety of dimension d over C, and suppose that the
stratification is sufficiently fine to compute the intersection homology groups IH p

∗(X). Then
there is a canonical perverse cycle class map

c : H2t,t,p(X)→ IH p
2(d−t)(X,F).

Proof. By applying π0(−(•)) to the inclusion of sheaves zt,p(X,Pt)→ z(X×Pt, d)p and compos-

ing with the map from Proposition 2.5, we obtain a map Zt,p(X,Pt)/ ∼p → IH p
2d(X × Pt,F).

This construction is functorial with respect to the inclusion of a hyperplane Pt−1
→ Pt, hence it

yields

H2t,t,p(X)→ IH p
2d(X × Pt,F)/IH p

2d(X × Pt−1,F).

Let [Pj ] ∈ H2j(Pt,F) ∼= F denote the canonical generator. The Künneth theorem for
intersection homology (here we need field coefficients, see [Kin85, Theorem 4]) provides an
identification

IH p
2d(X × Pt,F) ∼=

d⊕
j=0

IH 2(d−j)(X,F) · [Pj ].

This isomorphism is functorial with respect to X × Pt−1
→ X × Pt and hence yields an

identification IH p
2d(X × Pt,F)/IH p

2d(X × Pt−1,F) ∼= IH p
2(d−t)(X,F). Altogether we obtained a

map H2t,t,p(X)→ IH p
2(d−t)(X,F) as desired. 2

Proposition 6.14. Via the cycle class map described in Lemma 6.13, the pairing in Proposition
in 6.7 is compatible with the pairing in intersection homology. In other words, the following
diagram is commutative.

H2s,s,p(X)⊗H2t,t,q(X)
∪ //

c⊗c
��

H2(s+t),s+t,p+q(X)

c
��

IH p
2(d−s)(X,F)⊗ IH q

2(d−t)(X,F) // IH p+q
2(d−s−t)(X,F)

Proof. In the smooth locus of X, the join maps to the cup product of cohomology classes [FL92,
Proposition 6.3]. Pairs of generalized cocycles intersect properly in each stratum, and the inter-
section homology pairing between chains intersecting properly in each stratum is determined by
the cup product of the corresponding cohomology classes in the smooth locus [GM80, § 2.1].
Therefore, it suffices to show that the identification IH p

2d(X × Pt,F)/IH p
2d(X × Pt−1,F) ∼=

IH p
2(d−t)(X,F) is compatible with products. But this identification may be described as the

pull-back [GM83, § 5.4.3] p∗1 : IH p
2(d−t)(X,F) → IH p

2d(X × Pt,F) followed by the canonical

projection onto IH p
2d(X × Pt,F)/IH p

2d(X × Pt−1,F), and both of these maps are compatible
with intersection pairings. 2
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