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Abstract

In a repulsive point process, points act as if they are repelling one another, leading to
underdispersed configurations when compared to a standard Poisson point process. Such
models are useful when competition for resources exists, as in the locations of towns and
trees. Bertil Matérn introduced three models for repulsive point processes, referred to as
types I, II, and III. Matérn used types I and II, and regarded type III as intractable. In
this paper an algorithm is developed that allows for arbitrarily accurate approximation
of the likelihood for data modeled by the Matérn type-III process. This method relies on
a perfect simulation method that is shown to be fast in practice, generating samples in
time that grows nearly linearly in the intensity parameter of the model, while the running
times for more naive methods grow exponentially.
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1. Introduction

Spatial data are often more regularly spaced than would be expected under a simple Poisson
point process model because of competition for resources among the entities represented by
the points of the model. These types of point process are called repulsive because the points act
as if they are repelling one another. See [11] and [30] for examples of this type of data, which
usually arises when entities are in competition for finite resources.

Various methods have been introduced to model repulsive or underdispersed point processes,
including simple inhibition processes [17, Chapter 3], thinned processes [3], [27], the Strauss
process [31], and Markov point processes [23], which model the configuration by assigning a
density (to discourage ‘closeness’ of the points) with respect to a homogeneous Poisson point
process.

Matérn [17, p. 48] offered a different approach to modeling repulsion. Rather than use
a density to describe the model, he gave three algorithms for generating configurations that
implicitly (rather than explicitly) build in repulsion.

In Section 2 we describe this approach in more detail, and present the central questions that
need to be addressed in order to pursue a Bayesian (or other likelihood-based) approach to
inference for these problems. Section 3 gives a simple acceptance–rejection approach to solve
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this problem that is suitable for small data sets, but which scales poorly with problem size. In
Section 4 we present a new perfect simulation method that can handle much larger sets, and
develop an arbitrarily accurate product estimator for the likelihood function. In Section 5 this
new method is applied to simulated data to test the effectiveness and running time.

2. The Matérn point processes

Matérn [17, pp. 47–48] introduced what are now called his type-I and type-II thinned point
processes (see Figure 1). Begin with an intensity λ > 0, a σ -finite Borel reference measure
µ(·) on R

d , and a ‘primary’ Poisson point process with mean λµ(·) that will assign to any
region S of finite measure a Poisson-distributed number of points with expected value λµ(S).

Given a fixed radius R > 0, Matérn’s type-I process consists of the ‘secondary’ points
remaining upon removing all primary points that lie within distance R of any other primary
point (so, if a pair lie within distance R, both are removed).

For the type-II process, Matérn assigns independent and identically distributed (i.i.d.) marks

tj
i.i.d.∼ Un(0, 1] (called ‘times’) to each of the primary points. The secondary points are those

whose time mark is smaller than all neighbors within distance R. In other words, Matérn’s
type-II process only removes the later of two points which lie within distance R; for fixed λ

and R, this will have a higher density of points than the type-I process.

Matérn I
Pair a and b eliminated; pair b and c eliminated; no 
points remain.

Primary Poisson process
R = 0.4, dist(a, b) = 0.30, dist(b, c) = 0.23, 
dist(a, c) = 0.53, ta = 0.27, tb = 0.52, tc = 0.78.a

b c

Matérn II
ta < tb: a eliminates b; tb < tc: b eliminates c; only 
point a remains. a

Matérn III
ta < tb: a eliminates b; since b has been eliminated, 
it does not eliminate c. Points a and c remain. 

a
c

Figure 1: Example of Matérn repulsive point processes.
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Matérn [17, p. 48] briefly mentioned a third point process featuring ‘dynamic’ thinning in
which points are removed only if they lie within distance R of an earlier secondary point; the
remaining points, which we call the Matérn type-III process (or, more briefly, Matérn III), will
have still higher density (for fixed λ and R) than types I or II. It is this third process which is
considered in detail below.

Let µ be a finite measure on a Borel subset S of R
d . All three Matérn processes begin with a

Poisson-distributed primary random finite subset z ∼ Po(λµ(dz)) of S, and yield random sets
x ⊆ z ⊆ S of secondary points with the property that balls of radius R/2 centered at each point
do not intersect. Let #(s) denote the number of points in any set s ⊆ S. Call the #(x) secondary
points x ⊆ z that remain in the process seen points, and the #(y) = #(z)−#(x) points y = z\x
that have been removed hidden points. Renumber if necessary so we can write x = (x1, . . . ,

x#(x)) for the seen points and t = (t1, . . . , t#(x)) for the associated (unobserved) time marks.
Note that the time marks could have been drawn from any continuous distribution on the real

numbers [28]. Suppose that instead of uniform distributions, independent draws (t̃i ) are taken
from some other distribution over the real numbers with continuous cumulative distribution
function F(·). Then {ti := F(t̃i)} will be independent and uniformly distributed on (0, 1].
Moreover, ties are impossible under both (continuous) distributions and t̃i < t̃j if and only if
ti < tj , so no generality is lost in assigning uniform distributions on (0, 1] to the time marks.

Let θ ∈ � index possible parameter vectors (λθ , Rθ ). The Matérn process may also
be constructed from a Poisson point process on S × (0, 1] with product intensity measure
�θ(dz dt) := λθµ(dz)m(dt), where m denotes the Lebesgue (or uniform) measure on (0, 1].
The first coordinate is the location in S, while the second coordinate is the time mark. The seen
points are those for which no other seen point with a lower time mark lies within distance R.
Note that �θ((S × (0, 1]) = λθµ(S).

