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Abstract We give a generators-and-relations description of the reduced versions of quiver quantum
toroidal algebras, which act on the spaces of BPS states associated to (noncompact) toric Calabi–Yau
threefolds X. As an application, we obtain a description of the K -theoretic Hall algebra of (the quiver
with potential associated to) X, modulo torsion.

1. Introduction

1.1.

Let X be a (noncompact) toric Calabi–Yau threefold. To X, one can associate a two-

dimensional quantum field theory with four supercharges, and we will be interested in

two features of this theory: its vector space of BPS states, and more importantly for us,
the BPS algebra which acts on said vector space. The latter algebra has been dubbed the

quiver quantum toroidal algebra ([4, 5, 13, 14], following [9]).

Before we dive into the definition of the quiver quantum toroidal algebra Ũ, let us recall
certain objects associated to the Calabi–Yau threefold X

X � toric diagram� brane tiling� quiver.

We refer the reader to [14, Appendix C] for a detailed review of the procedures � listed

above, and we simply contend ourselves with stating the following properties of the objects

involved.

• The toric diagram associated to X is a particular collection of points in Z2 and
line segments between them.

• The normals to the aforementioned line segments can be drawn on the torus T2,
and they define a brane tiling, that is, a decomposition of the torus into polygonal
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2 A. Neguţ

Figure 1. The quiver associated to X = C3. The above square is the usual representation of the flat

torus, so the quiver has one vertex, three edges and two faces.

regions called faces. Very importantly, the faces can be colored in blue and red
such that any two faces which share an edge have different colors.1

• The vertices and edges of the aforementioned faces determine a quiver Q drawn on
T2. The bicolorability property of the brane tiling implies that the edges of Q can
be oriented so that they go clockwise around the blue faces and counterclockwise
around the red faces. The interested reader may find the quiver associated to the
Calabi–Yau threefold X = C3 in Figure 1.

1.2.

As the definition of the quiver quantum toroidal algebra Ũ+ only takes the quiver as
input, one can state the construction in generality greater than those quivers which arise

from toric Calabi–Yau threefolds via the procedure above.

Definition 1.3. Let Q be a quiver drawn on a torus (with vertex set I and edge set

E ), whose faces are colored in blue and red such that the two incident faces to a given

edge have different colors. We assume that the edges of the quiver are oriented so as to
go clockwise around the blue faces.

We will write Q̃ for the lift of Q to the universal cover R2 of T2 and note that Q̃ inherits
the blue/red colored faces of Q. In the present paper, ‘paths’ and ‘cycles’ in a quiver will

refer to the oriented notions.

Definition 1.4. A broken wheel refers to a path obtained by removing a single edge e

from the boundary of any face F of Q̃. The mirror image of the aforementioned broken

wheel is the path obtained by removing e from the boundary of the other face F ′ �= F
incident to e. The edge e will be called the interface of the broken wheel (and of its

mirror image).

Definition 1.5. The quiver Q is called shrubby if, given any paths p �= p′ in Q̃ with

the same start and end points, at least one of p and p′ contains a broken wheel whose

interface lies in the closed region between the two paths.

1As just described, the brane tiling is a graph G drawn on the torus. In the literature, the term
‘brane tiling’ is sometimes applied to the dual graph of G, which is bipartite.
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Reduced quiver quantum toroidal algebras 3

Figure 2. A broken wheel (the path in red) and its mirror image (the path in blue). The black arrow is

the interface.

When one of p and p′ is trivial, Definition 1.5 states that any cycle in Q̃ must contain a

broken wheel in the closure of its interior. We will see in Lemma A.3 that the shrubbiness
condition above is implied by more traditional notions of consistency of brane tilings and

dimer models, such as the existence of a nondegenerate R-charge. We do not know (and

it is an interesting question) whether all quivers which arise from Calabi–Yau threefolds

as in Subsection 1.1 are shrubby.

1.6.

Let K be a field of characteristic 0. To every edge e of the quiver Q, we associate a

parameter te ∈K× such that for every face F of Q we have2∏
e edge around F

te = 1. (1.1)

We make the following genericity assumption on the parameters {te}e edge.

Assumption 1.7. There exists a field homomorphism ρ :K→ C such that∣∣∣∣∣∣
∏

e edge along p

ρ(te)

∣∣∣∣∣∣ �=
∣∣∣∣∣∣

∏
e edge along p′

ρ(te)

∣∣∣∣∣∣ (1.2)

for any paths p and p′ in Q̃ with the same end point but different starting points.

In [9] and related works, products of the parameters te along paths in Q̃ are interpreted
as coordinate functions of atoms in crystals; in this language, condition (1.2) is equivalent

to requiring that different atoms have different coordinates. Thus, Assumption 1.7 holds

in the physical settings that motivated the present paper.

The edge parameters can be assembled into the following rational functions

ζij(x) =
αijx

sij

(1−x)δij

∏
e arrow from i to j

(1−xte) ∈K(x) (1.3)

2In the setting of toric Calabi–Yau threefolds X, one usually takes K = Q(q1,q2), where q1,q2
are elementary characters of the rank 2 torus that acts on X by preserving the Calabi–Yau
3-form. In this setting, the parameters te are monomials in q1 and q2.
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4 A. Neguţ

for all i,j ∈ I, where αij ∈ K× and sij ∈ Z are suitably chosen (but will not play an

important role in the present paper, so we will not specify them explicitly).

Remark 1.8. Moreover, different authors use different conventions on αij and sij . For

example, [4] requires sij to be minus half the number of arrows from i to j ; this situation
can also be accommodated by the present paper, at the cost of replacing polynomials

built out of integer powers by polynomials built out of half-integer powers. We will avoid

this setup in order to not overburden our notation.

1.9.

Using the data in Subsection 1.6, we will now review the definition of the quantum toroidal
algebra associated to the quiver Q and parameters {te}e∈E , which was introduced in

[4, 13] as a trigonometric version of the quiver Yangian of [9] (see also [16] for a closely

related mathematical construction).

Definition 1.10. The (half) quiver quantum toroidal algebra Ũ+ is

Ũ+ =K

〈
ei,d

〉
i∈I,d∈Z

/
relation (1.5), (1.4)

where if we write

ei(z) =
∑
d∈Z

ei,d
zd

,

then the defining relations are given by the formula

ei(z)ej(w)ζji

(w
z

)
= ej(w)ei(z)ζij

( z

w

)
(1.5)

for all i,j ∈ I.3

Define Ũ− = Ũ+,op, and denote its generators by fi,d instead of ei,d. Finally, let us

consider the commutative algebra

U0 =K
[
hi,d,h

′
i,d′
]
i∈I,d,d′≥ appropriately chosen integers

.

Then the (full) quiver quantum toroidal algebra is defined as

Ũ= Ũ+⊗U0⊗ Ũ− (1.6)

with certain commutation relations imposed between elements in the three tensor factors

above. We refer the reader to [4, 13] for the explicit commutation relations, as they will

not be used in the present paper; instead, we will only focus on Ũ+.

3Relation (1.5) is interpreted as an infinite collection of relations obtained by equating the

coefficients of all {zawb}a,b∈Z in the left- and right-hand sides (if i = j, one clears the
denominators z−w from Equation (1.5) before equating coefficients).
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Reduced quiver quantum toroidal algebras 5

1.11.

