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TOTALLY GEODESIC SURFACES IN HYPERBOLIC
3-MANIFOLDS

by ALAN W. REID
(Received 27th January 1989, revised 27th February 1990)

In this paper we investigate totally geodesic surfaces in hyperbolic 3-manifolds. In particular we show that if
M is a compact arithmetic hyperbolic 3-manifold containing an immersion of a totally geodesic surface then it
contains infinitely many commensurability classes of such surfaces. In addition we show for these M that the
Chern-Simons invariant is rational.

We also show, that unlike the figure-eight knot complement in S, many knot complements in $* do not
contain an immersion of a closed totally geodesic surface.

1980 Mathematics subject classification (1985 Revision): Primary 57M99 Secondary 20H10.

1. Introduction

By a hyperbolic 3-manifold (resp. surface) we shall mean a complete, orientable
3-dimensional (resp. 2-dimensional) Riemannian manifold of constant curvature—1, of
finite volume.

The conjectural picture of hyperbolic 3-manifolds as suggested by the work of
Thurston and Waldhausen is that every such 3-manifold contains an immersed,
incompressible surface (i.e. @, (surface) injects in 7, (3-manifold)). The geometrically
simplest situation that arises is when the immersion is totally geodesic. This has been of
interest lately (see for example [1,2,11,13,14,17]) since for example it is shown in [11]
that if a closed hyperbolic 3-manifold M contains an immersion of a totally geodesic
surface, then there is a finite cover My, of M which contains an embedded, non-
separating totally geodesic surface (so in particular the first betti number of M, is
positive).

Thus, it seems worthwhile to understand and classify those hyperbolic 3-manifolds
which contain an immersed totally geodesic surface. Equivalently, via the holonomy
representation of the fundamental groups, this means understanding the Fuchsian
subgroup structure (where by a Fuchsian group we mean a discrete subgroup of
PSL,(C) which fixes a circle or straight-line ¢ in C and preserves components of C\%)
of the relevant Kleinian group.

In [14] we classified those arithmetic Kleinian groups (see Section 2 for a definition)
which contain non-elementary Fuchsian groups. In [13] it was shown already that the
Bianchi groups PSL,(0,) (where O, is the ring of integers in Q(,/—d)) all contain
non-elementary Fuchsian subgroups. In fact it is shown in [13] that there exist both
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non-cocompact Fuchsian subgroups of finite covolume and cocompact Fuchsian
subgroups and that each group PSL,(0,) contains infinitely many commensurability
classes of cocompact (arithmetic) Fuchsian subgroup.

Our first main result is a generalization of this, namely:

Theorem 1. Let T' be a cocompact arithmetic Kleinian group. If T contains a
non-elementary Fuchsian subgroup then T contains infinitely many commensurability
classes (up to conjugacy in PSL,(C)) of cocompact (necessarily arithmetic) Fuchsian
subgroups.

As stated above, the groups PSL,(0,) all contain infinitely many commensurability
classes of cocompact Fuchsian subgroups. Thus the same holds for any subgroup of
finite index in PSL,(0,). In particular the group of the figure-eight knot has an excellent
representation (in the terminology of [23]) as a subgroup of index 12 in PSL,(0;) (cf.
[22]). In [18] this knot was shown to be the only arithmetic knot (see [18] for a
definition). Our next main result is (in comparison with above).

Theorem 3. There exist infinitely many non-commensurable hyperbolic knot comple-
ments in S* which contain no closed totally geodesic surfaces and exactly one commensura-
bility class of non-closed totally geodesic surface.

On a different theme, the Chern—Simons invariant (cf. [16] for a definition) is proving
useful in distinguishing hyperbolic 3-manifolds. However, it is still a little mysterious
with not much known about the values it can assume. Here we show in an elementary
manner that the existence of an immersed totally geodesic surface in an arithmetic
hyperbolic 3-manifold implies the Chern-Simons invariant is rational (mod ).

2. Arithmetic Kleinian groups and their Fuchsian subgroups

2.1. Arithmetic Kleinian groups are obtained as follows (cf. [3] or [30, Chap. 4]). Let
k be a number field with one complex place and let 4 be a quaternion algebra defined
over k such that 4 (X), k,, where v is a real place of k, is isomorphic to the Hamiltonian
quaternions over R. Let p be an isomorphism of 4 into M,(C), @ an order of 4 and @*
the elements of @ of norm 1. Then Pp(0') (where P:SL,(C)—PSL,(C)) is a Kleinian
group of finite covolume (cf. [30, Chap. 4]) and the class of arithmetic Kleinian groups
is that given by the union of the commensurability classes of all such as Pp(0*). In
addition we say that a Kleinian group I' is derived from a quaternion algebra if I is
contained in some Pp(0'). H3/T is arithmetic (resp. derived from a quaternion algebra)
when I is so.

