ONTARIO MATHEMATICAL MEETINGS 1968

Four meetings were held during the year, 1968. For the first time,
centres outside Toronto were used. The details of each meeting (time,
place and invited address) and the abstracts of papers presented are as
follows:

Sixth meeting: January 20, University of Waterloo (Abstracts 68.1 to 68.38)
P.M. Cohn (University of London, and Rutgers, the State University),
Dependence in rings.

Seventh meeting: March 30, University of Toronto (Abstracts 68.9 to 68.15)
Abraham Robinson (Yale University), Germs and monads.

Eighth meeting: November 2, McMaster University, Hamilton (Abstracts
68.16 to 68.26) A. Rosenberg (Cornell University), Some recent results
on the Brauer group of rings.

Ninth meeting: December 14, University of Toronto (Abstracts 68.27 to
68.40) Marc Kac (Rockefeller University), Some mathematical problems
in statistical mechanics.

68.1 G. Alexits (Hungarian Academy of Sci. Math. Research Inst.
and University of Waterloo)
On the Characterization of Classes of Functions by Best Linear

Approximation

For a real Banach space B containing a sequence {yv} , define

the nth best {Yv} - approximation of x ¢ B:
(B) _ s .
En (x, {Yv} ) = inf{ || x - (a1y1 +...+anyn)”B. aieR} .

' B B)
For a subset C of B, En( )(C, {Yv} ) = sup{En( (%, {YV} ): xeC} .
I {E } is a positive non-increasing null sequence, C({En} , {YV} )
n
. B
is the set of all those elements xe¢B with En( )(x, {yv} )< En(nzi, 2, ... ).
A set CCB is {E } - characterizable if there exists a basis of
= n characterizable
approximation {Yv} such that C({KEn} , {yv} )© CC C({En} , {Yv} )

for each n where K< 1 is an absolute constant.

Assume that B is a Banach space contained in a Hilbert space such
that the B-norm dominates the Hilbert space norm. Write {an}x {bn}

a n
for two positive sequences if { n/bn} and { /a,} are both
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bounded, and En(B)(C) = inf {EH(B)(Q {Yv} ): {YV}EB} .

THEOREM. Let {gv} be a bounded orthonormal system and C

a closed set {En} - characterizable by {gv} - approximation. If

E2 > cE for some constant ¢ and every n, then
n-— n

(B)
()% (E ().
This theorem can be applied to approximation by v-times differentiable

functions whose rth derivatives satisfy a Lipschitz condition and by
rational functions.

68.2 E. Zakon (University of Windsor)
Non-Standard Models of the Real Axis

68.3 G.F. Duff (University of Toronto)
On Rearrangement Identities

1
For a real-valued function f ¢ C"[0,b], the equi-measurable

decreasing rearrangement f* of f is defined as rn_1 where
m(y) is the measure of the set {xlf(x)>y} . I n(y) denotes

the number of roots Xk of f(x) =y, then

1

n
s

.
1
ket [0
From this relation we can deduce integral inequalities such as

! x)p

fl £k (x) lpdx_<_
n(f(x)) P

dx, p>1.

Also, if we define an "equivariational transform'" F of f by
dF = n(f)df*, we can establish an arc length inequality of the
form

fJi +(F1)2 dx< / J1+ (692 dx .

Various generalisations involving convex functions and higher
dimensions are also possible.
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68.4 R.G. Stanton (York University) and J.G. Kalbfleisch (University
of Waterloo)
Covering Problems for Dichotomized Matchings

Olga Taussky and John Todd have posed the following problem
concerning an abelian group G with n base elements
g; (i=1,...,n) each of order p, where p need not be a prime.

Let S be the set of 1 +n(p - 1) distinct powers of the base
elements. Then one is required to determine the minimal integer
o(n, p) for which there exists a subset H of G, with H containing
o(n, p) elements, such that each element of G may be written as

a product of an element of H and an element of S.

In this paper, attention is restricted to the case of o(n, 2). I the
set H contains Y5 elements whose entries are made up of i ones

and n - i zeros, then
n
s -
(n 1+1)yi_1 +yi +(i 'l)yi_H?_ (i)

for i=0, 1,...,n. Consideration of these inequalities allows one
to determine o(n, p) for p=2,n=2,...,7. The values are
2,2,4,7,12,16. Of these, the value o(6, 2) = 12 is new, and some
new uniqueness properties are found. The method shows that

(8, 2) is either 31 or 32, and it is announced that different
considerations, to be published later, show that o(8, 2) = 32.

68.5 H.P. Heinig (McMaster University)
An Extension of Plancherel's Theorem

Let M denote the real line and m the Lebesgue measure
on M . Define f* to be the equimeasurable decreasing
rearrangement of [f| by f¥(t) = inf{y>0:\ ] (y) < t}, where

Mg ) = m{xe M: [£(x)[>y, v y>0}, and &% by fi¥(s) =
s

1/s [ £¥()dt, s>0. I Lq p(M), 1<p< o, 1< q< » is the
0 »

class of measurable functions f on M such that

2 7 Jq-1 . |MP
”f”q - (a-1)/q" [ [e(e) P P/ 977 gt J < o, where
’ 0

1<p<ow 1<g<w [f] = sup ti/qf**(t)<eo,
q, © t

(M) = L, (M) ,

L (M) = L (M), and L
0, o P

1,1

623

https://doi.org/10.1017/5S0008439500029866 Published online by Cambridge University Press


https://doi.org/10.1017/S0008439500029866

then the following extension of Plancherel's theorem holds:

3

H

THEOREM: ¥ feL p(M), 1<q<2, 1<p< o thenas \=>®

.
- _ ¢ R
f)\(x) =1 /N 2n f e f(t)dt, converges in the L , p-_norm to f,
q,
_)\ R
called Fourier transform of f and Hf” \ < A Hf” ,
- q.p = QP

where q' +q=q'q.

(e o]
COROLLARY. ¥ 1<q<2, q<p<q', [ Ix'p/q_1|f(x)lpdx<oo,
- Q0

then f)\ converges in mean to f and for p< s < q'

2L )

R , R N 1/s ( ~ ) 1/p
R ARSI SN ML 1|f<x>l1°dx§
- 00

-0 A {

68.6 H.H. Crapo (University of Waterloo)
Simplicial Geometries

A gecmetric theory of combinatorial topology may be founded upon
the following simple observations concerning Betti numbers.

For a fixed n-element set T, and any non-negative integer k < mn,

let Tk be the set of all k-element subsets of T. With each subset

AcC Tk' associate the simplicial complex S(A), .with simplices

S(A)=T UTiu...UT VA,

0 k-1

Let @ (A) and ﬁi(A) be the total number of simplices, and the

Betti number, respectively, calculated for simplices of cardinality
i in the complex S(A).

The integer-valued function r, defined on subsets A C Tk by

n—i)

r(A) = k17"

Br_q (8) = [A] - (A)

increases by at most one when an element is added to a set A, has
value r(@) = 0, and satisfies the semimodular inequality

r(AUB) + r(ANB)< r(A) + r(B) .
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THEOREM. r(A) measures the geometric rank of the subset A

. .n-1 n.
in some geometry G(Tk) of rank k- 1\ on the set Tk of K

points.

