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Lipoprotein lipase (EC 3.1.1.34) targeting of lipoproteins to receptors 
BY ULRIKE BEISIEGEL AND JORG HEEREN 

Medical Clinic, University Hospital Eppendod Martinistr. 52, 0-20246 Hamburg, Germany 

The role of lipoprotein lipase (EC 3.1.1.34; LPL) and hepatic lipase (EC 3.1.1.3; HL) in the 
hydrolysis of lipoproteins has been extensively studied. Recently, however, it has been 
reported that these enzymes have a second important function; both lipases can mediate the 
binding and subsequent uptake of lipoproteins into cells (Beisiegel et al. 1991; Chappell et 
al. 1992; Nykjaer et al. 1993; Kounnas et al. 1995; Krapp et al. 1996). Although this 
function has been clearly demonstrated in vitro for various cell types, the physiological 
relevance remains hypothetical until final elucidation in vivo. Our current knowledge on 
the role of postprandial hyperlipidaemia in CHD (Groot et al. 1991; Clifton, 1994; Karpe et 
al. 1994; Karpe & Hamsten, 1995), however, suggests that defects in this lipase-mediated 
uptake of remnants might be a risk factor for atherosclerosis. 

The function of lipases in lipoprotein uptake is dependent on the direct interaction of 
the enzymes with the lipoproteins and with cellular recognition molecules. An interaction 
of LPL with lipoproteins in rats was proposed by Felts et al. (1975) and recently confirmed 
in human subjects (Zambon et al. 1996). LPL and HL are known to bind to heparan sulfate 
and several laboratories have demonstrated an interaction between LPL and cell surface 
proteoglycans (Eisenberg et al. 1992; Ji et al. 1993, 1995; Mulder et al. 1993; Schuster et 
al. 1993; Beisiegel et al. 1994; Obunike et al. 1994; Beisiegel, 1995; Kounnas et al. 1995; 
Ma & Kovanen, 1995). These lipases, therefore, can target lipoproteins to the cell surface. 
The lipase-mediated endocytotic uptake of lipoproteins has been shown to be dependent on 
receptors belonging to the LDL-receptor (LDLR) family (Beisiegel et al. 1991; Chappell et 
al. 1992). 

Our studies demonstrate that after in vitro hydrolysis of human triacylglycerol-rich 
lipoproteins (TRL) the enzymes remain associated with the remnant lipoproteins. We used 
these remnants to study the LPL-mediated uptake into cells which express different 
members of the LDLR family (Hilpert et al. 1995; Niemeier et al. 1996). We were unable 
to demonstrate an effect of lipases on lipoprotein uptake via the LDLR. The LDLR-related 
protein (LRP), however, directly interacts with LPL (Beisiegel et al. 1991) and HL (Krapp 
et al. 1996), and gp330 (Willnow et al. 1992) and the VLDL receptor (VLDLR) recognizes 
LPL (Argraves et al. 1995; Niemeier et al. 1996). The in vivo relevance of these lipase- 
receptor interactions has not yet been finally elucidated. 

LIPASES ASSOCIATED WITH LIPOPROTEINS AFTER HYDROLYSIS 

As proposed by Felts et al. (1975), LPL can be associated with lipoproteins in vivo and, 
therefore, serve as a recognition marker for cellular receptors. We were able to show that in 
post-heparin plasma LPL was bound to TRL (Zambon et a2. 1996). The lipoproteins were 
isolated using fast protein liquid chromatography. This is in contrast to data published by 
Vilella et al. (1993) who found LPL associated with LDL. The difference, however, can be 
explained by the fact that in the absence of LPL inhibitor, ex vivo hydrolysis converts the 
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TRL into more dense lipoproteins. In our experiments we used Orlistat@ (La Roche, Basle) 
to inhibit the LPL activity in the plasma samples. 

To verify the association of lipases with lipoproteins after hydrolysis, we performed in 
vitro experiments with TRL from LPL-deficient patients. This lipoprotein fraction contains 
VLDL and chylornicrons which could not be hydrolysed in vivo. Bovine LPL and HL, 
derived from human hepatoma cells, were used to perform in vitro hydrolysis. Analysis of 
the remnant lipoproteins was carried out after re-isolation of the particles in a sucrose 
density gradient. It is important to avoid salt gradients since LPL dissociates from the 
particles at high salt concentration. SDS-PAGE with subsequent immunoblotting revealed 
that both enzymes remain associated with the particles (J. Heeren & U. Beisiegel, 
unpublished results). LPL was used alone, while HL was only added following an initial 
incubation with LPL, since remnants rather than TRL are considered to be the 
physiological substrate for HL. HL does not seem to displace the LPL from the particles. 