2.1. Connection with RSA

Physicists and chemists have long studied the ‘random sequential adsorption’ or continuum
RSA model for the irreversible binding of proteins to surfaces. In its most common form this
model constructs a hard-core process as a sequence of points drawn from the uniform distribution
on the complements (within some region S ⊂ R

2) of the unions of disks of radius R centered
at each of the previously drawn points. When the disks cover S entirely, the ‘jamming limit’
has been reached, whereupon the process halts. Variations include replacing the disks with
squares or other convex shapes, constructing the process in R

d rather than the plane, employing
independent random radii Ri , stopping after a specified number of points have been drawn or
attempts have been made, etc. For more details and some of the historical development, see [5],
[7], [8], [22], [24], [25], and [32].

Now consider stopping the RSA process before the jamming limit by drawing a primary
Poisson process with intensity 1 on S × (0, T ] and thinning points sequentially in time by
removing those born within distance R of retained points with smaller time marks. Now divide
each of the time marks by T . The result is a Matérn III process where once again the time marks
lie in (0, 1], but the intensity of the process is now T . The limit as T →∞ of the stopped RSA
process is just the jamming limit of the RSA process. Therefore, the limit of the Matérn III
process as the intensity goes to infinity is also the jamming limit of the RSA process.

2.2. Likelihood function for Matérn III

Informal estimates of (λθ , Rθ ) are simple to find for any of the Matérn processes. The
maximum likelihood estimate (MLE) R̂ is simply the smallest observed point spacing, R̂ =
mini �=j {d(xi, xj )}, for example, and method of moments estimates are available for λθ from
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empirical estimates of their packing densities (which have simple closed-form relations to λθ

and Rθ for the Matérn I and II processes, and a relation available from simulation for Matérn III).
Our concern in this paper is quite different—we wish to construct the likelihood function for θ ,
to support fully coherent inference from the Bayesian or other perspectives using this model
(see [1]).

For one-dimensional point sets, a modification of dynamic programming techniques can
be used to evaluate the Matérn III likelihood function. The data sets considered in Section 5
are two-dimensional, so the dynamic programming approach fails; moreover, the techniques
developed in this paper work not only for any window in R

d with finite measure, but also for
far more general sets. This includes any complete separable metric space (S, dist) with finite
Borel measure µ.

For any possible configuration x = (x1, . . . , x#(x)) ⊆ S of seen points, the vector of
time marks t = (t1, . . . , t#(x)) could take any value in the cube (0, 1]#(x). Any hidden point
y ∈ S must lie within distance Rθ from some seen point xi ∈ x with time mark ty > ti ,
since otherwise (y, ty) would not have been removed in thinning. For s ∈ S and r > 0, let
Br(s) := {y ∈ S : dist(s, y) < r} denote the open r-ball in S centered at s. Then define

D(x, t) := {(y, ty) : (there exists xi ∈ x)[dist(xi, y) < Rθ ] ∧ [ti < ty]}

=
#(x)⋃
i=1

BRθ (xi)× (ti , 1],

Aθ (x, t) := �θ(D(x, t)). (2.1)

Call region D(x, t) the shadow of configuration x with times t , and call Aθ(x, t) the shadow’s
area, the expected number of hidden points for seen configuration (x, t) and parameter θ .
Figure 2 shows an example of the shadow region for three points in S = [0, 10]. Note that
D(x, t) depends implicitly on Rθ , and Aθ(x, t) depends on both Rθ and λθ .

Van Lieshout [33] introduced a density for RSA (and, hence, for Matérn III), but the
formulation there was given as the product of #(x) factors, each of which could be difficult to
evaluate. Here a new result is presented that gives a closed-form expression for the density in
terms of a simple expression of the measure of the shadow.
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Figure 2: Example of a shadow region D(x, t). Here 2R = 1.4.
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Theorem 2.1. The density function of the seen points and their times with respect to the Poisson
point process with mean µ⊗m is

fseen points(x, t | θ) = 1{ρ(x)>Rθ }λ
#(x)
θ exp(µ(S){1− λθ }) exp(Aθ (x, t)), (2.2)

where ρ(x) := mini �=j dist(xi, xj ) denotes the minimum interpoint distance.

Proof. There are two ways to create a random draw of the seen points. Firstly, primary points
(Z, S) are drawn from the Po(λθ (µ⊗m)(dz ds)) distribution, and then the seen points are built
by thinning, as described in Section 2. Secondly, use an acceptance–rejection algorithm [34].
Draw a candidate (X, T ) from the Po(λθ (µ⊗m)(dx dt)) distribution and then accept or reject
it as a draw from the seen points. If rejection occurs, draw again, and continue until a draw is
accepted.

To determine if (X, T ) should be accepted as a draw from the seen points, use the following
procedure. First, draw (Z, S) from Po(λθ (µ ⊗ m)(dz ds)) conditioned on the points (X, T )

being contained in (Z, S). From a recursive application of Palm distributions (see [29, Sec-
tion 4.4]), this can be accomplished by drawing (Z \X, S \T ) as an independent draw from the
Po(λθ (µ ⊗ m)(dy ds)) distribution. Next, accept (X, T ) if it is exactly the set of seen points
in (Z, S), i.e. if no points of (Z, S) lie outside the shadow of (X, T ), an event with probability

exp(−λθ (µ⊗m)(S \D(X, T ))) = exp(Aθ (X, T )) exp(−µ(S)).

Also, for (X, T ) to be the seen points, the minimum distance ρ(X) between any two points
in X must exceed Rθ . So the probability of acceptance if X = x and T = t is

p(x, t) = 1{ρ(x)>Rθ } exp(Aθ (x, t)) exp(−λθµ(S)).

The theory of the acceptance–rejection algorithm states that the result has a density with respect
to the proposal distribution that is proportional to p(x, t):

f (x, t | θ) = p(x, t)

pθ

,

where pθ is the probability that a draw is accepted. So next determine pθ .
Recall that (Z, S) is the union of two independent draws from Po(λθ (µ⊗m)(dz ds)). The

sum of Poisson random variables is Poisson with parameter equal to the sum of the individual
parameters, and the points in (Z, S) are all i.i.d., so (Z, S) ∼ Po(2λθ (µ ⊗ m)(dz ds)). This
has density 2#(z) exp(−λθµ(S)) with respect to the measure Po(λθ (µ⊗m)(dz ds)).