The lattice of flats of a geometry G(Tk) for k =2 is the lattice

of all partitions of the set T, ordered by refinement. For higher
values of k, the simplicial geometries have not previously been
studied. Two general results are available.

THEOREM. In a simplicial geometry G(Tk)’ the set B of points

(k- element simplices) containing any fixed element be¢ T form a

basis for the geometry.

THEOREM. On an n-element set T, the geometries G(Tk) and

G(Tn_ k) are orthogonal, for k =0,...,n. (Alexander duality)

(G. C. Rota and the author are including an exposition of these
results in the book Trends in Lattice Theory, soon to appear in the
Van Nostrand series.)

68.7 F.P. Cass and D. Borwein (University of Western Ontario)
Multiplication Theorems for Strong Summability

Some theorems concerning the strong Norlund summability of the
Cauchy product of two given series are established which generalise
known theorems about strong Cesaro summability.

68.8 Tae Ho Chae (McMaster University)
On Compact Topological Lattices of Finite Dimensions

In 1947, I. Kaplansky proved that a compact semi-simple topological
ring is isomorphic and homeomorphic with a cartesian direct sum of
finite simple rings; this implies that any compact Boolean topological
lattice is always totally disconnected.

However, in the proof of his theorem, Kaplansky utilized duality
theorem in the sense of a topological group. Professor A.D. Wallace
had suggested the possibility of a proof of the latter theorem (Boolean
ring case) which is independent of the duality theorem. In this
connection, we show, without using the duality theorem, that any
compact Boolean topological lattice of finite dimension is always
totally disconnected.

With the use of duality theorem, this theorem can be generalised
as follows: a locally compact and locally convex Boolean topological
lattice is totally disconnected. And we show: If L is a compact
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complemented modular topological lattice and if aAal = F(aAaL)
(the boundary of aaL) for all non-zero elements a of L and
dually, then L is totally disconnected. A.D. Wallace conjectured
that the center of a compact connected topological lattice L of

codimension n contains at most Zn elements. L.W. Anderson
showed that if L is distributive, then Wallace's conjecture is true.
In the second section, we prove that the conjecture is always true.
It is also shown that if L is a topological lattice with 0 and 1
with codimension n, then L is iseomorphic with the n-cell if
and only if L satisfies (i) L 1is distributive and contains

n-independent elements x .,x over 0 whose unionis 1.
n

IR
(ii) each xi/\L is separable, connected and locally compact.

68.9 A. Tsutsumi (University of Toronto)
On a Generalised Goursat Problem

We consider the equation

with data

k
9
(ax } u(t1, ...,tm,x)

under the compatibility conditions on ¢,k;
i

Y k
2 4 - [2)
ot Jk ) £=0 |5y i
1 J t.=.0
J
where the summation > is done for B,y such that
Y

lyl > I8l + 4. o >B, i=t,...,m.
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We have an unique existence theorem of the solution of the above
equation in the function class of §6-geverey with respect to x for

lel - [p]

Y

6: 1<86<min and continuously differentiable up to
By

the order o with respect to t, which generalises the results of

A. Friedman (Trans. Amer. Math. Soc. 98) and L. Hormander

(Theorem 5.1.1 ; Springer 1963).

68.10 R.G. Lintz (McMaster University)
Cauchy's Problem for Generalised Differential Equations

The idea of derivatives in general topological spaces has been
introduced in (Notices Amer. Math. Soc. - 648-76; August, 1967).
As a consequence, we can consider also differential equations in
general topological spaces. To do this, we have to consider in the
spaces X and Y a structure of Gauss space and then if we are given
an open set M in X and an open set M' in Y it is possible to
prove the existence of solution of the equation Df = g, where g is

a special g-function, satisfying initial conditions relatively to the
pair (M, M'). For arbitrary g-function g this problem is not yet
solved.

68.11 D.Z. Djokovié (University of Waterloo)
A Representation Theorem for (Xi—i)(XZ- 1... (Xn—i) and its

Applications

Let R be a commutative ring with unity. We prove that the polynomial

2 n
! -
(1) " § -1
i=1
for some integer s > 0 is contained in the ideal of R[Xi’ e Xn]

which is generated by all polynomials of the form

(2) (X, X, ...X, -1)"
) k
where 1§i1<iz<...<ik§n.
627
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The proof of this is based on the identity

n .
5 (-)f > (X, X, ... X 1"
k=1 i i k
1§11<12< <1k‘n 1 2
o ™ .n, ° m
= =z (-1) km) H (Xi -1) .
m=1 i=1

This representation of the polynomial (1) as a combination of
polynomials (2) (with polynomial coefficients) leads to a similar
representation of the iterated difference operator

A
u

8 4
1 2 n

By using this representation we prove a generalisation of a recent
result of M.A. McKiernan: If f : R > R satisfies

+

A ) =0

u
for all u,xe R and a fixed positive integer n then

n
f(x) = ? g (x)
k . . s

where g, : R - R is multiadditive and g*]; (x) = gk(x, X, 00, X) .

We show that the same theorem is valid (essentially) if we take f
to be a function which maps an abelian semigroup into an abelian
group.

68.12 E. Zakon (University of Windsor)
On Uniform Spaces with a Nested Base

A uniform space X with a nested base (''nested space') always
has a base V which is either countable or consists of clopen
entourages which are equivalence relations, so that each V eV
induces a partition of X into disjoint clopen neighborhoods V[x].
Such a base is called standardif it is well ordered by inverse
inclusion and is of the least possible order type J under that
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well ordering. Notation: (X,V,J). (X,V,J) is said to be
pseudocomplete if N v<n VV [Xv] # @ for every decreasing

sequence of neighborhoods Vv [xV] (Vv ¢ V) of order type n< J.

We say that X has few isolated points if some neighborhood is
free of such points.

SOME THEOREMS. 2.4(a). (X,V,J) is metrizable if it is
hereditarily Lindelof, or separable, or totally bounded, or has a
non-discrete subspace with one of these properties.

3.2. A pseudocomplete nested space (X,V,J) with few isolated
points is metrizable if: (a') For each V eV, X canbe covered by

less than ZNOneighborhoods V[x]; or (b') every open covering of

X
X has a subcovering of power < 2 0; or (c') every set of power

R

> 2"0o in X has a limit point; or (d') some neighborhood V[x]
without isolated points has one of these three properties, as a
subspace of (X,V,J).

68.13 W.A. O'N. Waugh (University of Toronto)
Conditional Probabilities in a Birth and Death Process

A Markov process may, in general, possess one or more sets of
absorbing states. The author has described a method for deriving
probabilities conditional on absorption in a given set, from
unconditional probabilities for the same process. The purpose of
the present work is to extend this result to the non-Markovian age-
dependent branching process. There is a single absorbing state:
zero, or extinction of the population, and all other states (the
positive integers) are transient. The process is conveniently
described in terms of a family tree, and we shall make use of
probability measures on a space of possible family trees. The
process is well defined when one has given the distribution G(t)
of life-lengths of individuals, and the respective probabilities
qft) and qz(t) that life ends in death without issue or in binary
fission, given that it ends at age t. Let p be the probability of
death, and o the probability of binary fission (unconditionally).
Also, let B* (tlb) be the life-length distribution conditional on
binary fission, and D% (tld), be that for death without issue.