Arithmetic Fuchsian groups (and Fuchsian groups derived from a quaternion algebra)
are similarly obtained: in this case the field k is totally real and the quaternion algebra
is ramified at all the archimedian places except one which may be taken to be the
identity.
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Notation. We now reserve the term “Fuchsian group” to mean non-elementary
Fuchsian group.

2.2. The following two theorems were proved in [14] (and [17]).

Theorem M-R 1. Every Fuchsian subgroup of an arithmetic Kleinian group is a
subgroup of an arithmetic Fuchsian group.

Theorem M-R 2. Let I' be an arithmetic Kleinian group with associated algebra A
defined over k. Then T contains Fuchsian subgroups if and only if the following two
conditions are satisfied:

1. [k:]]=2 where I=kn R.

2. A=B(X),k where B is a quaternion algebra over | of a type giving arithmetic
Fuchsian groups.

Remarks. 1. As stated in the introduction, if T" is a cocompact, torsion-free,
arithmetic Kleinian group satisfying theorem MR-2 the manifold H3/T" (where H3 is
hyperbolic 3-space) has a finite cover M, which contains an embedded non-separating
closed totally geodesic surface. Thus M, has positive first betti number. In [6]
arithmetic hyperbolic 3-manifolds H3/A are constructed with positive first betti number
such that A does not satisfy the conditions of Theorem M-R 2. In particular H3/A
contains an embedded incompressible surface which is not totally geodesic. Although
this was to be expected it has proved difficult in practice to construct examples.

In a similar vein, in [7] it is shown that for all d#1,2,3,7,11 the groups PSL,(0,)
contain, in addition to many Fuchsian subgroups, a subgroup isomorphic to a
cocompact Fuchsian group containing an accidental parabolic element (so are not
Fuchsian groups).

23. To prove Theorem 1 we shall reformulate Theorem M-R 2 in terms of the
ramification sets of the quaternion algebras 4 and B of Theorem M-R 2.

Firstly, we recall some elementary facts from the theory of prime ideals in a quadratic
number field extension K| L.

Let 4 be an L-prime; we say

(i) # decomposes in K|L if sRx=2P% for K-primes #, ?' with Ks~Ks =L,
(ii) 4 ramifies in K|L if 4Rg=2* for a K-prime 2 with Ko=L,
(iii) 4 inert in K|L if #Rx=2 for a K-prime & with [K,:L,]=2.
where L,, Ky and K, denote the completions of the fields at the place corresponding
to the primes at the 4, 2 and 2 respectively.

More precisely, we have natural inclusions i: L= K (resp. j,:L—L, and jz: K—~Kj)
which induce a map i such that the following diagram comments:

https://doi.org/10.1017/50013091500005010 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500005010

80 A. W. REID

L 4% K
]ﬁl lis
L, - K,

In case (i), i is the indicated isomorphism, however in case (ii) we have (in the above
notation):

Lemma 1. [K,:i(L,)]=2.

Proof. Let n, (resp. n5) be a local uniformizing parameter for L, (resp. Kjz). The
lemma follows form the fact that i(z,)=n5. O

Theorem 1 is a consequence of the next proposition for which we require some
additional notation.

Notation. Let 4 be a quaternion algebra over the number field K. A place v of K
(archimedean or non-archimedean) is said to ramify A if 4 ®x K, is a division algebra
of quaternions. In particular if v is archimedean and v ramifies 4 then v is necessarily
real since there is only one quaternion algebra over C up to isomorphism, namely
M,(C).

The set of places which ramify A is of finite even cardinality, and we denote the
subset of non-archimedean places ramifying A by Ram ;A4 (cf. [30, Chap. 3] for details).

Proposition 1. Let A be a division algebra of quaternions over the field k with one
complex place of the type described in Section 2.1. Let I=k N R and [k:I]=2. Let B be a
quaternion algebra over | ramified at all real places except the identity. Then A~B ®,k if
and only if Ram,;A=0 or RamA={P,,P,,...,P,P,} where N R,=P;nR,=4,; for
i=1,...,r (R, denotes the ring of integers of l) and either Ram;B=§ of Ram B2
{f1-.., #,} and Ram B\{f,..., 4,} consists of l-primes which are ramified or inert in
k|l

Proof. As [k:@Q] is even we have from the remark prior to Proposition 1, the
possibility that the ramification set of 4 consists of only real archimedean places i.e.
Ram,A=0. Otherwise Ram A4 is of even cardinality. To describe the relationship
between Ram,4 and Ram B we use the following lemma which follows from basic
properties of tensor product (a proof is given in [17]).

Lemma 2. Under the natural maps i,i, j, and js above the tensor products
(B k) Qi ks and (BX)1,) @, kp are isomorphic.

Thus suppose that A~B (X),k and #eRamA. To deduce the structure of Ram B we
apply Lemma 2.

Firstly, let us assume that £=2 N R, is inert in k|l. By Lemma 2 B is ramified at s.
Hence
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ARh ks (B k) Qik, by hypothesis

=(BQul,) Xk, by Lemma 2

=D, Q) ks

where D, is the unique division algebra of quaternions (up to isomorphism) over I, (cf.
{30, Chap. 2]).