Conditioned on the points (Z, S), the points (X, T ) are a subset of cardinality #(x) drawn
uniformly at random from (Z, S). This can be checked directly. The probability of drawing
any number, n, of points for (Z, S) from its Poisson point process distribution is exp(−2µ(S))

(2µ(S))n/n!. This must also be the probability of drawing i seen points (X, T ) and n−i hidden
points (Z \X, S \ T ),

exp(−µ(S))µ(S)i

i!
exp(−µ(S))µ(S)n−i

(n− i)! = exp(−2µ(S))µ(S)n

i! (n− i)! .

Dividing the right-hand side of the previous equation by the density of (Z, S), which is
2n exp(−λθµ(S)) from above, shows that the probability of drawing i points from (X, T )

conditioned on drawing n points from (Z, S) is 2−nn!/(i! (n − i)!), or simply the binomial
distribution with parameters n and 1

2 .
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This is the same as choosing (X, T ) by flipping a fair coin for each point in (Z, S), and
putting the points with heads into (X, T ). For acceptance to occur, the points chosen to fall
into (X, T ) must exactly match the points selected from (Z, S) by the Matérn III process. This
has probability 1/2n if there are n points in (Z, S). Canceling all the common factors shows
that the total probability of acceptance is

pθ =
∞∑

n=0

exp(−2µ(S))
µ(S)n

n! = exp(−µ(S)),

thereby showing that the density of (X, T ) with respect to Po(λθ (µ⊗m)(dx dt)) is just

f (x, t | θ) = p(x, t)

pθ

= 1{ρ(x)>Rθ } exp(Aθ (x, t)).

Finally, note that a draw (Z, S) from Po(λθ (µ ⊗ m)(dz ds)) will have density function
exp(µ(S)(1− λθ ))λ

#(Z)
θ with respect to the Po((µ⊗m)(dz ds)) distribution, which completes

the proof.

The marginal density function g(x | θ) for the seen points is then given by integrating the
latent time marks:

g(x | θ) = 1{ρ(x)>Rθ } exp(µ(S){1− λθ })λ#(x)
θ

∫
(0,1]#(x)

exp{Aθ(x, t)} dt, (2.3)

where ‘dt’ denotes the Lebesgue measure differential m(dt1) · · ·m(dt#(x)) on the unit cube
(0, 1]#(x). This is also the likelihood function for θ , upon observing X = x.

Note that Aθ(x, t) is an increasing function of Rθ , making g(x | θ) an increasing function
of Rθ over [0, ρ(x)). In principle, for any prior distribution π(dθ), the posterior distribution
for θ can be found as

π(dθ | X = x) = Z−1
x g(x | θ)π(dθ),

where Zx :=
∫
�

g(x | θ ′)π(dθ ′) is the appropriate normalizing constant. The awkward integral
in (2.3) is an obstacle for this straightforward approach to inference. Instead, we will follow a
data augmentation strategy in which random samples of hidden points Y and unobserved time
marks T , for both seen and hidden points, are drawn from their conditional distributions (given
x and θ ); after this, inference about θ can be accomplished using a variety of methods. For
use in Section 4.1, we first compute the conditional density function of the time mark vector
T ∈ (0, 1]#(x) for seen points x. From (2.3), this is simply

hθ (t | x) = Z−1
θ,x exp(Aθ (x, t)) (2.4)

with normalizing constant Zθ,x :=
∫
t
exp{Aθ(x, t)} dt .

3. Acceptance–rejection method

A simple approach for approximating g(x | θ) is the acceptance–rejection method of von
Neumann [34]. This also provides a method to draw hidden points Y and time marks T from
their conditional distributions that works well for small examples, but (as shown below) it scales
badly in the number #(x) of seen points.
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Algorithm 3.1. (Acceptance–rejection.) Inputs: parameter θ and seen points x.

Outputs: random draws of hidden points Y and time marks T .

1. repeat

2. draw hidden points Y ⊆ S from Poisson process with intensity λθµ(·)
3. draw time marks T for x and Y uniformly from (0, 1]#(x)+#(Y )

4. until for all a ∈ Y , there exists b ∈ x with dist(a, b) ≤ Rθ and tb < ta

5. return Y and T

This is an example of a perfect simulation algorithm: the outputs come exactly from
the desired distribution, but the running time is itself an unbounded random variable. The
number of failure steps in the repeat loop has a geometric distribution with success parameter
p = ∫

(0,1]#(x) exp(Aθ (x, t)− λθµ(S)) dt and so the expected number of loop steps is 1/p.
Unfortunately, for simple choices of reference measure such as Lebesgue, the acceptance

probability p decreases (and the expected number of loop steps increases) geometrically in the
number #(x) of seen points. Consider, for example, a rectangular region S ⊆ R

d for some
d ∈ N, with sides of length at least Rθ and with periodic boundary conditions (to simplify
the argument by eliminating edge effects). With Lebesgue reference measure µ(·), the total
volume of the region is V = µ(S), the product of the lengths of the sides.

Since balls of diameter R centered at the seen points x are disjoint, each with volume
v = νd(R/2)d in R

d for νd := πd/2/	(1+d/2), a lower bound on the unshadowed volume
leads to an upper bound on the shadowed volume and, hence, on the acceptance probability:

λθV − Aθ(x, t) ≥ λθv

#(x)∑
j=1

tj

so

p :=
∫

(0,1]#(x)

exp(Aθ (x, t)− λθV ) dt ≤
∫

(0,1]#(x)

exp

(
−λθv

#(x)∑
j=1

tj

)
dt = ρ#(x), (3.1)

where ρ := [1 − exp(−λθv)]/(λθv) < 1. In the one-dimensional case (d = 1) we have
ν1 = 2 and p ≤ ρ#(x) with ρ = [1 − exp(−λθRθ )]/(λθRθ ), for example, while ν2 = π and
ρ = [1− exp(−λθπR2

θ /4)]/(λθπR2
θ /4) in the two-dimensional case (d = 2).