Let A be any event and let E be the event "extinction'. We write
for the probability in the conditioned process

P(A|E) = B(A)

and adopt the same convention of a tilde for all probabilities in the
conditioned process. Our result is that

(a) g =0 and . T = P
(b) Dx(t |d)= D¥(t |d) and B*(t|b) = B¥(t]|b)
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(a) is just what would be obtained by applying the author's earlier
result for Markov processes to the imbedded discrete-time Galton-
Watson process, while (b) implies that, given his reproductive
history an individual's life is independent of the ultimate fate of the
population.

~
From this result, the conditional probabilities G(t) go(t) and
~
q,(t) cau be obtained, and mean life-lengths and other properties
of the process obtained.

(Reference: W.A. O'N. Waugh, Age-dependent Branching
Processes Under a Condition of Ultimate Extinction. Biometrika 55

(1968) 291-296.)

68.14 M.P. Heble (University of Toronto)
On the Homotopy Groups of the General Linear Group of an Infinite-
dimensional Banach Space

The basic hypothesis made is:

X is an infinite-dimensional complex Banach space with a
countable basis, and with the further property that every closed
linear subspace in X has a complementary closed linear sub-
space in X. The basis elements are assumed to be normalised.

We consider L(X, X) the linear space of continuous linear operators
A: X- X, with the topology defined by the operator norm:

la] = sup laxl

Denote by Ci}L = GL(X) the group of elements A ¢ L(X, X) such
that A, A = both belong to L(X, X). GL becomes a topological
group with the above topology. The theorem proved is:

THEOREM. All homotopy groups of GL vanish:

m (GL) =0, k=0,1,2,...

68.15 J.A. Baker (University of Waterloo)
Measurability Implies Continuity for Solutions to a General System
of Functional Equations
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68.16 C.E. Haff and G. Berman (University of Waterloo)
The Construction of A-Kernels for Coloring a Graph

Let G be a finite, undirected graph, without loops. Define the
integer-valued function A(G) by

(1) A(G) = max min val(G', x)
G'CG xeV(Q)

where val(G', x) is the number of edges of G' incident with x
and V(QG) is the vertex set of G. Szekeres and Wilf* have shown that

(2) k (G) < A(G) +1,

where k (G) is the chromatic number of G.

A A-kernel of G is a maximal independent set C C V(G) such that
MG - G[C]< A(G) - 1. A method is given for partitioning V(G) by
A-kernels. This yields a sharpening of the inequality (2),

(3) K (G) < A%(G) + 1< A(G) + 1,

where A%(G) is the cardinality of the partition. A corresponding
coloration of G in A%(G) + 1 - colors is determined.

(*G. Szekeres and H.S. Wilf, An Inequality for the Chromatic
Number of a Graph, Journal of Combinatorial Theory 4, (1968) 1-3.)

68.17 C.E. Billigheimer (McMaster University)
Symmetric Difference Operators in a Hilbert Space

We have discussed properties of the formally self-adjoint fourth order
difference operator P acting on sequences of complex numbers

I U
y {Yn) -2 defined by

+ by +c

>
n+2 * Cnyn+1 n’n n—1yn-1 * dn—Zyn—Z (n20)

(Py) = dy

where b , ¢ , d arereal numbers, d >0.
n n n n
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Regarding the operator P, which is analogous to a fourth order
self-adjoint differential operator, as an unbounded operator in the

Hilbert space ﬂz of sequences éyn} _D% which are of summable
< 2
square such that 2 [ynl < o, we consider the classification of
0
P according to the deficiency indices (m, m) (0 < m < 4) of the
closed symmetric operator A with minimal domain, or equivalently
the number m of linearly independent solutions of the recurrence

relations

which are of summable square.

By considering symmetric extensions of A we show that for real
N, which are not eigenvalues of A, the number of summable
square solutions m(\) satisfies m(\)< m.

In the case of self-adjoint extensions, we obtain the classical
eigenfunction expansion theorem for a sequence in 12 in terms of
a unique spectral function, which corresponds to the resolution of
the identity for the self-adjoint operator. We also obtain the unique
Green's function for (%) for Im \ # 0 and the corresponding
resolvent operator. In the quasi-regular case, m =4, the
resolvent operator is completely continuous and the spectrum is
discrete.

We have obtained by a direct method the theorem that there always
exist at least two linearly independent solutions of summable square
of the unrestricted recurrence relations y' =\ y (n> 0). Also,

n n =

if for one value of N\ these recurrence relations have four linearly
independent solutions of summable square, then this is true for all
values of N . These two theorems are also derivable by Hilbert
space methods.

The above results are parallel to those for the analogous continuous
case of an even-order differential operator, obtained by Hilbert
space methods by Kodaira (1950) and Glazman (1951) and directly
by Everitt (1957), which generalize the second-order differential
operator case with its fundamental limit-point, limit-circle
distinction discussed by Weyl (1910), Stone (1932), Titchmarch
(1946), Levitan (1950), Yosida (1950), Levinson (1951), and others.

68.18 R.A. Day (McMaster University)
The Characterization of Lattice Equations in Universal Algebra

In this paper we give characterizations of certain properties that
hold in the congruence lattice of every algebra of an equational
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class (variety) by equations of the equational class. Mal‘cev
(Mat. Sb (N.S.) 35 (77) (1954) 3-20) has characterized
permutability (i.e. every pair of congruence relations 8, | in
every congruence lattice satisfy 8 o y= o 8) by the existence

of a ternary term p(x, y, z) that satisfies the equations

a =p(a, b, b) and b =p(a, a, b). Pixley (Proc. AMS 14 (1963)
105-109) gave a similar result for permutability and distributivity
while Jonsson (Math. Scand. (to appear)) has characterized
distributivity alone.

The author (Can. Math. Bull. (to appear)) has shown that every
congruence lattice of an equational class is modular if and only if
there exists a finite sequence m ,...,m_ of quaternary terms
satisfying the equations: ° n

(M1) a = mo(a, b,c,d) and d = mn(a, b, c,d)

(M2) m.i(a,b,b,a) =a(i=0,1,...,n)

(M3) m_.(a,a,b,b) =m, (a,a,b,b) (i even)
i i+l

(M4) m.(a,b,b,d) =m,  (a,b,b,d) (i odd).
1 i+

Direct proofs were also given (in terms of the characterizing equations)
that both distributivity and permutability imply modularity.

The above results raise the following general problem: can every
property that possibly holds in congruence lattices be characterized
by equations if it holds for every congruence lattice in an equational
class; or more precisely, what distinguishes those properties that
are characterized by equations?

68.19 Y.L. Park (Laurentian University)
On the Projective Cover of the Stone-Cech Compactification of a
Completely Regular Hausdorff Space

Let C be the category of compact Hausdorff spaces and continuous
maps. For E ¢ C, let O(E) be its topology, and A (E) be the
space of maximal filters M C O(E) whose topology is generated

by the set /\W(E) ={M | WeM, McA(E)} for each We O(E).