The main motivation for defining the algebra Ũ is that it acts on the vector space of

so-called BPS crystal configurations

Ũ�M =
⊕

Λ 3d crystal configuration

K · |Λ〉 (1.7)

(see [13, Section 5] for a review of three-dimensional crystal configurations, which are

generalizations of plane partitions). We will not make the action (1.7) explicit, so we will

not make any rigorous claims about it and merely use it as motivation for our subsequent

constructions. The main goal of the present paper is to describe the kernel of the action
(1.7), that is, to define the smallest possible quotient

Ũ�U (1.8)

such that the action (1.7) factors through an action of U. To this end, we will consider

the shuffle algebra realization of quiver quantum toroidal algebras

Ũ± ˜Υ±
−−→V± =

⊕
n∈NI

K[zi1,z
−1
i1 , . . . ,zini

,z−1
ini

]symi∈I

(we refer the reader to Subsection 2.1 for a description of the shuffle product on V± and

to Subsection 2.3 for the definition of the homomorphism Υ̃±). Set

U± = Ũ±
/
Ker Υ̃±. (1.9)

As noted in [4, Section 5], the action (1.7) factors through the shuffle algebra. Therefore,
the reduced (full) quiver quantum toroidal algebra

U=U+⊗U0⊗U− (1.10)

will inherit an action onM from Equation (1.7). To define this action, one needs to impose

the same commutation relations between the tensor factors of Equation (1.10) as between
the tensor factors of Equation (1.6). We will not present these relations explicitly in the

present paper and make no rigorous claims about them. Instead, we will focus on U+.

1.12.

The main purpose of the present paper is to describe U± by explicitly presenting the
quotient (1.9). More specifically, we will describe a collection of generators for the two-

sided ideal Ker Υ̃±. For every face F = {i0,i1, . . . ,ik−1,ik = i0} of the quiver Q (note

that some of the indices i0, . . . ,ik−1 may be repeated within a given face), consider the

following parameters corresponding to the edges of F

ta = t−−−−→
ia−1ia

. (1.11)

Note that t1 . . . tk = 1 due to (1.1). Let ζ̃ij(x) = ζij(x)(1−x)δij for all i,j ∈ I. Then we
may define the formal series

eF (x1, . . . ,xk) ∈ Ũ+[[x1,x
−1
1 , . . . ,xk,x

−1
k ]] (1.12)
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6 A. Neguţ

by the following formula

k∑
a=1

x1t2 . . . ta
xa

·
∏

b�c ζ̃icib

(
xc

xb

)(
−xb

xc

)δibicδb<c

∏
b∼c+1

(
1− xctb

xb

) ·

·eia(xa). . . ei1(x1)eik(xk). . . eia+1
(xa+1) (1.13)

In Equation (1.13), the notation b � c (respectively b ∼ c+1) means that b precedes

(respectively immediately precedes) c in the sequence (a, . . . ,1,k, . . . ,a+1). The symbols

δb<c and δibic are defined as in Subsection 3.1. Note that the first line of Equation (1.13)

is a Laurent polynomial in x1, . . . ,xk due to the fact that all the denominators

1− xctb
xb

are canceled by the ζ̃ functions in the numerator. The following is our main result.

Theorem 1.13. If Q is shrubby (as in Definition 1.5), then the coefficients of the series
(1.12) generate KerΥ̃+ as a two-sided ideal. In other words, we have

U+ = Ũ+
/(

series coefficients of eF (x1, . . . ,xk)
)
F face of Q

. (1.14)

Similar results hold for U− by replacing e’s with f’s and reversing the order of the factors
in the product on the second line of Equation (1.13).4

Lemma A.3 implies that a large family of physically interesting Calabi–Yau threefolds
X correspond to shrubby quivers, and so Theorem 1.13 applies to them. We conclude that

the relations which we factor in Equation (1.14) are the sought-for ‘Serre relations’ of [4].

The terminology of these relations is historically motivated by the analogous situation
of quantum loop groups associated to finite type Dynkin diagrams, in which the role of

relations (1.14) is played by the Drinfeld–Serre relations. Note, however, that the classic

Drinfeld–Serre relations are not enough to characterize quantum loop groups associated

to general Dynkin diagrams (see [12]).

Remark 1.14. If Q is not shrubby, then we expect that one needs additional relations
besides Equation (1.13). In this situation, the ideal Ker Υ̃+ can be studied according to

the general principles of [11], but we do not know explicit generators of this ideal.

Remark 1.15. It is straightforward to write down rational/elliptic versions of the

relations (1.13), which would give necessary relations that hold in the rational/elliptic

counterparts of the reduced algebra U+ (see [4] for an overview). However, in the

4While the quotient (1.14) imposes a Zk-worth of relations for every face F with k vertices,
we will see in Remark 3.8 that these can be reduced to a Z-worth of relations for every face.
More precisely, arbitrarily choosing one nonzero coefficient of the series eF in each integer
homogeneous degree instead of all coefficients (for every face F ) would determine the same
quotient in Equation (1.14).
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Reduced quiver quantum toroidal algebras 7

rational/elliptic settings, we do not know whether these relations are also sufficient, that

is, if they generate the analogue of the two-sided ideal KerΥ̃+.

1.16.

Let us spell out the constructions above in the case X =C3, when the quiver is the one in
Figure 1. There is a single vertex, so I = {•} and we will henceforth suppress the indices

i ∈ I from all our formulas. There are three edges, whose associated parameters t1,t2,t3
satisfy the equation

t3 =
1

t1t2
.

We take the ground field to be K=Q(t1,t2). The only ζ function (1.3) is

ζ(x) =
x−1(1−xt1)(1−xt2)(1−xt3)

1−x

(the particular choice of the monomial x−1 was made in order to match existing

conventions in the literature). The (half) quiver quantum toroidal algebra (1.4) is

generated by a single formal series e(z) modulo the quadratic relation

e(z)e(w)(z−wt1)(z−wt2)(z−wt3) =

= e(w)e(z)(zt1−w)(zt2−w)(zt3−w). (1.15)

Meanwhile, formula (1.13) for the red face in Figure 1 reads

eFred
(x1,x2,x3) =

∏3
i=1[(x1−x2ti)(x1−x3ti)(x3−x2ti)]

x1x3
2x

3
3(x1−x3t1)(x3−x2t3)

e(x1)e(x3)e(x2)

+
t2
∏3

i=1[(x2−x1ti)(x1−x3ti)(x2−x3ti)]

x3
2x

4
3(x2−x1t2)(x1−x3t1)

e(x2)e(x1)e(x3) (1.16)

+
t2t3

∏3
i=1[(x2−x1ti)(x3−x1ti)(x3−x2ti)]

x1x2
2x

4
3(x3−x2t3)(x2−x1t2)

e(x3)e(x2)e(x1)

while the analogous expression eFblue
for the blue face is obtained by replacing {t1,t2,t3}↔

{t3,t2,t1}. Note that the expressions in x1,x2,x3 that precede the series e(. . . ) in the three

lines of Equation (1.16) are actually Laurent polynomials, and so it makes sense to talk

about their coefficients. Theorem 1.13 states that

U+ =
Q(t1,t2)〈. . . ,e−1,e0,e1, . . . 〉

Equation (1.5) and coefficients of eFred
(x1,x2,x3) and eFblue

(x1,x2,x3)
.

Let us make two observations about formulas (1.16), which apply equally well in the

more general context of Theorem 1.13. Firstly, as explained in Remark 3.8, many of the
coefficients of eFred

and eFblue
are superfluous; we would obtain the same reduced quiver

quantum toroidal algebra U+ if we only imposed relations given by a single coefficient of

Equation (1.16) of every total homogeneous degree in x1,x2,x3. This is because any two
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8 A. Neguţ

such coefficients of the same total homogeneous degree are equivalent to each other up
to multiples of the quadratic relation (1.15).

Secondly (and perhaps most importantly) there is nothing ‘canonical’ about the

relations in U+ given by setting the coefficients of eFred
and eFblue

equal to 0 since
we would obtain the exact same algebra by adding various multiples of relation (1.15)

to the aforementioned coefficients. For example, if we consider the positive half of the

well-known quantum toroidal algebra

U+
t1,t2(

̂̂
gl1) =

Q(t1,t2)〈. . . ,e−1,e0,e1, . . . 〉
Equation (1.5) and [[ek+1,ek−1],ek] = 0, ∀k ∈ Z

,

then we have an isomorphism

U+ ∼= U+
t1,t2(

̂̂
gl1), ek �→ ek, ∀k ∈ Z

on account of the fact that both algebras are isomorphic to the shuffle algebra S+ of
Section 2 (see Theorem 2.7 and [17, Theorem 7.3]). However, the cubic relations in the

two algebras look quite different, and the fact that they can be obtained from each other

by adding multiples of Equation (1.15) is a very involved computation.