A similar argument gives a lower bound for the shadow volume, giving a lower bound for p:

Aθ(x, t) ≥ λθv

#(x)∑
j=1

(1−tj ),

p :=
∫

(0,1]#(x)

exp(Aθ (x, t)− λθV ) dt

≥
∫

(0,1]#(x)

exp

(
λθ

{
v

#(x)∑
j=1

(1−tj )− V

})
dt

= ρ#(x) exp(−λθ {V − v#(x)}),
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so Algorithm 3.1 may be very reasonable for sufficiently small #(x) and λθV . The geometric
decrease of (3.1) makes the basic form of acceptance–rejection untenable for large #(x); we
now turn to an alternative.

4. Coupling from the past

Acceptance–rejection works well for small sets of seen points, but quickly becomes imprac-
tical as #(x) grows. In this section a new Markov chain for this problem is created that allows
for perfect sampling when used with read-once coupling from the past (ROCFTP) [35].

Our coupling-from-the-past (CFTP) approach employs form 1 of the bounding chains of
Huber [14], closely related to the antimonotonicity approach introduced by Kendall [16] and
developed by Møller [19], and Häggström and Nelander [12]. The bounding chain view is as
follows. Suppose that the state space for a Markov chain (Xt ) is of the form 
X = T � for a set
of ‘labels’T and a set of ‘indices’� , that is, each state is an assignment of labels to the indices.
The state space for the time marks is (0, 1]{1,...,#(x)}, so here T = (0, 1] and � = {1, . . . , #(x)}.
Now consider a new state space 
B = (2T )� so that each index i ∈ � is assigned a subset of
labels rather than a single label. The bounding chain method runs a Markov chain (Bt ) on this
larger space that bounds the possible values for the original chain (Xt ).

Definition 4.1. Suppose that (At ) and (Bt ) are Markov chains, both adapted to the same
filtration Ft . Say that (At , Bt ) is a coupling of the processes if, for all measurable A, B

and states a, b,

P(At+1 ∈ A | At = a, Ft ) = P(At+1 ∈ A | At = a),

P(Bt+1 ∈ B | Bt = b, Ft ) = P(Bt+1 ∈ B | Bt = b).

A coupling is simply a construction of both Markov chains on the same probability space
with the same filtration.

Definition 4.2. A Markov chain (Bt ) with state space (2T )� is a bounding chain for the Markov
chain (Xt ) with state space T � if there exists a coupling (Xt , Bt ) such that

(for all i ∈ � ) (Xt (i) ∈ Bt(i)) �⇒ (for all i ∈ � ) (Xt+1(i) ∈ Bt+1(i)).

For any x ∈ T � and B ∈ (2T )� , write ‘x ∈ B’ if x(i) ∈ B(i) for all i ∈ � . Now CFTP with
bounding chains can be described. Suppose that the initial state of the chain is drawn from its
stationary distribution, X0 ∼ π , and that the initial state of the bounding chain is B0 = T � , so
B0(i) = T for every i ∈ � and, hence, X0 ∈ B0. Then, after a block of any fixed number of
steps t̃ , by stationarity and boundedness we also have Xt̃ ∼ π and Xt̃ ∈ Bt̃ .

After taking such a block of length t̃ starting in states X0 ∼ π and B0 = T � , there are
two possibilities. Either Bt̃ contains exactly one state (namely Xt̃ ) or it contains more than
one state. When #(Bt̃ ) = 1, call the block a success, otherwise call it a failure. Each block
succeeds or fails independently, and the probability p that any particular block is a success is
the same for all blocks. The ROCFTP method of Wilson takes advantage of the following fact,
first shown in a different form by Wilson [35]. For completeness, we present a proof similar in
form to Wilson’s.

Lemma 4.1. Let G ∼ Ge(p) for some 0 < p ≤ 1 (so P(G = j) = p(1−p)j for integers
j ≥ 0). Let Y0 have any distribution, and run the Markov chain forward where the first block
is conditioned to be a success, and the next G blocks are conditioned to be failures. Then
Yt̃(1+G) ∼ π .
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Proof. Consider X0 ∼ π and, for some large number k ∈ N to be specified later, take kt̃

steps in the Markov chain. Divide these steps into k blocks of length t̃ . Since π is stationary,
Xkt̃ ∼ π as well.

Let G be the number of failure blocks following the last success block, if any, among the
first k blocks, and otherwise set G = k. Then G is distributed as the minimum of k and a Ge(p)

random variable.
Let Y denote a random variable chosen by simulating a success block (which returns a

single state in the bounding chain) followed by G failure blocks. Note that Yt̃(1+G) ∼ Y ,
regardless of the distribution of Y0. Let Z be a random variable found by starting with Z0 ∼ π ,
and then running k failure blocks. Now consider Xkt̃ . Conditioned on G < k, we have
Xkt̃ ∼ [Y | G < k], while conditioned on G = k, Xkt̃ ∼ Z. In other words, for measurable A,

P(Xkt̃ ∈ A) = P(Z ∈ A)(1−p)k + P(Y ∈ A | G < k)[1− (1−p)k].
Since π is stationary, P(Xkt̃ ∈ A) = π(A) for all k. By assumption, p > 0, so, as k→∞, the
right-hand side converges to P(Y ∈ A), completing the proof.