The following are proved: 1) Let X and Y be the topological
spaces such that X is a dense subspace of Y; then A(Y) ¥ A(X)
under the mapping M' - M!' lX, M' e A(Y); 2) For any M ¢ A(X),
i th 1i
if UeM, en Mef‘A(X)n’n
projective cover of BX in, C; then for each dense subset

;lX(U); 3) Let ¢ : K=~BX be a

- -1
D of X, ¢ 1(D) is dense in K and K =8¢ (D). Let 9 be a
filter base of dense subsets of X and Q"’r;)(X) be the direct limit
i

of the direct system (C%(D)) with (¢D)D <8 as a family of

De#®
the limit homomorphisms. A function f ¢ C¥(D) defines f o ¢

-1 LY
on ¢ (D), and f o¢ has a unique continuous extension f to K
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for De®. Let u € Q;E(X) with u = ¢D(f) and f ¢ C¥(D) for some

De®, The mapping u, > ¥ is a norm preserving monomorphism.

f
If 8 contains all disconnected dense open subsets of X, then the
maximal ideal space of Q%(X) endowed with the Stone-topology is
9

homeomorphic to K. Hence K is homeomorphic to the maximal
ideal space of the maximal ring of quotients of C(X).

68.20 L.J. Mordell (University of Toronto)

2 .
The Integer Solutions of the Equation ax2+ by  +c =0 in Quadratic
Fields

The following result is proved. Let a,b,c, be rational integers
such that (b,c) =(c,a) =(a,b) =1 and a and b are square free.

Then integer solutions of the equation ax2 + by2 +c =0 existina
quadratic field Q(t) if and only if there exist rational integers
P, q,d, d1 such that

ap2 +bq2 =d; (ap, bq) =d1,
and either d is some divisor of a,b,c and
tZ +a.bk2/d1 +c/d=0,

or d is some even divisor of 2 abc and

1
t2+t+z (1 +abk/d12)+ c/d=0.

Also k 1is an integer such that the equations have integer coefficients.
The values of x and y are expressed simply in terms of t .

68.21 B. Banaschewski (McMaster University)

Another Algebraic Characterization of C Oo(Rn)

An algebra A (with unit e) over the real number field R is called
real semi-simple if and only if the intersection of its real maximal
ideals is zero, and convex if and only if, for every fe A, e + £2 is
invertible.
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PROPOSITION. An R - algebra A with unit e is isomorphic to

0
the R - algebra C (Rn) if and only if it is real semi-simple and
convex, and there exist elements u,, ..., un € A with the following

properties: 1
(K) The ideals Z',A(ui - aie), (ai, ey an) € Rn, are exactly

the real maximal ideals of A.

(S) For each (ai, e, an) € Rn and each invertible f ¢ A,
there exist «# 0 in R and g e A such that

= (\;li - aie)2 +f2 = aze + gZ

(D) There exist derivations 81, vy Bn : A=A such that
9.u.=e and 0.u =0 for i# k.
ii ik

(M) A has no non-trivial unitary, real semi-simple, and convex
algebra extension in which (K), (S), and (D) still hold for the

elements u,,...,u € A.
1 n

©, n
The present characterization of C (R) is similar to that given in

An Algebraic Characterization of Coo(Rn), by B. Banaschewski, Bull.
Acad. Polon. Sci. 16 (1968) 169-174, but a good deal simpler in
some aspects; nonetheless, further simplifications would be welcome.
It should be mentioned that the maximality condition (M) is not implied
by the conditions preceeding it: the algebra of all real-analytic functions

n

on R 1is a unitary, real semi-simple, and convex proper subalgebra of
coo(Rn) in which (K) - (D) hold for the Cartesian coordinate functions.
Incidentally, this algebra is clearly not isomorphic to Coo(Rn); more

0, n

generally, C (R) cannot be isomorphic to any proper unitary subalgebra
containing the Cartesian coordinate functions, a consequence of its
maximality property given by the Proposition.

68.22 K.L. Duggal (University of Windsor)
Singular Riemannian Structures Compatible with w -Structures

Riemannian structure (briefly Rﬂ-structure) on w-structure is
defined by the knowledge of a complex metric G= (gi_j)' of rank n,
satisfying the relation JG =\G. By setting G = JA +\ A, where
A = (aij) is a field of symmetric tensors on Vm, of rank m, one
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can always obtain from (aij) an Rﬂ_—structure. We introduce
R -adapted bases (e,,) = (e ,,e * ) such that the vectors (e )
his 1 el ! a!
are orthonormal. It is easy to show that the set O(ni’ nZ) of the
transformation matrices of two R -adapted bases is a Lie-subgroup
™
of G(ni’ nz).
The set ER(Vm) of the Rﬂ—adapted bases relative to different

points of Vm admits a natural structure of principal fibre bundle
and consequently one is able to define Rﬁ—connection (infinitesimal

connection) on ER(Vm). As ER(Vm) is subbundle of the fibre
bundle EC(Vm) of all the bases so any Rn—connection defines

cannonically a linear connection with which it can be identified and
conversely. One can prove that Vg..=0 in an R -connection.
ij b

Knowing that VF; =0, we conclude that a complex linear connection

can be identified with an R_-connection if and only if VF; = Vgij =0.
T

Further it can be proved that Vm has an Rw-structure if and only

if there exists a complex linear connection whose holonomy group
is a subgroup of O(ni, n2). Finally we show that the first

characteristic form 411 is zero for any R _-connection.
™

68.23 F.H. Northover (Carleton University)
Linear Integral Equations

Apart from the establishment of a few scattered results the bulk

of the theory of the homogeneous linear integral equation is
restricted to the case - admittedly an important one - in which

the kernel is symmetric. An extensive and detailed theory - the
well-known Hilbert-Schmidt theory - has been built up for this case.

In the present work, an extensive theory covering the general kernel
has been built up. It is based upon the idea of expressing the solutions
of a linear integral equation at an eigenvalue \ = )\0, say, as the

limit function of the solution of the corresponding non-homogeneous
linear equation for \ # )\0, when \ —>)\0 . Under certain circumstances,

this kind of representation works for solutions of the homogeneous
equation at \ = )\0, and also for solutions of the non-homogeneous

equation at \ = )\0 (when such exist).

Various explicit expressions for the general solution of the linear
equation at \ = )\O, are obtained, and, in the case of the non-

homogeneous equation, necessary and sufficient conditions are
obtained for the existence of a solution at N =X\ .

0
636

https://doi.org/10.1017/50008439500029866 Published online by Cambridge University Press


https://doi.org/10.1017/S0008439500029866

As a by-product, a stronger version of the well-known theorem

that the maximum number of linearly independent solutions
obtainable from a homogeneous equation at an eigenvalue is finite,

is obtained, with an expression for the upper bound of such a number.

Also, necessary and sufficient conditions are obtained for the
ability of the simple form
b
J ty)D

a

@) (x, y; xo) dy

to comprise all solutions. Here, D(x, y; )\O) is the '"first Fredholm

minor', £ the least number such that the derivative indicated
(taken with respect to \) is not identically zero at )\0, and t(y) is
is any continuous function.
68.24 E. Hotzel (McMaster University)
On Semigroups whose Non-trivial Left Congruence Classes are

Left Ideals

A left congruence )\ of a semigroup S is called a Rees left
congruence if there exists a left ideal L such that (a,b) e X if and
only if a, be L or a =b. A Rees left congruence is a special case

of a left congruence whose non-trivial classes (i.e. classes containing
at least two elements) are left ideals. In the following a description

is given of the semigroups S without zero which have the property that

(A) all left congruences of S are Rees left congruences or more
g g
generally that

(B) all non-trivial left congruence classes in S are left ideals.