1.17.

Quiver quantum toroidal algebras are related to the K -theoretic Hall algebras (defined

in [15], by analogy with the cohomological Hall algebras of [6])

K(Q,W )

defined with respect to the following potential

W =
∑

F face of Q

(−1)F
∏

e edge around F

φe ∈ C[Q],

where (−1)F is +1 or −1 depending on whether the face F is blue or red, and the symbols

φe denote generators of the path algebra C[Q]. We consider K(Q,W ) as an algebra over

the ring L of polynomials in the edge parameters (modulo (1.1)), and let our ground field
be K= Frac(L). Then the localized K -theoretic Hall algebra

K(Q,W )loc =K(Q,W )
⊗
L

K

is endowed with an algebra homomorphism

K(Q,W )loc
ι−→V+.

By combining Theorem 2.7, Definition 3.7 and Proposition 3.10, the image of Υ̃+ can

be described as the subspace S+ ⊂ V+ of Laurent polynomials5 R(z1, . . . ,zk, . . . ) which

5For any face F = {i1, . . . ,ik−1,ik}, we use the notation z1, . . . ,zk to represent variables of R
in accordance with Equation (2.9), that is, one should interpret za = zia•a for certain •a ∈ N,
∀a ∈ {1, . . . ,k}.
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Reduced quiver quantum toroidal algebras 9

vanish whenever their variables are specialized according to the rule{
za = za−1ta

}
a∈{1,...,k}

(1.17)

(in the notation of Equation (1.11)) for any face F of Q. This yields the following result.

Corollary 1.18. If Q is shrubby, the images of ι and Υ̃+ coincide, that is, the localized
K-theoretic Hall algebra surjects onto the subspace S+ ⊂V+ of Laurent polynomials which

vanish when their variables are specialized to (1.17), for any face F.

Proof. The fact that the image of Υ̃+ is (tautologically) generated by {zdi1}i∈I,d∈Z, which

all lie in the image of ι, implies that

Im Υ̃+ ⊆ Im ι. (1.18)

To prove the opposite inclusion, one needs to show that the image of ι is contained in

the subspace of Laurent polynomials which vanish when their variables are specialized
according to Equation (1.17) for every face F. This is achieved by noting that the

specialization in question can be realized as restriction to the locally closed subset Z

of quiver representations (φe : C
ni → Cnj )

e=
−→
ij

whose only nonzero elements are

φ−−→
i1i2

∈ C∗E•1•2
, . . . ,φ−−−−→

ik−1ik
∈ C∗E•k−1•k

(where Eab denote the matrix units with respect to the standard basis of {Cni}i∈I , and

the natural numbers •1, . . . ,•k are chosen as in Equation (2.9)). Since the locally closed

subset Z does not intersect the critical locus of W (on which K(Q,W ) is supported), this

implies the opposite inclusion to Equation (1.18)

Im Υ̃+ ⊇ Im ι. (1.19)

1.19.

The structure of the present paper is the following.

• In Section 2, we discuss Ũ+ and its shuffle algebra interpretation for general
quivers Q.

• In Section 3, we study Ũ+ for the particular quivers Q of Definition 1.3 and prove
Theorem 1.13.

• In Section A, we provide some key results on shrubs (which are certain subgraphs
of the universal cover of Q that we use in the proof of Theorem 1.13).

1.20.

I would like to thank Ben Davison, Richard Kenyon and Masahito Yamazaki for very

useful conversations about the topics in the present paper. I gratefully acknowledge NSF

grant DMS-1845034, as well as support from the MIT Research Support Committee.
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10 A. Neguţ

2. Shuffle algebras in general

We will now recall the basic theory of trigonometric shuffle algebras, in the generality
of [11]. Thus, throughout the present section, Q will denote an arbitrary quiver (whose

vertex and edge sets will be denoted by I and E, respectively), K will denote an arbitrary

field of characteristic zero, and ζij(x)(1−x)δij will denote arbitrary Laurent polynomials
with coefficients in K for all i,j ∈ I. Throughout the present paper, the set N will be

thought to contain 0.

2.1.

Let us consider an infinite collection of variables zi1,zi2, . . . for all i ∈ I. For any n =

(ni)i∈I ∈NI , we will write n! =
∏

i∈I ni!. The following construction is a straightforward
generalization of the trigonometric quantum loop groups of [2, 3].

Definition 2.2. The big shuffle algebra associated to the datum {ζij(x)}i,j∈I is

V+ =
⊕
n∈NI

K[z±1
i1 , . . . ,z±1

ini
]symi∈I

endowed with the multiplication

R(. . . ,zi1, . . . ,zini
, . . . )∗R′(. . . ,zi1, . . . ,zin′

i
, . . . ) = (2.1)

Sym

⎡⎢⎢⎢⎣R(. . . ,zi1, . . . ,zini
, . . . )R′(. . . ,zi,ni+1, . . . ,zi,ni+n′

i
, . . . )

n!n′!

i,j∈I∏
1≤a≤ni

nj<b≤nj+n′
j

ζij

(
zia
zjb

)⎤⎥⎥⎥⎦ .
Above and henceforth, ‘sym’ (resp. ‘Sym’) denotes symmetric functions (resp. sym-

metrization) with respect to the variables zi1,zi2, . . . for each i ∈ I separately.6

By defining the subspace Vn ⊂ V+ to consist of rational functions in n = (ni)i∈I

variables, we obtain a decomposition

V+ =
⊕
n∈NI

Vn. (2.2)

For example, the Laurent polynomial in a single variable zdi1 lies in Vςi , where

ςi = (0, . . . ,0,1,0, . . . ,0︸ ︷︷ ︸
1 on i-th position

) ∈ NI .

We will also consider the opposite big shuffle algebra V− = V+,op, whose graded

components analogous to Equation (2.2) will be denoted by V−n, for all n ∈ NI .

6Although the ζ functions might seem to contribute simple poles at zia − zib for a �= b to the
right-hand side of Equation (2.1), these poles disappear when taking the symmetrization (the
poles in question can only have even order in any symmetric rational function).
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2.3.

Recall that Ũ+ is the quiver quantum toroidal algebra of Definition 1.10, and Ũ− denotes

its opposite. There exist K-algebra homomorphisms

Ũ± ˜Υ±
−−→V±, ei,d,fi,d �→ zdi1 (2.3)

which can be easily established by checking the fact that relations (1.5) are respected by

the shuffle product (2.1). Let us consider the kernel and image of the maps (2.3)

K± =Ker Υ̃± ⊂ Ũ± (2.4)

S̊± = Im Υ̃± ⊂ V±. (2.5)

The subalgebra S̊+ will be called the shuffle algebra to differentiate it from the big

shuffle algebra of Definition 2.2.

2.4.

An important role in the present paper will be played by a certain integral pairing, which

we will now describe. Let us consider the following notation for all rational functions
f(z1, . . . ,zn). If Dza =

dza
2πiza

, then we will write∫
|z1|
···
|zn|

f(z1, . . . ,zn)
n∏

a=1

Dza (2.6)

for the constant term in the expansion of f as a power series in

z2
z1
, . . . ,

zn
zn−1

.

The notation in Equation (2.6) is motivated by the fact that if K=C, one could compute

this constant term as a contour integral (with the contours being concentric circles,

situated very far from each other compared to the absolute values of the coefficients
of f ).