The coupling between chain and bounding chain is typically accomplished by use of update
functions (see, e.g. [10]). Let (Xt ) be a time homogeneous Markov chain with state space 
.
Let U be a uniform random number on (0, 1]. Call φ : 
× (0, 1] → 
 an update function if,
for all x ∈ 
 and measurable A, P(φ(x, U) ∈ A) = P(X1 ∈ A | X0 = x). The chain can be

constructed recursively from a countable set (Ut )
i.i.d.∼ Un(0, 1] by the recipe X0 = x and, for

t > 0, Xt = φ(Xt−1, Ut ).
A single uniform variate may be regarded as an infinite sequence of uniform {0, 1} random

bits, which in turn can be used to construct a countable number of new independent uniform
random variates on (0, 1]. Therefore, the update function described here is very general, and
includes any method for updating that uses at most a countable number of random draws.
This generality will be useful when a Markov chain step requires a draw from a Poisson point
process, which (as typically implemented) requires a Poisson-distributed number of uniform
draws.

Any update function for a Markov chain will induce one for the bounding chain, and a
coupling of the chains. Suppose that (Bt ) is a bounding chain for process (Xt ) with update
function φ. Then, to update Bt given Ut+1 ∼ Un(0, 1], use Bt+1 = �(Bt , Ut+1), with update
function �(Bt , U) :=⋃

x∈Bt
φ(x, U).The chains Xt and Bt are coupled, since both are adapted

to Ft := σ {Us : s ≤ t}.
Lemma 4.1 says that a sample may be generated from π by running a success block followed

by a geometrically distributed number, G, of failure blocks. To determine G, run blocks
successively. Once a success block has occurred, the state just prior to each subsequent success
block will be a draw from the stationary distribution (see Figure 3). The following pseudocode

Time
S

Stationary draws

F F F S F S F F S S F F F

Figure 3: Read-once coupling from the past. Here S and F denote success and failure blocks, respectively.
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will run the Markov chain through t̃ steps to form a single block and indicate its success or
failure.

Algorithm 4.1. (Evaluate_block.) Inputs: current state X, update function φ, block length t̃ ,
and state space T � .

Outputs: X output of block and success_block ∈ {true, false}.
1. B ← T �

2. for t from 1 to t̃ do

3. draw U ← Un(0, 1]
4. X← φ(X, U)

5. B ← �(B, U) :=⋃
x∈B φ(x, U)

6. end for

7. success_block← (#(B) = 1)

With the block evaluation routine in hand, the following pseudocode runs ROCFTP. Begin
by running blocks until a successful block is found. Since it is successful, the output of the
block is a single state X. Save X in variable Y , and run forward through another block. If this
block is a success then Y is the state immediately preceding the success block, and so Y is a
draw from π . Otherwise, continue taking blocks until a success is found.

The time needed to generate n draws with this procedure will be the time needed to generate
n+ 1 successful blocks, with mean (n+ 1)/p, where p denotes the success probability.

Algorithm 4.2. (Read-once coupling from the past.) Inputs: update function φ, number of
samples n, block length t̃ , and state space T � .

Outputs: X1, . . . , Xn
i.i.d.∼ π .

1. repeat

2. (X,success_block)← Evaluate_block(∅, φ, t̃ , T � )

3. until success_block

4. for i from 1 to n do

5. repeat

6. Y ← X

7. (X,success_block)← Evaluate_block(X, φ, t̃, T � )

8. until success_block

9. Xi ← Y

10. end for

4.1. The update function for Matérn time marks

The key to success using ROCFTP is the construction of an update function φ(·) for which
it is easy to evaluate the induced update function �(·) for the bounding chain.
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The conditional density for the time marks, given the seen points x, was given in (2.4) for
t ∈ (0, 1]#(x) as hθ (t | x) = Z−1

θ,x exp(Aθ (x, t)),where (see (2.1)) Aθ(x, t) := λθµ(D(x, t)) is
the expected number of hidden points in the shadow of configuration x with time marks t .

The shadow D(x, t) is a union of overlapping cylinders, making exact computation of
Aθ(x, t) very difficult even for Lebesgue measure µ(·) in only two dimensions. A Metropolis–
Hastings approach will be used to avoid the explicit computation of Aθ(x, t).

The basic Metropolis–Hastings procedure [13], [18] converts a proposal Markov chain into
one whose stationary distribution is exactly the target distribution. Suppose that the target
distribution has a density function f (t) with respect to a reference measure η(dt) and, when
at point T , the proposal chain proposes a point S using density q(T , s) with respect to η(ds).
Furthermore, suppose that f (t)q(t, s) = 0 if and only if f (s)q(s, t) = 0. Then the following
procedure takes one step in the Metropolis–Hastings chain. Here Be(r) denotes the Bernoulli
distribution, which is equal to 1 with probability r ∧ 1 and 0 otherwise.

Algorithm 4.3. (General_Metropolis_Hastings.) Input: current state T .

Output: next state T .

1. draw S from distribution q(T , s)η(ds)

2. r ← {f (S)q(S, T )}/{f (T )q(T , S)}
3. draw B ← Be(r)

4. if B = 1 then

5. T ← S

6. end if

Our present goal in making inference about the Matérn type-III process is to draw samples
of the time marks T , conditionally on the observed values of the seen points x. Note that the
Metropolis–Hastings ratio, r = {f (S)q(S, T )}/{f (T )q(T , S)}, depends on the target density
f (·) only up to a scale factor, so the conditional density hθ (t | x) of the time marks (see (2.4))
may be replaced by the simpler unnormalized version f (t) = exp(Aθ (x, t)).

Consider a proposal chain in which an index i ∈ {1, . . . , #(x)} is chosen uniformly and
then a new time mark tpropi

is proposed for xi from some distribution with symmetric density
q(s, t) = q(t, s). Call the resulting proposed set of time marks tprop. By symmetry, the
Metropolis–Hastings ratio becomes simply

r = exp(Aθ (x, tprop)− Aθ(x, t)). (4.1)

Calculating the change in shadow area under the new time mark is a difficult task even in only
two dimensions. Therefore, it is necessary to construct an approach that does not require direct
computation of r in line 2 of Algorithm 4.3.

In the case that the proposed new time mark is smaller, tprop ≤ t , the shadow of x will grow
(Aθ(x, tprop) ≥ Aθ(x, t)) and the Metropolis–Hastings ratio r ≥ 1 will exceed unity, so the
proposal will always be accepted and we could replace lines 2–3 of Algorithm 4.3 with ‘set
B = 1’.