EFFECT OF LIPASES ON LIPOPROTEIN UPTAKE INTO CELLS 

It has been shown in many studies that apolipoprotein (apo) E is important for the 
catabolism of TRL, particularly for remnant lipoproteins. After hydrolysis, apo E is in a 
more-accessible configuration on the surface of the particle. Recent data indicate that 
lipases in combination with apo E are important recognition signals for remnant uptake into 
cells. 

To demonstrate the proposed effect of the lipases on lipoprotein uptake, we used LPL- 
and/or &-containing particles produced by in vitro hydrolysis as described previously. 
Receptor-mediated uptake of remnants into cells was studied using several different cell 
lines. In all experiments it was shown that hydrolysis by LPL alone increases the uptake of 
TRL into the cells compared with ‘native’ TRL from LPL-deficient patients. The increase 
on human hepatoma cells was approximately 230 %. Additional hydrolysis by HL 
increased the uptake even more to about 350 %. We postulate, therefore, that for an optimal 
catabolism in vivo both lipases are important. Perfusion studies with chylomicrons in rat 
liver provide evidence for such an in vivo effect (Skottova et al. 1995). This work shows 
that chylomicron clearance is not only dependent on the lipolytic activity, but also that LPL 
increases the clearance independently of its catalytic activity. 

Mann et al. (1995) described a coordinate effect of apo E and LPL, such that both 
proteins are involved in the uptake mechanism, and defects in one of them might by partly 
compensated by the other. Several laboratories have studied the structural features of LPL 
which may be responsible for the interaction with cell-surface receptors. Several receptors 
of the LDLR family have been investigated as potential LPL binding receptors (see p. 734). 
The most detailed studies, however, were performed with the LRP. Krapp et al. (1995) 
studied the structural features of LPL necessary for mediation of lipoprotein binding to 
receptors and found that the LPL has to be in the dimeric form to target lipoproteins to their 
receptors. However, it does not need to be catalytically active. The binding site for LRP in 
the enzyme was localized in the C-terminus within residues 3 13448 by Williams et al. 
(1994) and within 380-425 by Nykjaer et al. (1994). Krapp et al. (1995) proposed residues 
390-421 as being responsible for the interaction with LRP. 

The amount of LPL associated with remnants in vivo is difficult to determine. All data 
at present available, however, indicate that it is not more than one molecule per every 
second particle. More studies with fresh human plasma in the presence of LPL inhibitors 
need to be performed to finally answer this question. Particles reaching the liver cell 
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Fig. 1. Model for lipoprotein lipase (EC 3.1.1.34, LPL) targeting of lipoproteins to receptors. On the endothelial cells in 
the blood vessels LPL is bound to the proteoglycans (PG). After hydrolysis of the triacylglycerol-rich lipoproteins 
(TRL; chylomicrons) the LPL might be carried on the remnant particles (CR) as an intact dimer (a) or as a monomer 
( ). In the latter case, the monomeric form is not able to mediate the binding of the CR to the cell surface and the 
proteoglycan-bound hepatic lipase (EC 3.1.1.3; HL; 0) might compensate for the lack of LPL dimer. With the dimeric 
LPL the CR can he targeted to the cell-surface PG and subsequently to the endocytotic receptor. The LDL-receptor- 
related protein (LRP) is the main LPL-binding receptor on liver cells. E, apolipoprotein E. 

surface without an LPL molecule, however, might interact with HL and use this for binding 
to endocytotic receptors (Fig. 1). 

HL has also been shown to act as a ligand in the uptake of lipoproteins (Diard et al. 
1994; Kounnas et al. 1995; Krapp et al. 1996) and due to its structural similarity to LPL 
this was not unexpected. Nykjaer et al. (1994) showed that LRP directly binds to HL and 
LPL, and that P-VLDL, as a model lipoprotein, interacts directly with both lipases. The 
role of HL in remnant catabolism has been studied in rat liver perfusion experiments (Shafi 
et al. 1994) and in vivo in rabbits (Fan et al. 1994). In both animal models it could be 
shown that HL facilitates remnant uptake into the liver. Shafi et al. (1994) demonstrated 
that heparin treatment and anti-HL antibodies decreased the clearance of chylomicrons in 
rat liver perfusion experiments. In transgenic rabbits overexpressing human HL, Fan et al. 
(1 994) showed that both HDL and IDL were decreased. 

