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Knots which behave like the prime numbers

Curtis T. McMullen

Abstract

This paper establishes a version of the Chebotarev density theorem in which number
fields are replaced by 3-manifolds.

1. Introduction

LetK1, K2, . . . be a sequence of disjoint, smooth, oriented knots in a closed, connected 3-manifold
M . Let Ln =

⋃n
i=1 Ki and let G be a finite group. A surjective homomorphism

ρ : π1(M − Ln)→G

determines a covering space M̃ →M with Galois group G, possibly ramified over the first n
knots. The remaining knots yield a sequence of conjugacy classes [Ki]⊂G.

Following Mazur, we say that (Ki) obeys the Chebotarev law if for any ρ as above and any
conjugacy class C ⊂G, we have

lim
N→∞

|{n < i6N : [Ki] = C}|
N

=
|C|
|G|
·

This law is a topological version of the classical Chebotarev theorem (see e.g. [Neu99, § 13]), with
M̃ →M playing the role of a field extension and with knots playing the role of primes [Maz12].

Using a result of [PP90], we will show:

Theorem 1.1. Let X be a closed surface of constant negative curvature, and let K1, K2, . . .⊂
M = T1(X) be the closed orbits of the geodesic flow, ordered by length. Then (Ki) obeys the
Chebotarev law.

Theorem 1.2. The same result holds for the closed orbits (Ki) of any topologically mixing
pseudo-Anosov flow on a closed 3-manifold M .

Examples in fibered manifolds
Let M be a closed 3-manifold which fibers over the circle with pseudo-Anosov monodromy
f :X →X. Then the periodic cycles of f determine a sequence of disjoint knots Ki ⊂M . Suitably
ordered, these knots obey the Chebotarev law.

Indeed, f can be regarded as the first return map for a pseudo-Anosov flow on M . A
pseudo-Anosov flow is topologically mixing if there are two closed orbits whose lengths satisfy
L(Ki)/L(Kj) 6∈Q (see Corollary 2.2 below). This property can be achieved by making a generic
time change, which only affects the ordering of the knots.
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Examples in S3

Let M → S1 be the torus bundle with Anosov monodromy f corresponding to the matrix
(
2 1
1 1

)
.

Then the complement of the zero section in M is homeomorphic to the complement of the
figure-eight knot in S3 (see, e.g., [BZ85, p. 73]). Since the Chebotarev law persists under Dehn
surgery along any of the knots Ki, Theorem 1.2 implies the following statement.

Corollary 1.3. The knots Ki ⊂ S3 arising from the periodic cycles of monodromy around the
figure-eight knot, ordered by their lengths in a generic metric, obey the Chebotarev law.

If desired, the figure-eight knot itself can be included in the list of knots (Ki). The same
construction works for any fibered hyperbolic knot in S3.

We have included this example because S3, like Q, admits no unramified extensions. Thus
knots in S3 are analogous to rational primes, and the profinite group lim

←−
π̂1(S3 − Ln) is analogous

to the absolute Galois group Gal(Q/Q); see [Maz12].
All these examples are based on the idea that the long closed orbits should wind around each

other randomly, at the same time as they become equidistributed in M .

Compact groups
Theorem 1.2 can be generalized to the case where G is a compact Lie group. In this case we
require that ρ : π1(M − Ln)→G has a dense image, and we say that the Chebotarev law holds if

1
N

N∑
i=n+1

f([Ki])→
∫
G
f(g) dg

for any continuous class function f ∈ C(G).
Let G0 denote the connected component of the identity for G. In § 6 we will show:

Theorem 1.4. The closed orbits (Ki) of a topologically mixing pseudo-Anosov flow obey the
Chebotarev law provided G0 is semisimple.

For example, if G= SU(2), then the values of (1/2) tr ρ(Ki) are uniformly distributed with
respect to the measure (2/π)

√
1− x2 dx on [−1, 1]. The same measure arises in the statement of

the Sato–Tate conjecture for elliptic curves (see e.g. [Maz08]).
Theorem 1.4 can fail when G= S1, as we will see in § 6.