In the case that tprop > t , the Hastings ratio r of (4.1) is exactly the probability that a
Poisson point process with intensity �θ will assign zero points to the newly unshadowed
region � := D(x, t) \ D(x, tprop). Thus, in lieu of lines 2–3 of Algorithm 4.3, generate a
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Poisson point process W ∼ Po(�θ ) on � and set B ← 1{0=#(W)}. The set � never needs to be
evaluated explicitly—generating a Poisson point process on � is a simple two-step process, as
follows.

Each point in � lies within distance Rθ of xi , and has a time mark between ti and tpropi
, so

� := D(x, t) \D(x, tprop) ⊆ BRθ (xi)× (ti , tpropi
].

Thus, the Poisson point process W can be generated by first generating such a process over
BRθ (xi)×(ti , tpropi

] and then thinning it by retaining only points outside D(x, tprop). If there are
no such points then B = 1 and the proposal is accepted; otherwise B = 0 and the previous state
is retained. This idea of using an auxiliary Poisson process to generate a Bernoulli distributed
random variate without the need to calculate the parameter exactly also appears in [2], where
it was used in the very different context of generating diffusion sample paths.

For later use in Section 4.2, we present as Algorithm 4.4, below, a method for drawing a
Metropolis–Hastings update of the vector T of time marks for a configuration x of seen points.

Algorithm 4.4. (Matern_III_Metropolis_Hastings.) Input: seen points x with current state
of time marks T .

Output: next state of time marks T .

1. draw i uniformly from {1, . . . , #(x)}
2. t ← T

3. draw ti ← Un(0, 1]
4. if ti ≤ Ti then

5. Ti ← ti

6. else

7. draw Poisson point process W on BRθ (xi)× (Ti, ti] with intensity �θ

8. if #(W ∩D(x, t)c) = 0 then

9. Ti ← ti

10. end if

11. end if

Now consider the question of how to use this update function for a single state to update
an entire bounding chain state. The bounding states for this chain will be the intervals Bt =
[T lo

t , T hi
t ], where Bt := [T lo

t , T hi
t ] = {T : (T lo

t (i) ≤ T (i) ≤ T hi
t (i) for all i}. Pseudocode for

the bounding chain update is presented in Algorithm 4.5, below, followed by a brief explanation
of why it works.

Algorithm 4.5. (Matern_III_bounding_chain.) Inputs: seen points x and current bounds
B = [T lo, T hi].
Output: next state of time mark bounds B = [T lo, T hi].

1. draw i uniformly from {1, . . . , #(x)}
2. t1 ← T hi, t1

i ← T lo
i
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3. t2 ← T lo, t2
i ← T hi

i

4. draw ti ← Un(0, 1]
5. t3 ← T hi, t3

i ← ti

6. t4 ← T lo, t4
i ← ti

7. if ti ≤ T lo
i then (case I)

8. T lo
i ← ti , T

hi
i ← ti

9. else if T lo
i < ti ≤ T hi

i then (case II)

10. T hi
i ← ti

11. draw Poisson point process W on BRθ (xi)× (Ti, ti] with intensity �θ

12. if #(W ∩ {D(x, t1) \D(x, t3)}) = 0 then

13. T lo
i ← ti

14. end if

15. else if T hi
i < ti then (case III)

16. draw Poisson point process W on BRθ (xi)× (Ti, ti] with intensity �θ

17. if #(W ∩ {D(x, t1) \D(x, t3)}) = 0 then

18. T lo
i ← ti

19. end if

20. if #(W ∩ {D(x, t2) \D(x, t4)}) = 0 then

21. T hi
i ← ti

22. end if

23. end if

To summarize, when the proposed time mark ti is smaller than the existing one, always
accept the proposal and collapse [T lo

i , T hi
i ] to (ti). When the proposed ti is higher, the worst

case for acceptance is when the original time marks are as small as possible (i.e. equal to T lo
i ),

and, for all j �= i, the time marks tj are as high as possible (i.e. equal to T hi
j ). This is shown

in the proof to the following theorem.

Theorem 4.1. Algorithm 4.5 is a valid update for the bounding chain.

Proof. Suppose that the call

(T ′ lo, T ′ hi)← Matern_III_bounding_chain(x, T lo, T hi)

is used for the bounding chain and that the call

T ′ ← Matern_III_Metropolis_Hastings(x, T )

is used for the time marks, where T satisfies T lo ≤ T ≤ T hi. Then with the same choices for
i, ti , and W as in Algorithm 4.5, we must show that T ′ lo ≤ T ′ ≤ T ′ hi. Three cases arise.
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Case I: ti ≤ T lo
i . Then ti ≤ T lo

i ≤ Ti and, hence, T ′i = ti , so setting T lo
i = T hi

i = ti still
satisfies T lo ≤ T ′ ≤ T hi.

Case II: T lo
i < ti ≤ T hi

i . When Ti ≥ ti , T ′i = ti , and when Ti < ti , T ′i ∈ {ti , Ti} ≤ ti , so
T ′ hi

i = ti ≥ T ′i is a valid move.
Now consider T ′ lo. When ti ≤ Ti , again T ′i = ti , and so T ′ lo = ti ≤ Ti is a valid move, so

suppose that ti > Ti .
The shadow change upon increasing Ti to ti can also be written in the form

� = {D(x, T ) \D(x, t)} = {BRθ (xi)× (Ti, ti]} ∩D(x, t)c. (4.2)

The set BRθ (xi)× (Ti, ti] is as large as possible when Ti is as small as possible. The smallest
it can be is T lo

i .
The set D(x, t)c is as large as possible when D(x, t) is as small as possible, which happens

when, for all j �= i, tj = T hi
j . Combining these, {D(x, T ) \ D(x, t)} is as large as possible

when T = t1 and t = t3. In other words,

D(x, T ) \D(x, t) ⊆ D(x, t1) \D(x, t3).