Semigroups with property (A) have been completely characterized
under the supposition of commutativity in [1] and under the
supposition of the existence of the zero element in [2] ((A) is
equivalent to (B) under these suppositions).

In every semigroup S the set R(S) of right zeros is an ideal. It
contains at most three elements if S has property (A).

THEOREM 1. Let S be a semigroup such that R(S) is not empty.
Then S has property (B) if and only if S/R(S) has property (A).

THEOREM 2. Let S be a semigroup which has exactly two right
zeros q and r. Then S has property (A) if and only if
S\{q} or S\{r} is a subsemigroup of S which has property (A).

THEOREM 3. Let S be a semigroup which has exactly three right
zeros. Then $ has property (A) if and only if it is isomorphic to
one of the following 10 semigroups:
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p q rijt p qr ajtl p gqr al|b
PP q TP p|p 9 ¥ P|P P|P @ T pP|P
QP q r|q q{p 9 r P|q qQ{p 9 r p|r
rip q r|r rilp q r qfr rilp q r r|p
1ip qr 1 alp gq r pjla alp q r al|p

1lp q r a 1 blp q r b p

p qgqr ab P qgqr a bjc
P{p g r p T P|p gr p PP
qlp q r p p qQ|p 9 r p rjr
rpqrrr rpqrrrp
alp q r a r alp gqr a alp
blp q r b r bilp q r b bip

clp gqr ccop

THEOREM 4. Let S be a non-empty semigroup without right zeros.
Then S has property (B) if and only if it is a two element left zero
semigroup or a cyclic group of prime order.

The non-trivial part of the proof of Theorem 4 may be given in the
following steps:

1) S is right cancellative. 2) If e is an idempotent in S then it
is the identity element of S, or S is a two element left zero semi-
group. 3) S is left simple.

[1] E.S. Ljapin, Semisimple commutative associative systems
(Russian), Izv. Akad. Nauk SSSR 14, (1950) 367-380.

[2] E. Hotzel; Halbgruppen mit ausschlieflich reesschen Linkskon-
gruenzen, submitted to Math. Zeitschrift.

68.25 T.D. Howroyd (Universities of Melbourne and Waterloo)
On Functional Equations in Many Variables and Simultaneous
Functional Equations in a Single Variable

Let S beasetand H: S x[0,4]"~S. ¥ ¢:[0,4]~ S and

n
(1) ¢4 (= Xi/n)= H(é(x1),...,¢(x )5 X, eerX )
1 n 1 n
then
(2) ¢ ((x+p)/n) = H($x), ¢(a)),..., dla__,)ixa,....a )
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where

a =1 if k<p, a =0 i k>p, p= 0,...,n-1

Hence, if S is a Hausdorff space and ¢ is continuous then ¢ is
uniquely determined by the values ¢ (0) and ¢(1).

I __.'!n is the set of n-ary fractions in [0,1] and (using the notation

H(u,, PU Xy e, X ) S H(ui; x)):
(i) H(ui; Xi)i is symmetric in uj and uo x‘j and X
(i) Hluyx), = w

(iii) H(H(u..; x..).; £ x,./n). is symmetric in u and u
ij” ity . ij i kq

K’
j q

xkq and qu;

(iv) H(u.; x.)., is a one-to-one functionof u,; and ¢: I - S,
i7 71 j n =

then (2) is equivalent to (1).

If (i) to (iv) hold, S is a Hausdorff space, H is continuous, and
¢ :[0,1] = S is continuous then (1) is equivalent to (2).

If S = C (the complex plane); (i) to (iv) hold; H is continuous;

(v) there exists r ¢ (0,1) such that

| w -v, |;

|H (u;x), - Hv.;x). |<r
1 11 1 11 - 1 1

~ My

then there exists exactly one bounded solution $:[0,1]~ C of (1)
for any given ¢(0) and @(1); this ¢ is continuous.

If 1 is a convex subset of C; H: (_32 ><_I_2 - C is continuous; (i) to

2
(v) hold with n = 2; there exists a continuous function K: 92 XI' = C
such that

K(H(u, v; %, y), V; X, y) = u,

and a1, az, a3 are non-collinear points in I; then there exists

exactly one locally bounded solution ¢: I~ C of (1) for any given
é (ai), ¢v(a2) and ¢(a3); this ¢ is continuous.
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68.26 M.E. Muldoon (York University)
Singular Integrals whose Kernels Involve Certain Sturm- Liouville
Functions

We prove results of the form
b 2 1
. - B 0
(1) lim f f(t) wiv, t)dt 3 f(0-) + 3 £(0 +),

y—>oo a

where a< 0<b and, for each v >0, w(v,t) is the solution of
2 2
(2) d w/dt2 =[v7t +q(t)]w

which satisfies

1/4 3/2 -1/2

1/2

1
)—ZTT Y .

lim w(v ,t) t exp(% vt

t—> o0

We assume that q(t) is continuous for t> a and that

©
f ‘t[_UZIq(t)ldt exists. It can be shown that (1) holds if
0

(i) feBV([a,0]
(ii) f(1+4) exists, and

(iii) fe L[O, b].

We consider applications of (1) to integrals involving various
special functions which satisfy equations of the type (2). One such
application is to a singular integral (involving the Bessel function
Jv) considered by L. Lorch and P. Szego.

We show that hypothesis (i) may be replaced by
(i') feCla, 0],
if the limit relation in (1) is interpreted in the sense of Cesaro (C, k)

summability, for k >%, but that this is not so in the case of (C, k)

summability, for 0< k< 1/2.
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68.27 Charles Ford (University of Toronto)
A Note on the Schur Index of a Group Representation

Let G be a group and x an irreducible character of G. Let
m(x) be the Schur index of X over the rational field. For p a
prime divisor of m(x) let m_ be the p-part of m(x). There is

a theorem of Brauer which shows that my, is the Schur index of an
irreducible character £ of a p-elementary subgroup of G. A
p-elementary group is the semi-direct product A‘P of a (normal)
cyclic p'-group A and a p-group P.

It is shown that if m({) # 1,2, then there exists a prime g
dividing !A' for which m(£) [ (q-1). Thus for the character

of G, if m_# 1,2, there is a prime divisor q of |G| for which
mpl(Q‘ 1).

The problem is first reduced by finding a factor group P' of a
subgroup of P such that the group A‘P' contains a cyclic, normal,
self-centralizing subgroup (which is, in general, larger than A)
and A'P' has a faithful character £' for which m(¢') = m(¢). Then
the theory of crossed products and factor sets is used to prove the
result.

A splitting field F is found for a representation affording £'. The
dimension (F : Q(£')) is a p-power which divides q-1

The only exceptional case occurs when p =2 and A is trivial.
In this case we can have m(£') = 2, and then p' must contain a
generalized quaternion subgroup.