Notes and references
Our treatment emphasizes the connection between symbolic flows and directed graphs. To
connect symbolic dynamics to finite branched covers, the most significant points are Lemmas 3.2
and 5.1 below; these ensure that every element of G can be represented by a closed orbit in M .
For related work on knots, primes and dynamics see, for instance, [Che02, Fra81, Mor12, Sha93]
and the references therein. A special case of Theorem 1.1 (for covers of T1(X) induced by covers
of X) is stated in [Sun84, Proposition II-2-12].

2. Symbolic dynamics

In this section we formulate the Chebotarev theorem in the setting of symbolic dynamics
[PP90].
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Graphs, shifts and flows
Let Γ be a nonempty finite directed graph, with vertices V (Γ) and edges E(Γ). Assume that
each edge e= (v, w) is uniquely determined by its initial and terminal vertices, and that each
vertex has both incoming and outgoing edges. The bi-infinite paths in Γ determine a subshift of
finite type

Σ(Γ) = {x : Z→ V (Γ) | (xi, xi+1) ∈ E(Γ) for all i ∈ Z}.
Let σ : Σ(Γ)→ Σ(Γ) be the shift map, given by σ(x)i = xi+1.

We will always assume that Γ is irreducible. This means that the following equivalent
conditions hold.

(I.1) Any two vertices in Γ can be joined by a directed path.

(I.2) The graph Γ is connected, and every edge of Γ is part of a directed loop.

(I.3) The shift map σ|Σ(Γ) has a dense orbit.

The suspended flow
Define a metric on Σ(Γ) by d(x, x′) = supi 2−|i|δ(xi, x′i), where δ(v, v′) = 1 if v 6= v′ and 0
otherwise. Given a Hölder-continuous function h : Σ(Γ)→ (0,∞), the corresponding suspended
subshift is defined by

Σ(Γ, h) = Σ(Γ)× R/〈(σ(x), t) ∼ (x, t+ h(x))〉.

This space comes equipped with a natural flow, defined by s · [x, t] = [x, s+ t] for all s ∈ R.

Mixing and circle factors
A flow on a space X is topologically mixing if for any two nonempty open sets U and V we have
(t · U) ∩ V 6= ∅ for all t� 1. At the other extreme, a flow has a circle factor if there exists an
a > 0 and a continuous map p :X → S1 such that

p(t · x) = eiatp(x) (2.1)

for all t ∈ R.

Principal bundles
Now let α : Σ(Γ)→G be a Hölder-continuous map from the shift space to a compact Lie group G.
(The case of a finite group is allowed.) From this data we obtain a principal G-bundle over the
base Σ(Γ, h); it is given by

Σ(Γ, h, α) = Σ(Γ)× R×G/〈(σ(x), t, g) ∼ (x, t+ h(x), gα(x))〉.

This bundle carries a natural R-action s · [x, t, g] = [x, s+ t, g] lifting the flow on the base.

The Chebotarev law
Any closed orbit τ ⊂ Σ(Γ, h) can be lifted to a path in Σ(Γ, h, α) which connects [x, 0, id] to
[x, 0, g] for some g. The conjugacy class of [g] is independent of the choice of lift, and will be
denoted by [τ ]⊂G. It represents the holonomy of the G-bundle around τ .

Let τ1, τ2, . . . be the closed orbits of Σ(Γ, h), ordered by length. We say that f ∈ C(G) is a
class function if f(gxg−1) = f(x) for all g ∈G. The Chebotarev law holds if

lim
N→∞

1
N

N∑
i=1

f [τi] =
∫
G
f(x) dg(x)
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for all class functions f . (Here dg is the Haar measure of total mass 1.) We may now state:

Theorem 2.1 (Parry–Pollicott). Suppose that the flow on the G-bundle Σ(Γ, h, α) has a dense
orbit and no circle factor. Then the Chebotarev law holds, and the flow is topologically mixing.