Now suppose that #(W ∩ {D(x, t1) \D(x, t3)}) = 0. Then, necessarily,

#(W ∩ {D(x, T ) \D(x, t)}) = 0

as well for every T ∈ [T lo, T hi], so the proposal T ′ = t will be accepted and T ′ loi = ti ≤ T ′i is
a valid move in the bounding chain.

Case III: T hi
i < ti . The case for T ′ lo is the same as in case II. It remains to show that the

move for T ′ hi is valid. Use representation (4.2) for �. This is as small as possible when (Ti, ti]
is as small as possible, so Ti = T hi

i . Similarly, D(x, t)c is as small as possible when D(x, t) is
as large as possible, which happens when tj = T lo

j for all j �= i. Therefore,

D(x, t2) \D(x, t4) ⊆ D(x, T ) \D(x, t).

If #(W ∩ {D(x, t2) \D(x, t4)}) > 0 then #(W ∩ {D(x, T ) \D(x, t)}) > 0 for all T satisfying
T lo ≤ T ≤ T hi, so the proposal t will be rejected and T ′ hi

i = T hi
i ≥ T ′i = Ti is fine. Otherwise,

there might be some T that accepts the move, and so T ′ hi
i = ti ≥ T ′i , as in line 21 of

Algorithm 4.5.
This completes the proof.

4.2. A product estimator of the likelihood

Given the ability to draw samples from π , there exist many Monte Carlo methods for
estimating the likelihood g(x | θ). Here a version of the product estimator is presented (see [9,
Section 5.31] for more details of this approach, and [26] for a more advanced variant). The
product estimator algorithm has the advantage of giving approximations to the likelihood that
are immune to the effects of multimodality.

Begin by fixing x and R, and consider a range of possible values of λ. Fix 0 < γ ≤ 1/µ(S)

and, for integers k ≥ 0, fix θk ∈ � such that λθk
= λ̃k := γ k and Rθk

= R. Note that
Aθk
= kAθ1 = kγ (µ⊗m){D(x, t)}.

From (2.3) we have g(x | θ0) = 1{x=∅} and, for k ≥ 1,

g(x | θk) = akλ̃
#(x)
k exp(µ(S)[1− λ̃k]),

where

ak :=
∫

(0,1]#(x)

exp(Aθk
(x, t)) dt =

∫
(0,1]#(x)

exp(kAθ1(x, t)) dt.
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Evidently, a0 = 1; for k ≥ 1, estimate ak by first estimating each ratio in the telescoping
product

a0

a1

a1

a2

a2

a3
· · · ak−1

ak

= 1∫
(0,1]#(x) exp(Aθk

(x, t)) dt
.

Estimate each term (ai−1/ai) as follows. First, given the seen points x and radius R, fix n (to be

chosen later) and, using Algorithm 4.4 (or 3.1), draw time marks T1, . . . , Tn
i.i.d.∼ hθi

(t | x) dt

(see (2.4)) for intensity λ̃i = iγ . For each 1 ≤ j ≤ n, draw a Poisson point process Wj

with intensity γ (µ⊗m)(ds dt) over the shadow D(x, Tj ). The independent Bernoulli random
variables Bj = 1{#(Wj )=0} have conditional expectation E(Bj | Tj ) = P(#(Wj ) = 0 | Tj ) =
exp(−Aθ1(x, Tj )), so

E(Bj ) =
∫
t
exp(−Aθ1(x, t)+ iAθ1(x, t)) dt∫

t
exp(iAθ1(x, t)) dt

= ai−1

ai

.

The probability pi = (ai−1/ai) = exp(−γµ(S)) that W is empty is at least e−1, since γ ≤
1/µ(S), so the Bernoulli variables (Bj ) have means E(Bj ) = pi > e−1 and coefficients of
variation

cov(Bj ) =
√

pi(1− pi)

pi

=
√

1− pi

pi

≤ √e− 1.

Set B̄i := (B1 + · · · + Bn)/n. Then E(B̄i) = (ai−1/ai) and cov(B̄i)
2 ≤ (e − 1)/n. Let

âi := 1/
∏i

j=1 B̄j be an estimate for ai . Dyer and Frieze [6, pp. 135–136] showed that under
these conditions, for any ε > 0, the condition n ≥ 16(e− 1)i/ε2 is sufficient to guarantee that

P

(∣∣∣∣ 1

āi

− 1

ai

∣∣∣∣ >
ε

ai

)
≤ 1

4
.

The event (1− ε)/ai ≤ 1/âi ≤ (1+ ε)/ai is equivalent to ai(1+ ε)−1 ≤ âi ≤ ai(1− ε)−1.
For ε < 0.1, (1 − ε/1.1)−1 ≤ 1 + ε and (1 − ε) ≤ (1 + ε)−1 always. Therefore, after
n ≥ 16(e− 1)i(1.1/ε)2 = 19.36(e− 1)i/ε2 steps, when ε ≤ 0.1,

P(|âi − ai | > εai) ≤ 1
4 .

The upper bound of 1
4 can be made arbitrarily small by the standard method of repeating the

process n′ times and taking the median result, as follows. Let m̂ denote this median. For
1
4 > δ > 0, Chernoff bounds [4] can be used to show that, for n′ ≥ 10.4 ln δ−1,

P(|m̂− ai | > εai) ≤ δ.

The resulting method is presented in pseudocode as Algorithm 4.6, below, where, as usual, �x�
denotes the greatest integer less than or equal to a real number x ∈ R.

Algorithm 4.6. (Matern_III_product_estimator.) Inputs: relative accuracy ε ∈ (0, 0.1), fail-
ure probability δ, steps k, and step size γ .

Output: estimate m̂ of ak .