68.28 E. Barbeau (University of Toronto)
A generalization of the Algebra of Functions of Bounded Variation

Let (E,<) be a compact Hausdorff space with a partial ordering,
and A the convex cone of continuous non-negative increasing
functions on E. Then A is uniformly closed and contains the
product of any pair of its elements, so that its linear hull V is an
algebra. With the Schaefer norm, whose unit ball is the absolutely
convex hull of the set {f:fec A, ”f”w§ 1}, V is a Banach
algebra. I E is the closed unit interval with the usual ordering,
one obtains the Banach algebra of functions of bounded variation

in this way.

When A separates points of E, the algebra shares with the
algebra of functions of bounded variation the property that every
primary ideal is maximal. However, an example is given to show
that, in general, not every closed ideal is the intersection of
maximal ones. For, let E be the points of the closed unit square

[o, 1]2 whose abscissae are either 0 or reciprocals of integers,
and let (x,y)< (u,v) if and only if x = u and y < v. Then the
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ideal of functions in V which vanish in a neighbourhood of the
edge {(x,y):(x,y)eE, x=0} 1isnotnorm dense in the ideal of
functions vanishing on the edge.

68.29 R. Blum (University of Saskatchewan)
On a Generalization of Steiner's Quartic with 3 Cusps

Let T'=d (u,v) + (u2 + VZ)n =0, where u,v are the non-homogeneous
Hesse-coordinates and &¢(u,v) is a homogeneous polynomial of degree
2n +1 in u and v, be the equation of a class curve in the euclidean
plane. It is shown that its 2n +1 cusps, which do not lie on the line
at infinity, can be obtained as the intersection of T with a curve

2 n-1
whose equation is A = y(u,v) + (u2 +v )n =0, where Y (u,v) is

a homogeneous polynomial of degree 2n -1 in u,v.

If we impose upon the cuspidal tangents the condition that they be
concurrent (which is identically satisfied when n =1) T admits

2n + 1 axes of symmetry and, therefore, its cusps are the vertices
of a regular (2n +1) - gon. The case n =1 yields Steiner's quartic
with 3 cusps.

Considerations of duality lead to the following property: If the 2n +1

points of inflection of the curve C = ¢(x,y) + (x2 + yz)n =0 are
collinear (on a line £ ) then the lines joining them with the origin form
equal angles. However, there is no symmetry of the curve itself
except when £ = fco .

68.30 J. Poland (Carleton University) and A.H. Rhemtulla
A Generalization of Hamiltonian Groups

Groups whose subgroups are all normal are called Hamiltonian groups,
and their structure is well-known. Now, the core HG of a subgroup

H of the group G is defined as the intersection of the conjugates of
H, or alternatively as the maximal subgroup of H which is normal
in G. Dr. A.H. Rhemtulla (University of Alberta, Edmonton) and
the author have been considering using the concept of core to obtain
the following generalization of the Hamiltonian groups: let Y be a

class of finite groups; we call a finite group G an Y- Core group

if H/HGe Y for all subgroups H of G (finite Hamiltonian groups

are {1} - Core groups). We first took X = G, the class of finite
abelian groups. Our major result is: ( -Core groups have nilpotent
derived group. We are now in the process of extending this result;
for example, if Y is closed under the operation of taking factor
groups, then if G is a solvable Y - Core group and Fit(G) is the
Fitting subgroup, then G/Fit(G) ¢ X. Our second major result is that
if A is the class of finite simple groups and G is an 4 - Core group,
then G is solvable and G/Zw(G) has abelian Sylow subgroups

(ZOO(G) is the hypercenter of G). This result does not hold for G-Core
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groups, where we originally conjectured it. (A summary of the
earlier results was presented to the mini-conference on group
theory held at the University of Manitoba at the end of the 1968
Summer Research Institute which the authors both attended.)

68.31 E. Hotzel
Remarks on Simple Cancellative Semigroups

(1) Any simple cancellative semigroup which contains a minimal
right ideal is a group.

(2) Any simple cancellative semigroup which is finitely generated
as a right ideal is a group.

The first statement follows from well known facts about simple and
right simple semigroups (cf. A.H. Clifford and G.B. Preston:
The algebraic theory of semigroups, Providence, (1961, 1967)
Vol. II, Lemma 8.43, and Vol. I, § 1.11). The second one is
obtained by observing that a cancellative semigroup S of the form
S = a'lSU a_Suvu...u anS contains an idempotent. A simple

2
cancellative semigroup containing an idempotent is easily seen to
be a group (Clifford and Preston, Vol. I, p. 51, ex. 11).

THEOREM Any cancellative semigroup without idempotents can
be embedded in a simple cancellative semigroup without idempotents.

If S is a cancellative idempotent-free semigroup then a simple
cancellative semigroup containing S can be obtained as the union of a
chain S = So c Sig S2 C ... of cancellative idempotent-free semi-

groups. Take Squ to be essentially the semigroup which is

generated by the set Xi = UjuSiUVi under the relations rs = t,

if rs =t in S,, and u  sv = t(s, teS.) where U,V  are
1 s,t s,t 1 i1

sets such that U, S,, V. are pairwise disjoint and where
it i i

(s, t)*us’t, (s,t)—>vS ¢

are one-to-one mappings from S, X S,
i i

onto Ui and Vi' respectively.

It can be seen by the Theorem in connexion with the Malcev example
of a cancellative semigroup which is not embeddable in a group

(A.I. Malcev, Math. Ann. 143, (1937) 686-691) that not every
simple cancellative semigroup can be embedded in a group

(cf. Clifford and Preston, Vol. I, p. 51).

68.32 C. Davis (University of Toronto)
An Inequality for Hilbert-space Operators

The 'shell' of an operator A on Hilbert space ¥ is the set of
triples (”Ax”z, x* Ax, Hx”z) as x ranges over non-zero

643

https://doi.org/10.1017/5S0008439500029866 Published online by Cambridge University Press


https://doi.org/10.1017/S0008439500029866

elements of Y, Two such triples being identified if they differ

only by multiplication by a positive number, the shell can be
represented as a point-set s(A) in real 3-space. Many
relationships are known (Ch. Davis, Acta Sci. Math. Szeged 29
(1968), 69-86) between properties of A and geometric properties
of s(A). In the course of studying the question (still unsolved) of
characterizing those point-sets which can be s(A) for some A,

the author found the following curious theorem: Assume [Aa]l = 1.
Let m/2 > > arcsin(- 1/3). Then for every ¢ > 0 there exists

non-zero x € ¥ for which

(1+¢ )2'\/_2cos »"lx*Axl b (1 +SinV“)HxH2 + (1-3 siny‘)”Atz .

(The case V- = arcsin(1/3) is a previously known result. The
limiting case V= w/2 is trivial.) In this note the theorem is
related to properties of the shell.