Definition 2.5. There exists a nondegenerate bilinear pairing7

Ũ+⊗V− 〈·,·〉−−→K (2.7)

given for all R ∈ V−n and all i1, . . . ,in ∈ I, d1, . . . ,dn ∈ Z by〈
ei1,d1

· · ·ein,dn
,R
〉
=

∫
|z1|
···
|zn|

zd1
1 . . . zdn

n R(z1, . . . ,zn)∏
1≤a<b≤n ζibia

(
zb
za

) n∏
a=1

Dza (2.8)

7The reason we employ the notation V− and V+ in Equation (2.7), despite the fact that the
two notations represent identical K-vector spaces, is the fact that under certain assumptions,
(2.7) can be upgraded to a bialgebra pairing (as in [11]).
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if ςi1 + · · ·+ςin =n, and 0 otherwise. In the right-hand side of Equation (2.8), we identify

za with zia•a
, ∀a ∈ {1, . . . ,n}, (2.9)

where •a ∈ {1,2, . . . ,nia} may be chosen arbitrarily due to the symmetry of R (however,
we require •a �= •b if a �= b and ia = ib). We will call Equation (2.9) a relabeling.

There is also an analogous pairing

V+⊗ Ũ− 〈·,·〉−−→K (2.10)

whose formula the interested reader may find in [11, Definition 2.8]. We refer to formulas

(2.17), (2.18) and (3.59) of loc. cit. for the proof of nondegeneracy.

2.6.

Let S∓ ⊂ V∓ denote the dual of K± = Ker Υ̃± under the pairings (2.7) and (2.10),

respectively, that is,

R− ∈ S− ⇔
〈
K+,R−

〉
= 0 (2.11)

R+ ∈ S+ ⇔
〈
R+,K−

〉
= 0. (2.12)

It is easy to check that S± are subalgebras of V± (in fact, this also follows from the fact

that Equations (2.7) and (2.10) yield bialgebra pairings). Thus, we have

S̊± ⊆ S±

because the generators {zdi1}i∈I,d∈Z of the algebras on the left lie in the algebras on the

right. Moreover, if we consider the reduced quiver quantum toroidal algebra

U± = Ũ±
/
K±,

then the pairings (2.7) and (2.10) descend to nondegenerate pairings

U+⊗S− 〈·,·〉−−→K (2.13)

S+⊗U− 〈·,·〉−−→K. (2.14)

One of the main results of [11] (specifically, Theorem 1.5 therein) is the following.

Theorem 2.7. We have S± = S̊±, and hence Υ̃± induce isomorphisms

U± Υ±
−−→S±. (2.15)

Moreover, the pairings (2.13) and (2.14) match under these isomorphisms, thus yielding

a nondegenerate pairing

S+⊗S− 〈·,·〉−−→K. (2.16)
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We wish to describe U± explicitly, that is, to give formulas for a system of generators

of the kernel K± of the map Ũ± � U±. By formulas (2.11)–(2.12), these sought-for

generators are precisely dual to the linear conditions describing the inclusions S∓ ⊂ V∓.
We will exploit this duality in the following Section.

3. Shuffle algebras for shrubby quivers

From now onward, we will consider the special case when Q is a quiver drawn on the torus,

as in Definition 1.3. Moreover, we assume the edges of Q are endowed with parameters

te as in Subsection 1.6, and we define the rational functions ζij(x) by formula (1.3). Our
goal is to obtain explicit generators of the ideals K± so that we may realize the reduced

quiver quantum toroidal algebras U± as being determined by explicit relations. In what

follows, we will only focus on the case ±=+, as the opposite case ±=− can be obtained
by reversing all products.

3.1.

In Definition 3.2, we will construct formal series eF of elements of K+ associated to the

faces of the quiver Q. When the quiver Q is shrubby (in the sense of Definition 1.5), we

will show that the coefficients of the series eF generate K+, thus concluding the proof of
Theorem 1.13. For every face F = {i0,i1, . . . ,ik−1,ik = i0} of Q, consider

ta = t−−−−→
ia−1ia

, (3.1)

and note that t1 . . . tk = 1 due to Equation (1.1). The arrows in Equation (3.1) are the

boundary edges of the face F (these edges are uniquely defined, even though it is possible

that Q has multiple edges between ia and ib for various a �= b). We will write

ζ̃ij(x) = ζij(x)(1−x)δij ∈K[x±1] (3.2)

for all i,j ∈ I. For any 1≤ b �= c≤ k, we will write

δb<c =

{
1 if b < c

0 if b > c

δibic =

{
1 if ib = ic ∈ I

0 otherwise.

Definition 3.2. For any face F as above, consider the formal series

eF (x1, . . . ,xk) =

k∑
a=1

x1t2 . . . ta
xa

·
∏

b�c ζ̃icib

(
xc

xb

)(
−xb

xc

)δibicδb<c

∏
b∼c+1

(
1− xctb

xb

) ·

·eia(xa). . . ei1(x1)eik(xk). . . eia+1
(xa+1) ∈ Ũ+[[x±1

1 , . . . ,x±1
k ]]. (3.3)

In expression (3.3), the notation b � c (respectively b ∼ c+1) means that b precedes

(respectively immediately precedes) c in the sequence (a, . . . ,1,k, . . . ,a+1).

Proposition 3.3. The coefficients of the series (3.3) all lie in K+.
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Proof. Let us consider the formal delta series

δ (z) =
∑
d∈Z

zd

which has the following property for all Laurent polynomials f(x)

δ
( z
x

)
f(z) = δ

( z
x

)
f(x). (3.4)

To prove Proposition 3.3, we must apply the map Υ̃+ to the right-hand side of Equation

(3.3) and show that the result is 0. By the definition of the shuffle product in Equation

(2.1), we have

Υ̃+ (eF (x1, . . . ,xk)) = Sym

[
k∑

a=1

x1t2 . . . ta
xa

·

∏
b�c ζ̃icib

(
xc

xb

)∏
b<c,b�c

(
−xb

xc

)δibic∏
c�b ζicib

(
zc
zb

)
∏

b∼c+1

(
1− xctb

xb

) · δ
(
z1
x1

)
. . . δ

(
zk
xk

)⎤⎥⎦ (3.4)
=

(3.4)
= Sym

[
k∑

a=1

z1t2 . . . ta
za

·

∏
b�c ζ̃icib

(
zc
zb

)∏
b<c,b�c

(
− zb

zc

)δibic∏
c�b ζicib

(
zc
zb

)
∏

b∼c+1

(
1− zctb

zb

) · δ
(
z1
x1

)
. . . δ

(
zk
xk

)⎤⎥⎦=

= Sym

⎡⎣ k∑
a=1

z1t2 . . . ta
za

·
∏

1≤b �=c≤k ζicib

(
zc
zb

)∏
b>c,ib=ic

(
1− zc

zb

)
∏

b∼c+1

(
1− zctb

zb

) · δ
(
z1
x1

)
. . . δ

(
zk
xk

)⎤⎦,
where we let za = zia•a

as in the relabeling (2.9), and ‘Sym’ refers to symmetrization with

respect to all za and zb such that ia = ib. Therefore, Υ̃
+(eF ) equals

Sym

⎡⎣∏1≤b �=c≤k ζicib

(
zc
zb

)∏
b>c,ib=ic

(
1− zc

zb

)
(
1− z1t2

z2

)
. . .
(
1− zk−1tk

zk

)(
1− zkt1

z1

) ·

δ

(
z1
x1

)
. . . δ

(
zk
xk

) k∑
a=1

z1t2 . . . ta
za

(
1− zata+1

za+1

)]
, (3.5)

where zk+1 = z1. As t1 . . . tk = 1, the sum in Equation (3.5) vanishes, hence so does

Υ̃+(eF ).

3.4.