For a proof, see [PP90, Theorem 8.5]. (Note: it is implicitly assumed in this reference that
σ̃f has a dense orbit.)

Corollary 2.2. If the ratio L(τi)/L(τj) is irrational for some i and j, then Σ(Γ, h) is
topologically mixing.

Proof. Apply the result above with G being the trivial group. If mixing fails, then there is a
circle factor as in (2.1), which implies that L(τi) ∈ (2π/a)Z for all i. 2

3. Flat bundles and dense orbits

In this section we discuss flat G-bundles over a symbolic flow, and give a condition for the
Chebotarev law to hold which only makes reference to dynamics on the base.

Collapsing to a graph
There is a natural continuous projection map

C : Σ(Γ, h)→ Γ (3.1)

that sends x× [0, h(x)] linearly to the edge of Γ joining x0 to x1. The suspended flow can be
thought of as a single-valued resolution of the flow along the directed edges of Γ, which can take
several different branches at each vertex.

Chebotarev for flat bundles
Let ρ : π1(Γ)→G be a homomorphism to a compact Lie group G. The map ρ determines a
flat principal G-bundle over Γ. Pulling it back by C, we obtain a bundle of the form Σ(Γ, h, ρ̃)
considered in the preceding section.

Each closed orbit τ ⊂ Σ(Γ, h) projects under C to give a loop in Γ, and hence a conjugacy
class in π1(Γ). Taking its image under ρ, we obtain the class [τ ]⊂G defined in § 2.

Let G0 denote the connected component of the identity of G. In this section we will establish
the following result.

Theorem 3.1. The Chebotarev law holds for the compact G-bundle Σ(Γ, h, ρ̃), provided that:

(i) the flow on the base Σ(Γ, h) is topologically mixing;

(ii) G0 is semisimple; and

(iii) the image of ρ is dense in G.

Lemma 3.2. If the image of ρ is dense in G, then Σ(Γ, h, ρ̃) has a dense orbit.

Proof. Fix a vertex v ∈ Γ, and let S ⊂ π1(Γ, v) be the semigroup arising from directed loops in Γ,
i.e. those which respect the directions of the edges. We claim that ρ(S) is dense in G.

As in § 2, we assume Γ is irreducible. Given g ∈ Im(ρ), let τ = (v0, . . . , vn) be a loop of
adjacent vertices in Γ with v0 = vn = v such that ρ(τ) = g. If (vi, vi+1) ∈ E(Γ) for all i, then τ
respects the directions of edges, and hence g ∈ ρ(S).

Now suppose that one of the edges is backwards, say e= (vi, vi+1) 6∈ E(Γ). Then −e=
(vi+1, vi) ∈ E(Γ). By irreducibility of Γ, there is a directed loop µ ∈ π1(Γ, vi+1) that begins
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with (−e). Now replace e with eµk in τ , and cancel e with (−e). The result is a new loop τk based
at v, with fewer backward edges. The holonomy for the new loop has the form ρ(τk) = g1h

kg2,
where g1g2 = g. With a suitable choice of k� 0, we can arrange for hk to be as close to the
identity as we wish, and hence ρ(τk)≈ g. Repeating this process for each backward edge of τ ,
we conclude that g ∈ ρ(S) and hence ρ(S) =G.

The rest of the proof is straightforward: start with a bi-infinite path τ in Γ that encodes a
dense flow line for Σ(Γ, h), and then insert loops, using the fact that ρ(S) =G, to ensure that
its lift to the G-bundle over Σ(Γ, h) is dense as well. 2

Proof of Theorem 3.1. Suppose that Σ(Γ, h, ρ̃) has a circle factor, given by a map p to S1

satisfying p(t · x) = eiatp(x) for some a > 0. Since the actions of G and R commute, the function
p(gx)/p(x) is constant along flow lines, and hence is globally constant by the lemma above.
Its unique value χ(g) = p(gx)/p(x) defines a continuous homomorphism χ :G→ S1 (cf. [PP90,
Proposition 8.4]).