68.33 W. Kahan and C. Davis (University of Toronto)
The Rotation of Eigenvectors by a Perturbation

When a Hermitian linear operator A is slightly perturbed, by how
much can its invariant subspaces change? Given some approximations
to a cluster of neighbouring eigenvalues and to the corresponding
eigenvectors of a real symmetric matrix, and given a lower bound

§ > 0 for the gap that separates the cluster from all other eigenvalues,
how much can the subspace spanned by the eigenvectors differ from
that spanned by our approximations? These questions are closely
related: both are investigated here. First, the difference between
the two subspaces is characterized in terms of certain angles through
which one subspace must be rotated in order most directly to reach
the other. The angles constitute the spectrum of a Hermitian
operator 6, with which is associated a commuting skew-Hermitian

operator J = -J3; the unitary operator that differs least from the
identity and rotates one subspace into the other turns out to be exp(J6).
These operators unify the treatment of natural geometric, operator-
theoretic and error-analytic questions concerning those subspaces.
Given the gap 6, and given bounds upon either the perturbation

(1st question) or a computable residual (2nd question), we obtain sharp
bounds upon trigonometric functions of 6. For example, let one sub-
space be the invariant subspace of A associated with that part of A's
spectrum in some interval, let the other subspace be the invariant sub-
space of A + H associated with that part of (A + H)'s spectrum lying
no further than 6 from the same interval, and let 6 be the angle-
operator ''"between'' the subspaces; then §||sin 9” < HHH for every
unitary-invariant operator norm h

644

https://doi.org/10.1017/S0008439500029866 Published online by Cambridge University Press


https://doi.org/10.1017/S0008439500029866

68.34 P. Rosenthal and H. Radjavi (University of Toronto)
Matrices for Operators and Generators of B(¥)

Let ¥ be a separable complex Hilbert space.

THEOREM. I A is a bounded operator on H and is not a multiple
of the identity, then there exists an orthonormal basis {en} for

H such that every entry in the matrix of A with respect to {e } is
non-zero. v

The proof of this theorem is very elementary.
COROLLARY 1. If A is not a multiple of the identity then there

exists a compact Hermitian operator K such that A and K have
no common invariant subspaces.

Corollary 1 follows immediately from the Theorem. A theorem of
Arveson's then gives

COROLLARY 2. If A is not a multiple of the identity then there
exists a compact Hermitian operator K such that the weakly closed
algebra generated by A and K is B(¥), (the algebra of all bounded

operators on H).

In case ¥ is finite-dimensional we get

COROLLARY 3. ¥ A is an nXn matrix that is not a multiple of
I then there exists a Hermitian matrix K such that every nXn
matrix is a polynomial in A and K.

68.35 PL. Kannapan and S. Kurepa (Universities of Waterloo and Zagreb)
Some Relation between Additive Functions

Concerning the Cauchy functional equation
(1) f(x+y) = £(x) +£(y), x,ye R (R, real numbers)

I. Halperin has raised a question, whether f: R - R, satisfying
2
(1) and f(x) = x f('i), x # 0, is necessarily continuous or not?

Answer to this and some generalizations were given by many
including the second author. In this direction, the following more
general problem will be of interest.

Problem . Let Ui(x) be rational functions in X, Pi be continuous
on R except at the singular points of Ui(x), and fi be additive on

R such that
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n
(A) Z P.(x)f.(U.(x)) = 0,

. i iti

i=1
for all x on which Pi‘s are defined. Whether the f:'_ls are
continuous or derivatives (i.e. f;s satisfy f(xy) = xf(y) + yf(x))
or functions obtained from these two?

The following results are established:

THEOREM 1. Let f (# 0) and g be additive functions from R
into R and satisfy

(2) f(x) = P(x) gx)

for all x # 0, with P from Ro =R - {0} into R as a continuous

function such that P(1) =1, m and n are integers. Then P(x) = xn—m;

further, if F(x) = f(x) - f(1)x and G(x) = g(x) - g(1)x, then F and G
are derivatives, and nf(x) = mG(x), except when

(i) n =0, m =0, in which case there is nothing to prove,

1

(ii) n =m, in which case f =g,
(iii) n=0, m X0 in which case G =0 is a derivative and f is
arbitrary, and

(iv) m =0, n X0 in which case F = 0 is a derivative and g is
arbitrary. Conversely, if F and G are derivatives on R
and f(x) = ax + F(x), g(x) = ax + G(x), where "a is any real
number, mG(x) = nF(x) and P(x) = x —m, where m and n

are integers, then f, g and P satisfy (2) for all xecR.
THEOREM 2. Let F (#0) and g (# 0) be real additive functions

and P, a continuous function on R - {a,b} = R%, (a #b) into R,
such that

(26) i) - p) g(;_i—b) . for all xeR¥ .

X-a
Then f(x) = Ag(x) for all real x, A a real constant. Further,

-b
f and g are continuous if and only if P(x) is proportional to =2
I f and g are not continuous, then

2
(1) P(x) = A %ﬂiz , (A, a non-zero constant).
x-a
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(ii) h(x) = g(x) - g(1)x is a derivative on R, and
(iii) h(a-b) = g(1) (a-b).
Conversely, if P, f g, h and numbers A, a and b satisfy

conditions (i), (ii), (iii) and f = A g, then (26) holds true.

68.36 P. Greiner (University of Toronto)
An Asymptotic Expansion for the Heat Equation

Let M be a compact n-dimensional ¢” manifold without boundary.

Let E and F be two C. complex vectorbundles of fiber dimension
N over M. Let P(x,D) be a strongly elliptic smooth linear partial

Q0
differential operator of order m sending C sections of E into

C” sections of F. Denote by dx a density over M and by (-,")
hermitian structures over E and F . These can be introduced
locally and extended to all of M by a partition of unity. The heat
operator is given by

o]
(1) L =5 + P(xD)
0 ©
defined on C (E) X C0 (R).

Now let @ be a precompact submanifold of M with a c® boundary

w. Let G, ,...,G bebundleson w andlet B ,...,B be
1 v 1 v

boundary differential operators of the form

m-1
(2) Bu = = B, v u,
Fook=o koK
where Bjk is a differential operator from E to Gj in ® of order

m, -k and YU is the k-th normal derivative of u valued on .
J

Our principal assumption is that B is elliptic with respect to
P(x,D) +irt for all T with Im+< 0. For example, this is satisfied
by all strongly elliptic operators P(x,D) with Dirichlet boundary
conditions.

Let G(t, x,y) be the Green's matrix for the boundary problem (L, B)
and let

(3) G(t) = f Trace Gft, %, x)dx.
M
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Then we have

THEOREM. Let (L,B) be the above boundary problem. Thea

- ; - - . /- > /-
(4) G() ~ Cpt nfmo c,t nfmfmo o nfmifme
[4

as t+0. Furthermore the coefficients C,, j=0, 1,2,...,

J
can be evaluated explicitly in terms of the ccefficients of P(x, D)
and B .

A consequence of the theorem is the following:

COROLLARY. Let (-A,D) be the negative Laplacian with
Dirichlet boundary conditions in some precompact domain © in
in the plane with smooth boundary w . Let p.,p,,p,,... be the

- == 0’71’72 —
eigenvalues for (-A,D). Then

0 -pt
)z e . 74'%’; - 4—1_;‘;1: + 2 (1-h) + o)
J:

as t+ 0, where [Q' and lw[ denote the area and length of ©
and @, respectively, and h is the number of holes in @ .

This corollary was the motivation for the investigation. It was
originally conjectured by Kac and proved by McKean and Singer.