We will now consider the dual to the series eF (x1, . . . ,xk) ∈ Ũ+[[x±1
1 , . . . ,x±1

k ]] under the

pairing (2.7). We still write F for an arbitrary face of Q.
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Proposition 3.5. For any8 R(z1, . . . ,zk) ∈ V−ςi1−···−ςik , we have〈
eF (x1, . . . ,xk),R

〉
= 0 ⇔ R

∣∣∣
za=za−1ta,∀a∈{1,...,k}

= 0. (3.6)

Proof. As a consequence of Equation (2.8), we have〈
eF (x1, . . . ,xk),R

〉
= (3.7)

=
k∑

a=1

ev|xa|
···
|x1|
|xk|
···
|xa+1|

⎡⎣x1t2 . . . ta
xa

·
R(x1, . . . ,xk)

∏ib=ic
b>c

(
1− xc

xb

)
∏

b∼c+1

(
1− xctb

xb

)
⎤⎦,

where ev�[f ] denotes the expansion of any rational function f in the region prescribed by

the inequalities �. Using the fact that t1 . . . tk = 1, it is elementary to prove the following

identity of formal series

k∑
a=1

ev|xa|
···
|x1|
|xk|
···
|xa+1|

⎡⎣ x1t2...ta
xa∏

b∼c+1

(
1− xctb

xb

)
⎤⎦= δ

(
x1t2
x2

)
. . . δ

(
xk−1tk
xk

)
.

Therefore, the right-hand side of Equation (3.7) is equal to

δ

(
x1t2
x2

)
. . . δ

(
xk−1tk
xk

)
R(x1, . . . ,xk)

ib=ic∏
b>c

(
1− xc

xb

)
and vanishes if and only if

R
∣∣∣
za=za−1ta,∀a∈{1,...,k}

ib=ic∏
b>c

(
1− 1

tc+1 . . . tb

)
= 0. (3.8)

Because of Equation (1.2), we cannot have tc+1 . . . tb = 1 for any b > c with ib = ic,

and therefore, Equation (3.8) only holds if R|za=za−1ta,∀a∈{1,...,k} = 0, as we needed to
show.

More generally, if R(z1, . . . ,zn, . . . ) ∈ V− is arbitrary, then〈
Ũ+eF (x1, . . . ,xk)Ũ

+,R
〉
= 0 ⇔ R

∣∣∣
za=za−1ta,∀a∈{1,...,k}

= 0, (3.9)

where za denotes any variable of R of the form zia•a
, for all a ∈ {1, . . . ,k} (the choice of

•a does not matter due to the symmetry of R). Implicit in the notation above is that R
may have other variables besides z1, . . . ,zn, and these are not specialized at all. Property

(3.9) is proved like [12, Proposition 3.13]; we leave the details as an exercise to the

reader.

8The variables of R are relabeled in accordance with Equation (2.9).
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3.6.

Motivated by Proposition 3.5 and Equation (3.9), we consider the following.

Definition 3.7. Let Ṡ± ⊂ V± denote the subspace consisting of Laurent polynomials

R(z1, . . . ,zk, . . . ) such that

R
∣∣∣
za=za−1ta,∀a∈{1,...,k}

= 0 (3.10)

for any face F = {i0,i1, . . . ,ik−1,ik = i0} of Q (the notation ta is that of Equation (3.1)).

We call Equation (3.10) a wheel condition by analogy with the constructions of [2, 3].
It is straightforward to show that Ṡ± are closed under the shuffle product, although this

will also follow from Proposition 3.10. Thus, if we consider the two-sided ideal

J+ =
(
series coefficients of eF (x1, . . . ,xk)

)
F face of Q

⊂ Ũ+,

then property (3.9) reads 〈
J+,R

〉
= 0 ⇔ R ∈ Ṡ−. (3.11)

Remark 3.8. Property (3.11) would still hold if we defined J+ as the ideal generated

by a single coefficient of the series eF (x1, . . . ,xk) of every given homogeneous degree in

x1, . . . ,xk, for all faces F of the quiver Q. In other words, including all the coefficients of all
the series eF as generators of J+ is superfluous; a single coefficient of each homogeneous

degree for all faces F would suffice (see [11, Claim 3.18] or [12, Remark 3.14]).

3.9.

Proposition 3.3 implies that J+ ⊆K+, and therefore

Ṡ− ⊇ S−. (3.12)

Our main goal for the remainder of the paper is to prove the opposite inclusion.

Proposition 3.10. If Q is shrubby (as in Definition 1.5), then we have

Ṡ− ⊆ S−, (3.13)

and therefore, Ṡ− = S−.

We also have Ṡ+ = S+; the proof is analogous and we will not repeat it.

Proof of Theorem 1.13. With Equations (2.11) and (3.11) in mind, the fact that

Ṡ− = S− implies that 〈
K+,R

〉
= 0 ⇔

〈
J+,R

〉
= 0

for any R ∈ V−. If Equation (2.7) were a pairing of finite-dimensional vector spaces over
K, this would imply that J+ = K+ and we would be done. In the infinite-dimensional

setting at hand, one needs to emulate the proof of [11, Theorem 1.8] to conclude that

J+ =K+. The details are straightforward, and we leave them to the reader.
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3.11.

Assume that Q is shrubby, according to Definition 1.5, and let Q̃ be its universal cover.

The following notion will be key to our proof of Proposition 3.10.

Definition 3.12. A preshrub S is an subgraph of Q̃ which does not contain the entire
boundary of any face, and moreover has the property that if S contains a broken wheel

then it must also contain its mirror image.

Proposition 3.13. A preshrub cannot contain any cycles.

The proposition above will be proved in the appendix. Although a preshrub cannot

contain any oriented cycles, it can contain unoriented ones (for example, a broken wheel

together with its mirror image). The interior of a preshrub S is the region completely
enclosed by the unoriented cycles belonging to S.

Recall that any oriented graph with no cycles yields a partial order on the set of its

vertices, with i > j if there exists a path in the graph from i to j. Having established
that preshrubs do not contain any cycles in Proposition 3.13, we may consider the

corresponding partial order on the set of vertices. With respect to this order, a root

of a preshrub will refer to a maximal vertex.

Definition 3.14. A shrub S is a preshrub with a single root, which contains all the
vertices in its interior. We identify shrubs up to deck transformations of Q̃ over Q.

The identification of shrubs can also be visualized by fixing a vertex ĩ ∈ Q̃ for every

i ∈ Q; then we may simply restrict attention to shrubs that are rooted at a vertex in

{̃i|i ∈Q}. The following proposition will also be proved in the appendix.

Proposition 3.15. If i,i′ are vertices of a shrub S and i
e−→ i′ is an edge not contained

in S, then e must be the interface of a broken wheel contained in S.

3.16.

Consider a shrub S ⊂ Q̃ and a vertex i /∈ S. Assume that there are k > 0 edges from

vertices of S to i, labeled e1, . . . ,ek in counterclockwise order around i, as in Figures 3

and 4. The difference between these figures will be explained in Definition 3.19 when we

discuss the notion of i being addable or nonaddable to S.
In the situation above, consider any two consecutive edges es and es+1 (we make the

convention that ek+1 = e1). Because S is a shrub (and thus has a root), we may continue

these edges in S until they meet, thus yielding paths

ps : j → . . .
es−→ i (3.14)

p′s : j → . . .
es+1−−−→ i. (3.15)

We may assume the paths ps and p′s are simple, nonintersecting (except for the endpoints)
and that the region rs of the plane between ps and p′s is minimal with respect to inclusion;

this guarantees the uniqueness of ps,p
′
s,rs since the intersection of two minimal regions

thus constructed would yield an even smaller acceptable region. Because the vertex i does
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Figure 3. An addable vertex i (in black) to a shrub S (in red).