Since G0 is semisimple and G is compact, the image χ(G) = χ(G/G0)⊂ S1 is a finite group.
Thus p(x)n is G-invariant for some n> 1, so it descends to give a circle factor for Σ(Γ, h),
contrary to our assumption that the flow on the base is topologically mixing.

Thus Σ(Γ, h, ρ̃) has a dense orbit and no circle factor, so it obeys the Chebotarev law by
Theorem 2.1. 2

4. Markov sections

Let M = T1(X) be the unit tangent bundle of a closed hyperbolic surface X of genus g > 2. The
time-t geodesic flow on M will be denoted by x 7→ t · x. We will refer to a periodic orbit γ ⊂M
as a closed geodesic and denote its length by L(γ).

In this section we review the theory of Markov sections and the symbolic encoding of the
geodesic flow. For details see, for example, [Bow73, Che02, PP90, Ser86].

Rectangles

The manifold M is covered by the unit tangent bundle T1(H) of the hyperbolic plane, and we
have a natural fibration

∆ : T1(H)→ S1 × S1 − (diagonal).

The fiber over (a, b) is the unique oriented geodesic which runs from a to b.
A rectangle R⊂ T1(H) is the image of a smooth section of ∆ over a product of closed intervals

A×B. The product structure R∼=A×B is determined intrinsically by the stable and unstable
manifolds of the geodesic flow. Flowing for positive time shrinks the A factor and expands the
B factor. We denote by ∂R the four edges of R and by int(R) =R− ∂R its interior (an open
disk).

By definition, a rectangle R⊂M = T1(X) is a simply connected set that lifts to a rectangle
R̃⊂ T1(H).

Consider a finite collection of disjoint rectangles Ri ∼=Ai ×Bi ⊂M . Assume that for all
x ∈

⋃
Ri there is a t > 0 such that t · x ∈

⋃
Ri. The least such t gives the return time r(x),

and the first return map is defined by

f(x) = r(x) · x.
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Rij

Ri

Rj

Figure 1. Geodesic flow on a Markov section.

This function is continuous at x so long as f(x) ∈
⋃

int(Ri). In particular, it is continuous on
the locus

Rij = {x ∈ int(Ri) : f(x) ∈ int(Rj)}.

Markov sections
The rectangles (Ri) provide a Markov section of the geodesic flow if for all i and j there are open
intervals Aij ⊂Aj and Bij ⊂Bi such that

Rij ∼=Ai ×Bij and f(Rij)∼=Aij ×Bj .

See Figure 1. As shown in the references cited above:

The geodesic flow for a compact surface of negative curvature admits a Markov section.

Symbolic dynamics
A Markov section (Ri)ni=1 determines a graph Γ with vertices V (Γ) = {vi}ni=1 and edges

E(Γ) = {eij = (vi, vj) :Rij 6= ∅}.

Since the geodesic flow has a dense orbit, this graph is irreducible.
The sequence of rectangles visited by the orbits of the first return map f :

⋃
Ri→

⋃
Ri

determines a unique Hölder-continuous, surjective, symbolic encoding map

p : Σ(Γ)→
⋃

Ri,

characterized by the property that p(. . . , x−1, x0, x1, . . .) ∈Ri if x0 = vi and p(σ(x)) = f(p(x))
if p(x) ∈

⋃
Rij . There is a unique Hölder-continuous height function on Σ(Γ) such that h(x) =

r(p(x)) whenever p(x) ∈
⋃
Rij ; taking the suspension, we obtain a continuous, surjective map

π : Σ(Γ, h)→M

sending the symbolic flow to the geodesic flow.