LIPASE INTERACTION WITH PROTEOGLYCANS 

LPL and HL are located on the endothelial cell surface in blood vessels due to their high- 
affinity binding to proteoglycans, in particular to heparan sulfate. The observed effect of 
lipases on lipoprotein binding to cells was thought, therefore, to be mainly due to this kind 
of interaction (Eisenberg et al. 1992). Proteoglycan-deficient cells are a suitable model for 
studying the role of this molecule in lipoprotein uptake. We found that the binding and 
uptake of remnants was reduced by 31-80 % on the proteoglycan-deficient Chinese hamster 
ovary (CHO) cells (Esko et al. 1988; Beisiegel et al. 1994; Fig. 2) compared with control 

https://doi.org/10.1079/PNS19970073 Published online by Cambridge University Press

https://doi.org/10.1079/PNS19970073


734 U. BEISIEGEL AND J. HEEREN 

CHO C1 CHO 745 

Fig. 2. Uptake of '251-labelled chylomicrons (0) and lipoprotein lipase (EC 3.1.1.34) and hepatic lipase (EC 3.1.1.3)- 
treated remnants (final remnants; B) into Chinese hamster ovary (CHO) cells (C1 are normal CHO cells and CH0745 
are proteoglycan-deficient). The uptake experiments (mean of two) were performed at 37" for 90 min. The uptake of the 
chylomicrons is very low and not very much influenced by the presence of proteoglycans, while the lipase-mediated 
uptake is reduced about 50 % in the absence of proteoglycans. 

CHO cells. However, the residual binding, as shown by cross-linking experiments, is due to 
LRP. All published data give evidence that the binding of remnants via apo E, LPL and HL 
to proteoglycans is the first and very important step for the cellular uptake of these 
lipoproteins, as demonstrated in Fig. 1. 

INTERACTION BETWEEN LIPASES AND MEMBERS OF THE LDLR GENE FAMILY 

The LDLR as the first described member of the LDLR family recognizes apo B-100 and 
apo E. No other ligands have been described. All other members of this gene family are 
multi-functional receptors with several groups of ligands. Next to lipoprotein ligands, 
protease-protease inhibitor complexes are the most important. 

LPL was first described as interacting with LRP, and the addition of LPL increased the 
binding of TRL to cells. We found that the addition of LPL to LDL did not stimulate 
uptake (Fig. 3), while other authors reported (Mulder et al. 1993) that the addition of LPL 
to LDL in the incuhation medium leads not only to an accumulation on the surface but also 
to an increased internalization of the LDL. 

The VLDLR was first described as apo E-binding protein (Takahashi et al. 1992). 
Further studies in our laboratory demonstrated that LPL also directly binds to this member 
of the LDLR family (Niemeier et al. 1996). We used LDLR-negative CHO cells with and 
without overexpression of human VLDLR, and the LPL-mediated uptake of remnants was 
facilitated by the VLDLR in these cells. 

Another multi-functional receptor belonging to the LDLR family is gp330 (Saito et al. 
1994). Amongst other ligands apo E and LPL have also been shown to bind to this receptor 
(Willnow et al. 1992; Kounnas et al. 1993). 
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Fig. 3. Uptake experiments with '251-labelled chylomicrons and 1251-labelled LDL, with (El) and without (0) the 
addition of lipoprotein lipase (EC 3.1.1.34; LPL). The experiments are performed at 37" for 90min. There is only a 
minimal increase of LDL uptake after addition of LPL, while the increase in chylomicron uptake is approximately 
300 %. 

SUMMARY 

Summarizing all available data on the role of lipases in targeting lipoproteins to their 
receptors, we propose the following model: TRL after hydrolysis by LPL have apo E 
exposed on their surface and might contain one or more molecules of LPL. Both 
'apolipoproteins' direct the particles to the cell surface by high-affinity binding to cellular 
proteoglycans. HL, bound to the surface of hepatocytes can further hydrolyse the particles 
and together with apo E and LPL mediate the binding to cellular receptors. The most 
important receptors recognizing these remnants are LRP and VLDLR. The LRP seems to 
be mainly responsible for the hepatic uptake of remnant lipoproteins, while the VLDLR, 
mainly located in adipose tissue and muscle, might target the lipoproteins to these tissues 
for fatty acid delivery. 
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