Figure 4. Two situations of nonaddable vertices i (in black) to a shrub S (in red).

not belong to the interior of the shrub, a single one of the regions rs does not contain the
counterclockwise angle at i between es and es+1. By relabeling the edges if necessary, we

assume that the aforementioned region is rk. With this in mind, an index s∈ {1, . . . ,k−1}
is called

• good if ps and p′s are broken wheels, which are mirror images of each other

• bad if there exist edges i
e−→ v ∈ ps and i

e′−→ v′ ∈ p′s with v,v′ �= j such that the
subregions of rs between e and ps (respectively between e′ and p′s) are faces

For example, both s ∈ {1,2} in Figure 3 are good. However, in the picture on the left

of Figure 4, s= 1 is bad and s= 2 is good. Meanwhile, we call the index s= k

• good if there are no edges from i to S in the counterclockwise region from ek to
e1 (i.e., the region R2\rk); this is the case in Figure 3.
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• bad if there exists an edge from i to S in the region R2\rk, which determines a
face together with the other edges in S and exactly one of the edges e1 and ek;
this is the case in the picture on the right of Figure 4.

The following result will be proved in the appendix.

Proposition 3.17. For i /∈ S as above, every s ∈ {1, . . . ,k} is either good or bad.

3.18.

If S is a shrub and i /∈ S, let S+ i denote the subgraph obtained from S by adding the

vertex i and the edges from S to i (we assume such edges exist).

Definition 3.19. In the situation above, we call i addable to S if all s ∈ {1, . . . ,k} are

good, and nonaddable to S otherwise.

Figures 3 and 4 provide examples of addable and nonaddable vertices. The terminology

above is motivated by the following result, which will be proved in the appendix.

Proposition 3.20. Assume S ⊂ Q̃ is a shrub and i /∈ S is a vertex. Then S+ i is a shrub

if and only if i is an addable vertex to S.

The main distinction to us between addable and nonaddable vertices is the following

result, which will also be proved in the appendix.

Proposition 3.21. Assume S ⊂ Q̃ is a shrub and i /∈ S is a vertex with k > 0 edges from

S to i. The maximal number of broken wheels in S+ i that all pass through i and do not

pairwise intersect at any other vertex is{
k−1 if i is addable to S

≥ k otherwise.

3.22.

We are now ready to give the proof of Proposition 3.10. Since we are operating under

Assumption 1.7, we will assume throughout the present Subsection that the edge
parameters te are nonzero complex numbers (i.e., abuse notation by writing te instead of

ρ(te), where ρ :K→C is a field homomorphism). This assumption is merely cosmetic, as

all our formulas are rational functions in the te’s.

Proof of Proposition 3.10. Let us consider any

φ=
∑

i1,...,in∈I

d1,...,dn∈Z

coefficient ·ei1,d1
. . . ein,dn

∈K+

and any R ∈ Ṡ−. Our goal is to show that〈
φ,R

〉
= 0 (3.16)
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as this would imply the required R ∈ S−. Recall from formula (2.8) that〈
ei1,d1

· · ·ein,dn
,R
〉
=

∫
|z1|
···
|zn|

f(z1, . . . ,zn)

n∏
a=1

Dza, (3.17)

where

f(z1, . . . ,zn) =
zd1
1 . . . zdn

n R(z1, . . . ,zn)∏
1≤a<b≤n ζibia

(
zb
za

) . (3.18)

A labeling of a shrub S ⊂ Q̃ will refer to a labeling of the s vertices of S by one of the

variables za1
, . . . ,zas

(for certain a1 < · · · < as ∈ N) such that the increasing order of the
indices of the variables refines the partial order on the vertices given by the shrub, that

is, ax < ax′ if the corresponding vertices ix,ix′ ∈ S are connected in S by a path going

from ix′ to ix. In particular, the root of S must be labeled by the variable zas
. For every

x ∈ {1, . . . ,s−1}, choose a path from the root is to ix

is
α−→ is′

β−→ . . .
ω−→ ix,

and define qx = tαtβ . . . tω. Because such paths are unique up to removing cycles or

replacing a broken wheel by its mirror image (according to Definition 1.5), and because
such removals/replacements do not change the product of parameters along the path, the

quantity qx does not depend on any choices made. An acceptable labeled shrub is one

for which |qx|> 1 for all x ∈ {1, . . . ,s−1} (note that the situation of p′ being the empty
path in (1.2) precludes |qx|= 1).

Proposition 3.23. For any labeled shrub S and function f as in Equation (3.18) with at

least as many variables as vertices of S (corresponding to any i ∈ I), define

Res
S

f (3.19)

as a function in {za}a/∈{a1,...,as−1} by the following iterated residue procedure.

At step number x∈ {1, . . . ,s−1}, the variables zas−x+1
, . . . ,zas−1

have all been specialized

to zas
times qs−x+1, . . . ,qs−1, respectively. Upon this specialization, we claim that the

rational function f has at most a simple pole at

zas−x
= zas

qs−x. (3.20)

Replace f by its residue at the pole (3.20), and move on to step number x+1.

Because one only encounters simple poles in the algorithm above, the value of Equation

(3.19) would not change if we replaced (in the recursive procedure of Proposition 3.23)
the total order a1 < · · · < as by any other total order refining the partial order on the

vertices of the shrub.

Proof. Consider the induced subgraph S′ ⊂ S consisting of all vertices > i := is−x. It is

easy to see that S′ is a shrub and that i is an addable vertex to S′. Therefore, we may

assume that the there are k > 0 edges
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ib1
e1−→ is−x, . . . ,ibk

ek−→ is−x

from the shrub S′ to the vertex i, for certain b1, . . . ,bk > s−x. Since these edges must be
distributed as in Figure 3, the denominator of (3.18) includes the k factors

1−
zab1

te1
zas−x

, . . . ,1−
zabk

tek

zas−x

.

Once the variables zab1
, . . . ,zabk

are specialized to zas
times qb1, . . . ,qbk , respectively, the

fact that qs−x = qb1te1 = · · · = qbk tek implies that the denominator of (3.18) will feature

the factor (
1− zas

qs−x

zas−x

)k

.

Thus, to prove that the pole invoked in the statement of the Proposition is at most simple,

we need to show that the numerator of Equation (3.18) vanishes to order at least k−1 at

the specialization (3.20). However, the numerator of f vanishes whenever any subset of its

variables are specialized according to Equation (3.10) for any face F. As there exist k−1
broken wheels whose only common vertex is i = is−x (see Proposition 3.21), property

(3.10) for the k−1 faces enclosed by said broken wheels implies that the numerator of f

vanishes to order ≥ k−1 at the specialization (3.20).9

Anm-labeled shrubbery S is a disjoint union of labeled shrubs in Q̃ (whose n−m+1

vertices are endowed with distinct labels among zm, . . . ,zn) such that the order of the
indices of the variables refines the partial order on the vertices given by each constituent

shrub of S . An m-labeled shrubbery is called acceptable if all of its constituent shrubs

are acceptable.

Claim 3.24. For any m ∈ {1, . . . ,n}, consider

Xm =

m-labeled acceptable∑
shrubberies S=S1�···�St

∫
|z1|
···
|zm−1|
|zr1 |=···=|zrt |

Res
S1

. . .Res
St

f

m−1∏
a=1

Dza

t∏
u=1

Dzru, (3.21)

where zr1, . . . ,zrt are the labels of the roots of the shrubs S1, . . . ,St. Then we have

Xm−1 =Xm (3.22)

for all m ∈ {2, . . . ,n}.

9In claiming the vanishing of the numerator of f to order at least k− 1, we are invoking the
fact that for any k,�1, . . . ,�k−1 ∈ N, we have

k−1⋂
c=1

(
x(1)
c , . . . ,x(�c)

c

)
=

(
x
(α1)
1 x

(α2)
2 . . . x

(αk−1)
k−1

)
α1∈{1,...,�1},...,αk−1∈{1,...,�k−1}

in the ring of polynomials over distinct variables {x(1)
c , . . . ,x

(�c)
c }c∈{1,...,k−1}.
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Note that there are finitely many m-labeled shrubberies due to the fact that shrubs that
only differ by a deck transformation of Q̃ over Q are identified. The purpose of assumption

(1.2) is to ensure that the specialization of the rational function f corresponding to the

shrubbery S , which has linear factors of the form

1− zruqxte
zrvqy

in the denominator (where e is any edge from any vertex ix in the shrub Su to any vertex

iy in the shrub Sv) has no poles on the circles |zru |= |zrv | themselves.