Periodic orbits
The symbolic encoding of an orbit γ ⊂M is unique unless γ passes through the edge of some
rectangle. But any two orbits passing through the same edge are asymptotic in forward time or
asymptotic in backward time. Thus, at most one periodic geodesic passes through each edge of
the Markov section. It follows easily that the map

τ 7→ γ = π(τ)
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gives a bijection between closed orbits, satisfying L(τ) = L(γ), once finitely many closed orbits
have been excluded from Σ(Γ, h) and M .

5. A spine for the geodesic flow

Finally we relate the homotopy class of a closed geodesic to its symbolic encoding and deduce
Theorems 1.1 and 1.2.

Let Eij =
⋃
x∈Rij

[0, r(x)] · x be the union of the geodesic segments running from Ri to Rj .
Then

U =
(⋃

int(Ri)
)
∪
(⋃

Eij

)
(5.1)

is an open, dense subset of M . It is easy to construct an embedding

ι : Γ→ U ⊂M

such that p(vi) ∈Ri and p(eij)⊂Ri ∪ Eij ∪Rj for all i and j. Since Ri and Eij are contractible,
the homotopy class of ι : Γ→ U is uniquely determined by these requirements.

Now consider any closed geodesic γ = π(τ)⊂ U (all but finitely many closed geodesics have
this form). From the definitions above, it follows readily that the maps τ → U given by

τ
π→ γ ⊂ U and τ

C→ Γ ι→ U (5.2)

lie in the same homotopy class. (The projection C : Σ(Γ, h)→ Γ is defined in § 3.)

Surjectivity on π1

To establish the Chebotarev law for the geodesic flow, it is crucial to show that every conjugacy
class in G arises from at least one closed geodesic. This will follow from:

Lemma 5.1. Let L⊂ ∂U be the union of finitely many closed geodesics. Then the map ι : Γ→
U ⊂ (M − L) induces a surjective homomorphism

ι∗ : π1(Γ)→ π1(M − L).

Proof. First, assume L= ∅. The map ι : Γ→ U is a homotopy equivalence, so it suffices to
show that π1(U, x) maps onto π1(M, x), where x ∈ U . Equivalently, we will show that a loop
α : S1→M based at x can be deformed so that its image lies in U .

To see this, first put α into general position with respect to the 2-complex ∂U =M − U .
Then α crosses ∂U transversely at finitely many points p. By the definition of U , the flowline
through p meets

⋃
∂Ri in forward or backward time. Thus we can assume p ∈ [−S, S] · J , where

J is one of the four edges of a rectangle Ri =Ai ×Bi.
For concreteness, assume that J = {a} ×Bi; the case of J =Ai × {b} is similar. Then J lies

on the unstable manifold of the geodesic flow. Thus, after perturbing α slightly, we can assume
that the positive geodesic ray through p= α(s) is dense in M . In particular, T · p ∈ U for some
T > S.

Now deform the loop α(t) for t near s so that it first approaches p, then shadows the geodesic
[0, T ] · p through U until it reaches α(s) = p · T , and finally returns along nearly the same path,
but now on the other side of [−S, S] · J . See Figure 2. This deformation reduces the number of
intersections between α and ∂U . Thus, after finitely many steps, we obtain a loop α : S1→ U ,
and so π1(U, x) maps onto π1(M, x).

To handle the case where L 6= ∅, we simply start with a loop α : S1→ (M − L) and observe
that the deformation of α described above is supported in a small neighborhood of [0, T ] · p.
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p

Figure 2. Skirting ∂U .

Since the geodesic through p not closed, the interval [0, T ] · p is disjoint from L, and thus the
deformation can be performed without α crossing L. 2

Proof of Theorem 1.1. Consider a surjective map ρ : π1(M − L)→G, where G is a finite group
and L=K1 ∪ · · · ∪Kn.