68.37 C.Y. Chan (University of Toronto)
A Two-Phase Stefan Problem with Arbitrary Rate of Liquid Removal

The two-phase Stefan problem is the problem of solving two heat
equations in two regions separated by an unknown moving surface
which must also be determined. In general, the interface is not
necessarily monotonic. This is actually the basic difference
between the single-phase and the two-phase problems.

Physically, we can think of our problem as a finite slab of solid
in contact with its liquid of finite length; heat is taken away from
the free end of the solid at a rate f1(t) while the temperature f2(t)

is specified at the free end, a(t), of the liquid which is removed
at an arbitrarily prescribed rate. Mathematically, the problem is
formulated as follows: Find 0 < s(t)< 1, ui(x, t) and uz(x, t)

such that
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K, u (x,t) =u, (x,t) for 0<x< s(t), t> 0,
1 1xx 1¢

ui(x, 0) =¢1(x) where ¢1(X)5 0, 0<x<b, and ¢1(b) =0
kiuix(O,t) = fi(t) where fi(t)_>_ 0, t>0,
Lpds(t)/dt = kiuix(s(t), t) - kzuZX(s(t), t)
where s(0) =b >0, 0< s(t)<a(t)<1, t>0,

ui(s(t),t) =0 = uz(s(t),t) for t> 0,
K 2u2 (x,t) = u, (x,t) for s(t)<x<a(t)<1, t>0,

XX t
uz(x, 0) = c])z(x,) where ¢o2(x)2 0, 0<b<x<1,

and ¢2(b) =0, ¢2(1) = fZ(O),

uz(a(t), t) = fz(t) where fz(t) >0, t>0, and a(0)=1.

i
Ki(

1, 2) denote the respective diffusivities of the two phases;
ki (i =1, 2) denote the respective conductivities; L is the latent

heat; p 1is the density of the solid and the liquid; x = s(t) is the
unknown free boundary, and ui(x, t) (i =1, 2) are the respective
temperatures.

THEOREM. If ¢1(x) (05 x<_b), ¢2(x) (b_<_ x <_1), fz(t) (05 t < )

and a(t) (0 < t< o) are continuously differentiable, and fi(t)

(0 < t< o) is continuous, then there exists one and only one solution

ui(x, t), uz(x, t) gnd s(t) of the problem for all t < oo,

68.38 W.A. O'N. Waugh (University of Toronto)
Transformation of a Birth Process into a Poisson Process

Let {Zt: t> 0} be the Markovian pure birth process with linear

birth rates, that is

= j+1 | z, =i} = ixét + o(6t) j=1,2
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where Z_=1 and where all other transitions have a probability

0
-\t
that is o(6t). It is known that Zte MEL W which is a random
variable having density e V. Let the time during which thj

0
("sojourn time'') be XJ,. Then i§1 (X, -£X,)(=S) is convergent.
= i i

We prove two theorems: (1) W = exp{-\S-v}, where v is Euler's
T
constant; (2) Where T =X, +...+X and T * = W(e)\ no_q),
n 1 n n
then, given S, or equivalently W, the joint distribution of
Ti*’ e, T;‘ is that of the first m epochs in a Poisson stream of

rate 1. Theorem (2) has been proved by analytic methods by
D.G. Kendall and the purpose of this latter part of the present
work is to show the connection with the theory of random series.

68.39 M.T. Wasan (Queen's University)
Sufficient Conditions for a First Passage Time Process to be that
of Brownian Motion

Let

Ty = inf{t>0 ] X(t)> x}

where X and TX are respectively the state and passage time
variables of the strong Markov process and are both random

variables, and let

F(t, x; x +Ax) = Pr[T T, =t]

X+ax =T | X

be the transition probability distribution such that when the state

variable take the value x+Ax, the passage time T takes a
x+tAx
value less than or equal to 1 given that the time variable TX takes

the value t when the state variable takes the value x. We denote

the transition density function of F(to, Xy t, x) by f(tO, XO; t, x) and
when tO =0, XO =0 by {(t, x).
Now we assume the following set of conditions.
lim 1
(@) L se0 Ax dTF(t, % 1,x+Ax) =0 for any § =0
|+ - t|>5
lim 1
(b) Ax—+0 Ax (r - t)d_r F(t, x;7, x+Ax) =1
,T -t , <56
lim 1 2
(c) Ax—>0 Ax f (r -t) dT F(t, x; 7, x+Ax)=1.
[r-t]<s
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THEOREM. Let the strong Markov process X(T) satisfy the
conditions (a), (b) and (c). Further, let us assume that the
transition density function f£(t, x) exists and is such that the

derivatives

2
of of 0 f
(1) —, —— and —
0x ot 3t2

exist and are continuous. Then f(t, x) satisfies the differential

equation
2
of of 1 97 f
(2) s -t 5 T,
ox ot 2 ot 2
o0
when f f(t, x)dx =1, f(t, x) >0 for x>0 and t>0 f(o, x) =0,
0

f(t, © =0 and (0, 0) = 1. Then it is shown that

_ ==
t
f(t, x) = T:g e 2x x>0, t>0
2mTx
=0 otherwise .

Now we give another set of conditions which leads to the same density
for a stochastic process {X(t), t > 0} .

(i) Let X(t)= &6 +X(t-586 - W(5))

(approximately for small § and for the paths of W(5) which
do not reach the line y =t - x in the interval (0, §)) where
§ is any positive number and W(§) is a Brownian motion
process such that E(W(§)) = 0 and Var[wW(§)] =5.

(ii) X(t) = Xi(t/n) + Xz(t/n) +... 4+ Xn(t/n) i.e. X(t) is infinitely
divisible process.
With the help of this density a stochastic process is defined and its

existence is proved. Furthermore, in a series of papers its
properties are investigated.

68.40 J. Csima (McMaster University)
Extremal Multidimensional Stochastic Matrices and Patterns

This paper deals with combinatorial properties of multidimensional
matrices. The results are related to the Jurkat-Ryser classification
problem of multidimensional stochastic matrices and extremal
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stochastic matrices. The main tool in this paper is a covering
technique, developed earlier by the author for the purpose of
dealing with Latin squares and multidimensional (0, 1)-matrices.

The order in which matrices and their patterns are introduced is
important. First, patterns are defined as sets of d-tuples. Then
restricted patterns and critical patterns are defined by simple
covering criteria. After all this is done, matrices are defined and
patterns are associated with them. This way a clear-cut distinction
is established and maintained between those pattern properties that
depend on the definiticn of a stochastic class and those that do not.

For multidimensional matrices Konig's theorem is not true in the
sense that the covering number (of degree €) does not necessarily
equal the term rank (of degree e) of the matrix. This spoils

the possibility of trivial generalizations of important two-dimensional
theorems.

The results of the paper include the proof that stochastic patterns
are restricted and that only extremal matrices can have critical
patterns. Among other things it is shown that the covering number
of stochastic matrices of dimension d, degree e and order n is

d-e
exactly n , and that extremal stochastic matrices are either

. . d-e
permutation matrices or else have term rank less than n . An

¢  extremal 3-dimensional line-stochastic matrix is constructed
which is not a permutation matrix.

Multidimensional (not necessarily stochastic) matrices are also
dealt with, and higher dimensional analogues of 3-dimensional
theorems of Jurkat and Ryser are given.
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