Proof. To prove Equation (3.22), one needs to move the contour of the variable zm−1

toward the contours |zr1 | = · · · = |zrt |. If the former contour reaches the latter contours,

this corresponds to adding the one-vertex shrub {im−1} to the shrubbery S . Otherwise,

the variable zm−1 must be ‘caught’ in one of the poles of the form

1− zbte
zm−1

(3.23)

for some b >m−1 and some edge e=
−−−−→
ibim−1. Assume ib belongs to one of the constituent

shrubs Su ⊂ S , and suppose there is a number k > 0 of edges from the shrub Su to
i= im−1. Then we have one of the following three possibilities.

• If the vertex i is addable to Su as in Definition 3.19, then Proposition 3.20 implies
that S′

u = Su+ i is a shrub. Thus, the operation

m-labeled shrubbery S = S1�·· ·�Su�·· ·�St �

� (m−1)-labeled shrubbery S ′ = S1�·· ·�S′
u�·· ·�St

shows how to obtain Xm−1 by applying the contour moving procedure to Xm (the
fact that we only encounter acceptable shrubs is due to the fact that we move the
contour of zm−1 from infinity down to the contour of zru , but no further).

• If the vertex i is nonaddable to Su, then Proposition 3.21 states that there exist
k broken wheels completely contained in Su+ i that only intersect pairwise at the
vertex i. As we have seen at the end of the proof of Proposition 3.23, this means
that the numerator of f has enough factors to cancel the k copies of the factor
(3.23) from the denominator of f. We conclude that nonaddable vertices do not
correspond to actual poles.

• If the vertex i is already in Su (say with label zc for some c > m− 1), then the
linear factor of zm−1−zc in the denominator of

ζicim−1

(
zc

zm−1

)
allows the numerator of f to annihilate the pole of the form (3.23).
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Repeated applications of Claim 3.24 imply the fact that X1 = Xn. Since Xn is the
right-hand side of Equation (3.17), we conclude that〈

ei1,d1
· · ·ein,dn

,R
〉
=

1-labeled acceptable∑
shrubberies S=S1�···�St∫

|zr1 |=···=|zrt |
Res
S1

. . .Res
St

zd1
1 . . . zdn

n R(z1, . . . ,zn)∏
1≤a<b≤n ζibia

(
zb
za

) t∏
u=1

Dzru . (3.24)

The fact that all the contours coincide means that we can symmetrize the integrand (with

respect to all variables z1, . . . ,zn) without changing the value of the integral〈
ei1,d1

· · ·ein,dn
,R
〉
=

fixed 1-labeled acceptable∑
shrubberies S̄=S̄1�···�S̄t∫

|zr1 |=···=|zrt |
Res
S̄1

. . .Res
S̄t

Sym

⎡⎣zd1
1 . . . zdn

n R(z1, . . . ,zn)∏
1≤a<b≤n ζibia

(
zb
za

)
⎤⎦ t∏

u=1

Dzru,

where the adjective ‘fixed’ means that we are summing over a given 1-labeled acceptable
shrubbery in every equivalence class given by permuting the labels on the vertices. Because

of the identity

Υ̃+(ei1,d1
· · ·ein,dn

)
2.1
= Sym

⎡⎣zd1
1 . . . zdn

n

∏
1≤a<b≤n

ζiaib

(
za
zb

)⎤⎦,
we conclude that 〈

ei1,d1
· · ·ein,dn

,R
〉
=

fixed 1-labeled acceptable∑
shrubberies S̄=S̄1�···�S̄t

(3.25)

∫
|zr1 |=···=|zrt |

Res
S̄1

. . .Res
S̄t

Υ̃+(ei1,d1
· · ·ein,dn

)R(z1, . . . ,zn)∏
1≤a �=b≤n ζibia

(
zb
za

) t∏
u=1

Dzru .

We conclude that 〈φ,R〉 is a linear functional of Υ̃+(φ). Since the latter expression is 0

due to the fact that φ ∈K+, we conclude the required formula (3.16).

Note that Equation (3.25) implies the following formula for the descended pairing (2.16),

under the assumption that Q is shrubby〈
R+,R−

〉
=

fixed 1-labeled acceptable∑
shrubberies S̄=S̄1�···�S̄t

(3.26)

∫
|zr1 |=···=|zrt |

Res
S̄1

. . .Res
S̄t

Sym

⎡⎣R+(z1, . . . ,zn)R
−(z1, . . . ,zn)∏

1≤a �=b≤n ζibia

(
zb
za

)
⎤⎦ t∏

u=1

Dzru
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for any R± ∈ S± of opposite degrees. Formula (3.26) shows that shrubberies are not just

technical tools used in the proof of Proposition 3.10, but natural combinatorial objects

which parameterize the summands in the formula for the pairing (2.16).

Appendix A: the joys of gardening

In the present section, we will motivate our notion of shrubby quivers by relating it with
more traditional consistency conditions in the theory of brane tilings and dimer models.

We also prove several technical results from Section 3.

A.1.

Let Q denote a quiver in T2, as in Definition 1.3, that is, the faces of Q are colored in

blue/red such that any two faces which share an edge have different colors.

Definition A.2. A nondegenerate R-charge (see, for instance, [7, 8]) is a function

R : E → (0,1)

such that for any vertex i and any face F of the quiver Q, we have∑
e edge around F

R(e) = 2

∑
e edge incident to i

(1−R(e)) = 2.

10 Geometrically, the properties above imply that the quiver Q can be drawn on the
torus so that all faces are polygons circumscribed in circles of the same radius, and the

centers of these circles lie strictly inside the faces (the number πR(e) is the central angle

subtended by the chord e in the aforementioned circles).

The existence of a nondegenerate R-charge allows one to define a rhombus tiling of the

torus, as follows. Draw the centers of the (circles circumscribing the) blue/red polygonal

faces as blue/red bullets. Then the condition that the segments between the vertices and
the bullets all have the same length means that T2 is tiled by rhombi. To recover the

arrows in the quiver Q from the rhombus tiling, one need only draw the diagonals between

nonbullet vertices of the rhombi and orient them so that they keep the blue/red bullets
on the right/left (see Figure A1).

Figure A1. A rhombus. The blue/red bullets represent the centers of the blue/red faces, while the other

two vertices of the rhombus are vertices of Q (with an arrow between them).

10Loops at i are counted twice in the formula above.
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Recall the notion of shrubby quivers from Definition 1.5. Lemma A.3 below is proved
just like [7, Lemma 5.3.1] (note that the topology of shrubby quivers underlies the notion

of F -term equivalent paths, see [1, Definition 2.5] and [10, Condition 4.12]).

Lemma A.3. If there exists a nondegenerate R-charge, then Q is shrubby.

A.4.

In the remainder of the paper, we provide proofs of some technical results about shrubs
and preshrubs, specifically Propositions 3.13, 3.15, 3.17, 3.20 and 3.21. Throughout the

present section, we assume Q to be a shrubby quiver, with universal cover Q̃. All paths

and cycles in a quiver are understood to be oriented.

Definition A.5. Given two paths p and p′ in Q̃ with the same endpoints, we will write

r(p,p′) for the closed region inside R2 contained between p and p′. The area of this

region, denoted by a(p,p′) ∈ N, will refer to the number of faces contained inside r(p,p′).
In particular, if C is a cycle, we will write r(C) and a(C) for the closed region and area
(respectively) contained inside C.

Proof of Proposition 3.13. Assume for the purpose of contradiction that a preshrub S

contains a cycle, and let us fix such a cycle C of minimal area (as in Definition A.5). We
must have a(C)> 2, since otherwise C would be the boundary of a face, or the union of

boundaries of two faces which meet at a single point, both situations being forbidden for

preshrubs. Definition 1.5 for p= C and p′ = trivial implies that there exist two adjacent
faces (as in Figure 2) for which, for example, the red path is completely contained in C,

and the red and blue regions are contained inside r(C). By the defining property of a

preshrub, S also contains the blue path. Thus, the cycle

C ′ = C−{red path}+{blue path}

is contained in S, and moreover, a(C ′) = a(C)−2. This contradicts the minimality of the

area of C.