1. n← �19.36(e− 1)k/ε2�, n′ ← �10.4 ln δ−1�
2. for � from 1 to n′ do

3. for i from 1 to k do
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4. for j from 1 to n do

5. draw time marks Tj using λ̃ = iγ

6. draw Poisson point process Wj with intensity γ (µ⊗m) over S × (0, 1]
7. end for

8. B̄�← (1/n)
∑n

j=1 1{#(Wj∩D(x,Tj ))=0}.

9. end for

10. m�←∏k
i=1 B̄−1

�

11. end for

12. m̂← median of {m1, . . . , mn′ }
Some remarks are in order.

• Upon replacing δ by δ′ = δ/k, the Bonferroni bound ensures that the probability that
all of the estimates aj for j from 1, . . . , k are correct to within a factor of 1+ε will be
at least 1−δ. Typically, the goal is to develop a profile of the posterior across values
of λ, which is why all of these products are being estimated rather than using the more
efficient method for a single estimate of [26].

• The user interested in a specific value of λ > 0 may either set γ = λ/k for k = �λµ(S)�
or take γ = 1/µ(S) and separately estimate aλ/ak−1 by the same methods, still with
expectation at least exp(−1).

5. Simulated data

The technique was tested on four data sets, drawn exactly from the Matérn III point procsess
on the unit square S. These data sets are shown in Figure 4. Sets (a) and (c) have λ = 50,
while (b) and (d) have λ = 100. Sets (a) and (b) have R = 0.025 and sets (c) and (d) have
R = 0.05. These parameter values were chosen to be comparable to those found in scaled data
sets studied in [11] and [30]. Data sets (a), (b), (c), and (d) contain 40, 42, 82, and 80 points,
respectively.

In Figure 5 the likelihood functions for the four data sets are presented. The parameter space
is two-dimensional, and so the likelihood function is presented using three slices at different
values of R. In each subfigure of Figure 5 the first value of R is the largest possible for the
data set (the minimum interpoint distance). Unsurprisingly, the likelihood appears to be close
to that of a normal distribution—however, the peak is shifted to the right by an amount that
depends on R. Note that at R = 0 the Matérn III coincides with the standard Poisson process
model, whose likelihood attains a maximum at a value of λ equal to the observed number of
points.

Now consider the maximum likelihood estimator for these data sets. The value of R that
maximizes the likelihood is always the minimum distance between pairs of points in the data set,
since the area of the shadow is an increasing function of R. For the data sets with R = 0.025,
the maximum likelihood occurred at values of λ only slightly higher than those for a basic
Poisson point process. The data set with (λ, R) = (50, 0.025) has 40 points and an MLE
of (42.5, 0.034), while that with (λ, R) = (100, 0.025) has 82 data points and an MLE of
(91.3, 0.028).
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(a) (b)

(c) (d)

Figure 4: Simulated data sets.

Data set (a) Data set (b)

Data set (c) Data set (d)
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R = 0.045
R = 0.040

R = 0.028
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R = 0.045
R = 0.040

λ λ

λ λ

Figure 5: Slices of likelihood functions for simulated data.
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Figure 6: Running times for different intensities λ.

For the data sets with R = 0.05, the difference in the MLE between the basic Poisson process
and Matérn III is substantial. The first data set had only 42 data points with λ = 50, but the
MLE occurs at (50.1, 0.051). The second data set with (λ, R) = (100, 0.05) had its MLE at
(113.5, 0.051).

5.1. Running times

Figure 6 shows the average number of Markov chain steps evaluated per sample for the four
data sets, based on 10 000 generated samples. For small values of λ, the number of points in the
sample appears to determine the running time. The slopes of the time appear to be a function
of R. This illustrates another advantage of modeling with Matérn III processes: the Markov
chain appears to be rapidly mixing for all values of λ, in sharp contrast to methods based on pair
repulsion models [15], which tend to have phase transitions that make sampling difficult for
high values of λθ . This is in part a direct result of features of the model: for simulation-based
inference with pair repulsion models, it is necessary to move point locations around. This is
not needed with Matérn III, where the locations are fixed in the Markov chain and only the
latent time marks move. Because the state space is of a completely different type, the issues
associated with phase transitions and slow mixing of the Markov chain do not arise.

6. Discussion

Despite notable recent progress in the study of Gibbs random fields [20], [21], the problem
of making likelihood-based inference for repulsive point processes remains challenging. In the
absence of calculable likelihood functions, the common approach to inference is to simulate
random samples from a specified class of processes and compute summary statistics such as the
first-order packing density and second-order K , L, or g functions, and to compare these with
similar statistics computed from data. Similar values of these statistics (or similar features of
their plots) are regarded as evidence of model fit, while the inability to reconstruct features of the
observed data is regarded as evidence against the suitability of a particular model family. Our
goal has been to support quantitative, likelihood-based inference for some family of repulsive
point processes to enable investigators to generate both Bayesian and maximum likelihood
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estimators of model parameters, or to compute Bayesian predictive distributions of as yet
unobserved quantities, within either of the present dominant paradigms of statistical inference.

In this work we have developed and presented an algorithm for the perfect simulation of
latent time marks for data under the Matérn III model, and an algorithm for using these estimates
to construct a product estimator for approximating the likelihood function to arbitrarily high
accuracy. There remain several extensions of this method to be considered.

• Soft-core processes. Here Rθ is constant for all points, but the model becomes far more
flexible when Rθ is allowed to vary from point to point.

• In a similar vein, λθ can be allowed to vary across the space of interest. This can be
accomplished (for instance) by treating the intensity as a linear combination of basis
functions with unknown coefficients.

• Improved proposal distribution for time marks. The Metropolis proposals for time marks
used in Section 4.1 were uniformly distributed on the unit interval. Since the marginal
distributions of time marks for seen points are skewed, typically smaller than those for
the hidden points, it may be more efficient to sample using a proposal distribution that
places more weight towards lower times. Better proposals might improve the mixing
properties of the Markov chain, while having the deleterious effect of making the perfect
simulation algorithm more complex.
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