Let (Ri) be a Markov section whose rectangles meet L only in their vertices. (To construct
(Ri), start with any Markov section for the geodesic flow and subdivide its rectangles horizontally
and vertically when they meet L; then apply the geodesic flow for small time, to make these
smaller rectangles disjoint from one other.)

Since L is disjoint from
⋃

int(Ri), the natural embedding of the graph Γ associated to this
Markov section is given by a map

ι : Γ→ U ⊂ (M − L).

By the Lemma above, the composition

π1(Γ) ι∗→ π1(M − L)
ρ→G

is surjective. As is well known, the geodesic flow on M is topologically mixing, so the same is true
of the symbolic flow on Σ(Γ, h). The closed orbits (τi) of Σ(Γ, h) therefore obey the Chebotarev
law, by Theorem 3.1.

Now all but finitely many closed geodesic in M have the form Ki = π(τi)⊂ U with L(Ki) =
L(τi). Since the maps in (5.2) are homotopic, we have [Ki] = [τi]⊂G, and so the knots (Ki) obey
the Chebotarev law as well. 2

Which loops come from geodesics?
Although closed geodesics represent every conjugacy class in G, they do not represent every
conjugacy class in π1(M). For example, the fibers of the map M = T1(X)→X are not freely
homotopic to geodesics.

On the other hand, the proofs of Lemmas 3.2 and 5.1 combine to give an algorithm for
constructing a closed geodesic that represents any desired element of G.

6. Pseudo-Anosov flows

The general theory of pseudo-Anosov flows on 3-manifolds is discussed in [Mos92], [Cal07, § 6.6]
and [Fen08]. Examples of pseudo-Anosov flows include the geodesic flows we have just considered,
as well as the suspensions of pseudo-Anosov maps on surfaces. A pseudo-Anosov flow need not
have a dense orbit [FW80], and it may have a circle factor (e.g. in the case of a suspension).
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Proof of Theorem 1.4. The proof of Theorem 1.1 used only two properties of the geodesic flow:
(i) topological mixing; and (ii) the existence of a Markov section. Property (ii) is well known
to hold for pseudo-Anosov flows; see, for instance, [Bow73] or [PP90, App. III] for the case of
Anosov flows and [FLP79, Exp. 10] for the case of pseudo-Anosov maps. Thus the Chebotarev
law holds for any pseudo-Anosov flow that also satisfies (i). Theorem 3.1 shows we need only
assume that G is compact and G0 is semisimple. 2

Failure of equidistribution on the circle
The Chebotarev law generally fails when G= S1.

For a concrete example in our setting, let f :X →X be a pseudo-Anosov map on a closed
surface of genus g > 2 which acts trivially on H1(X, Z). Then the suspension of f gives a pseudo-
Anosov vector field v on a 3-manifold M with H1(M, Z)∼= Z2g+1. We may assume that the
corresponding fibration p :M → S1 = R/Z satisfies dp(v) = 1.

Choose two closed orbits of the flow on M such that [τ1] and [τ2] are linearly independent
in H1(M,Q). (The existence of such orbits follows from the Chebotarev law for H1(M, Z/2).)
Choose a closed 1-form α on M close to dp, such that α(v)> 0 but

φ(τ1)/φ(τ2) 6∈Q, (6.1)

where φ(C) =
∫
C α. Now rescale v so α(v) = 1. Then v generates a pseudo-Anosov flow on M

such that L(τ) = φ([τ ]) for all closed orbits τ ; in particular, v is topologically mixing by (6.1).
Define ρ : π1(M)→ S1 by ρ(γ) = φ(γ) mod 1. Then the values of ρ([τ ]) = L(τ) mod 1 coming

from orbits with L(τ) 6M are not uniformly distributed on S1. Instead, they tend to concentrate
near M mod 1, since there are exponentially more long orbits than short ones. For more details
on this phenomenon, see [PP90, pp. 134–136].

Thus the Chebotarev law is broken in this example.
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