Proof of Proposition 3.15. Assume that e is an edge from vertex i to vertex i′, where
i,i′ ∈ S but e �⊂ S. By the very definition of the root r of a shrub, there are paths from r

to i and i′, respectively. Following the aforementioned paths until they first intersect, we
conclude that there exist simple paths

p : j → ·· · → i

p′ : j → ·· · → i′

with no vertices in common other than the source j. We have three scenarios.
(1) If j = i, then e and p′ are both paths from i to i′. We may assume that p′ is chosen

such that a(e,p′) is minimal. Definition 1.5 implies that p′ contains a broken wheel B

(since e consists of a single edge, it cannot contain a broken wheel). Since S is a shrub,
it therefore contains the mirror image B′ of B. Thus, if we modify p′ by replacing its

sub-path B with B′, then we contradict the minimality of a(e,p′). We conclude that this

scenario is impossible.
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Figure A2. The situation in item (3).

(2) If j = i′, then C = p∪ e is a cycle, and we assume that p is chosen so that a(C)
is minimal. If a(C) = 1, then we are done (since r(C) would be precisely the face that

realizes e as the interface of a broken wheel contained in S ), so let us assume for the

purpose of contradiction that a(C) > 1. Definition 1.5 implies that C contains a broken
wheel B. There are two subcases.

• If e �⊂ B, then S must also contain the mirror image B′ of B. If we modify p by
replacing its subpath B with B′, then we contradict the minimality of a(C).

• If e ⊂ B, then the interface e′ of the broken wheel B is an edge between two
vertices of the shrub S. If e′ ⊂ S, then we contradict the minimality of a(C) and
the fact that a(C) > 1. If e′ �⊂ S, then there is a subpath of p from the source to
the tail of e′, and we are thus in the self-contradictory situation of item (1).

(3) If j /∈ {i,i′}, then let us choose p,p′,e such that a(p∪ e,p′) is minimal. In this case,

Definition 1.5 implies that one of p∪ e or p′ contains a broken wheel B whose interface
is contained in r(p∪ e,p′). If B ⊆ p or B ⊆ p′, then we may modify the path p or p′ by
replacing its subpath B with its mirror image, and contradict the minimality of a(p∪e,p′).
The only other possibility is that e⊂B, in which case the interface of B must be an edge
e′ : i′ → v for some vertex v ∈ p, as in Figure A2.

If e′ ⊂ S, then concatenating e′ with the subpath of p that goes from v to i puts us in

the situation of item (2) above. Meanwhile, if e′ �⊂ S and v = j, the cycle formed by p′

and e′ also puts us in the situation of item (2); since e′ must therefore be the interface

of a broken wheel B contained in S, replacing p′ by the mirror image B′ of B would

contradict the minimality of a(p∪ e,p′). Finally, if e′ �⊂ S and v �= j, then we note that

a(p′∪ e′,p′′)< a(p∪ e,p′)

(where p′′ is the sub-path of p that goes from j to v) contradicts the minimality of
a(p∪ e,p′).

Proof of Proposition 3.17. We will treat the case s ∈ {1, . . . ,k − 1} and leave the

analogous case s = k as an exercise to the reader. Consider the paths ps and p′s of

Equations 3.14–3.15. Definition 1.5 states that one of these paths must contain a broken
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Figure A3. A bad case.

wheel B ; without loss of generality, let us assume that B ⊆ ps. If es were not part of B,

then we would be able to modify ps by replacing its sub-path B with its mirror image

B′, and thus contradict the minimality of a(ps,p
′
s). Therefore, we may assume that es is

part of B, and thus there exists v ∈ ps and an edge

i
e−→ v

such that the region bounded by e and ps is a face. If v = j, then the index s is good

(since the whole of ps is the sought-for broken wheel, and its mirror image must coincide

with p′s by minimality). Otherwise, v �= j and let us consider the paths

p̃s : j → ·· · → v

p̃′s : j → . . .
es+1−−−→ i

e−→ v

as in Figure A3.
Definition 1.5 implies that one of the paths p̃s and p̃′s must contain a broken wheel

B̃. If B̃ did not contain the edges es+1 or e, then we could contradict the minimality of

a(ps,p
′
s) by replacing B̃ with its mirror image B̃′. We are left only with the possibility of

B̃ containing the edges es+1 or e, and we have two cases

• If the interface e′ of B̃ is an edge from i to some v′ ∈ p′s, then we assume v′ �= j
(as the case v′ = j can be treated like the case v = j was treated above). We are
thus in the situation of Figure A3 and the index s is bad.

• If the interface e′ of B̃ is an edge from v to some vertex v′ ∈ p′s\{i}, then we are
in the situation of Figure A4. We have two subcases. If e′ ⊂ S, then we contradict
the minimality of a(ps,p

′
s). On the other hand, if e′ �⊂ S, then Proposition 3.15

forces e′ to be the interface of a broken wheel B̄ ⊂ S. The paths

v′
B̄−→ v → . . .

es−→ i

and v′ → . . .
es+1−−−→ i contradict the minimality of a(ps,p

′
s).
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Figure A4. An impossible case.

Proof of Proposition 3.20. If i is not an addable vertex, there must exist a bad index
s ∈ {1, . . . ,k}, that is, either the situation of s = 1 in the picture on the left of Figure 4

or the situation of s = 3 in the picture on the right of Figure 4. In both of these cases,

one can see a broken wheel in S+ i whose mirror image is not contained in S+ i, thus

precluding S+ i from being a shrub.
Conversely, suppose that i is an addable vertex, and let us show that S+ i is a shrub.

It is clear that i can be reached via a path from the root and that there are no vertices

/∈ S+ i inside the polygonal regions incident to i in Figure 3.
Assume for the purpose of contradiction that S+ i contains the entire boundary of a

face. Since S cannot contain the entire boundary of a face (as S is a shrub), then the

boundary in question must involve the vertex i. However, this would require an edge from
i to a vertex of S, which is not in S+ i by assumption.

Now, let us assume that S+ i contains a broken wheel B, and let us show that it also

contains its mirror image. Since S is already a shrub, we may assume that the broken

wheel B involves the vertex i. By the definition of an addable vertex, all possible edges
between i and S are as in Figure 3. Thus, the interface of the broken wheel B must be

one of the dotted edges in Figure 3, and it is clear that the mirror image of B is also

contained in S+ i.

Proof of Proposition 3.21. If i is addable to S, then all s ∈ {1, . . . ,k} are good.

Therefore, there exist only k− 1 outgoing edges from i to S, and they are arrayed as
in Figure 3. Among any family of faces passing through i and without other pairwise

intersections, no two faces can pass through the same outgoing edge, so the cardinality

of the family is at most k−1. It is also easy to see that this maximum can be achieved,
by taking for instance the collection of faces incident to e1, . . . ,ek−1 in clockwise order

around i.

If i is nonaddable to S, then there exists a bad index s. Assume first that s ∈ {1, . . . ,
k−1}, for example, we are in the situation of s= 1 in the picture on the left of Figure 4.

The two faces contained in the region rs, together with the faces incident to e1, . . . ,es−1 in
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clockwise order around i, and the faces incident to es+2, . . . ,ek in counterclockwise order
around i, yield altogether a family of k faces which only pairwise intersect at i.

If s = k is a bad index, then we are in the situation in the picture on the right of

Figure 4. Without loss of generality, let us assume that there is a face incident to ek in
clockwise order around i. Then this face together with the faces incident to e1, . . . ,ek−1 in

clockwise order around i, yield the required family of k faces which only pairwise intersect

at i.
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