Now [ks:1,]=2 and it is known (cf. [30, Chap. 2, Theorem 1.3]) that any quadratic
extension of [, splits Ds. But A is ramified at 2 and hence a contradiction. Thus if
PeRam A, R, is not inert in k|I. Similarly using Lemma 1 we can eliminate
k-primes 2 such that 2 N R, is ramified in k|! from Ram A.

Consequently if Ram A#@, it can only contain primes #,#  such that Z "\ R,=
P nR,. Tt also easily follows from Lemma 2 that if A is ramified at & then A4 is
ramified at #'. Thus we have proved one half of Proposition 1.

For the converse we must construct the relevant quaternion algebra A. This depends
on an easy case-by-case construction depending on r and [I: @] mod 2 (cf. [17] for more
details). O

Remark. From the classification theorem for quaternion algebras it is known that
for every finite set S of places of a number field k such that |S| is even, there exists a
quaternion algebra over k with S as its ramifying set. Restricting to fields k with 1
complex place and sets § which contain all real infinite places of k, we see from
Theorem M-R2 and Proposition 1 that in general an arithmetic hyperbolic 3-manifold
will not contain an immersion of a totally geodesic surface. This is indicative of what is
expected in the general situation; that is, incompressible surfaces in hyperbolic 3-
manifolds are not totally geodesic. On the other hand, until the results of [14], explicit
examples of hyperbolic 3-manifolds with no totally geodesic surfaces had proved difficult
to construct.

Proof of Theorem 1. By Theorem M-R 1, if I' contains a non-elementary Fuchsian
subgroup, it will certainly contain an arithmetic Fuchsian subgroup, say F, with
associated quaternion algebra B defined over I. By Theorem M-R 2 it follows that the
ramification sets of the quaternion algebras A (that associated to I') and B are related
by Proposition 1.

To produce infinitely many commensurability classes (up to conjugacy in PSL,(C)) of
arithmetic Fuchsian subgroup of T, it suffices (by Proposition 1 of [28]) to exhibit
infinitely many isomorphism classes of quaternion algebras B defined over I such that
ﬁ@,k;A. From the theory of quaternion algebras this will be determined by distinct
sets of finite primes of I. These we produce using the above B.

By Proposition 1, Ram,B=0 or Ram B=2{4,,..., 4,} with notation as in Proposition
1. Let £, ' be distinct primes of | which are inert in k|I (infinitely many such primes

https://doi.org/10.1017/50013091500005010 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500005010

82 A. W. REID

exist, as k|I is of degree 2; see for instance [8, Chap. 7, Corollary 9.2.7]) not lying in
Ram B.

Define the algebra B(#, £') over [ to be that which is ramified at all real places except
the identity and RamB(#, #')=Ram, Bu {4, £’} (this is guaranteed by the classification
theorem for quaternion algebras).

By Theorem M-R2 and Lemma 2 B(#, £’) gives arithmetic Fuchsian subgroups of T.
The theorem now follows from our remark that infinitely many £, £ exists. O

We have, when I is torsion-free:

Corollary 1. The arithmetic hyperbolic 3-manifold H*/T contains infinitely many
incommensurable immersed closed totally geodesic surfaces.

3. The Chern-Simons invariant

3.1. Let M be a hyperbolic 3-manifold, and let CS(M) denote the Chern-Simons
invariant of M (cf. [16] for a definition and more details). Now CS(M) takes values in
the circle R/Z (in fact in [16] it is shown how to compute CS(M) mod{); however the
values which it can assume are somewhat mysterious and their computations difficult.

However, for those arithmetic hyperbolic 3-manifolds which contain an immersion of
a totally geodesic surface we can prove:

Theorem 2. Let M=H?/T where I is an arithmetic Kleinian group which contains
Fuchsian subgroups. Then CS(M) is rational (mod }).

Proof. The proof of Theorem 2 will follow from Lemma 3 below (which was noticed
in [17]) and elementary properties of the Chern—Simons invariant. d

Lemma 3. Let M be as in the statement of Theorem 2. Then there exists a manifold
M commensurable with M which admits an orientation-reversing involution.

Proof. There is no loss in assuming that T'cp(®') where @ is an order of the
associated quaternion algebra of I' (which for the sake of notation we will assume is a
discrete subgroup of SL,(C)) and p is as in Section 2.1. It follows from Theorem M-R 2
(cf. [14, Theorem 8] for details) that we can assume the associated quaternion algebra of
I" has the form A =(a, b/k) where a, b are elements of the field I=k N R.

Let o denote the non-trivial galois monomorphism of k|1, so that ¢ is just complex
conjugation. Clearly o extends to A and from above we get o(A4)=(o(a), 6(b)/a(k)) =(a,b/
k)=A. Thus ¢ is an automorphism of A4, hence by the Skélem—Noether theorem there
exists 6 € A* such that o(a)=3dad " .

Now a(p(®)) is again an order of p(A) so that ¢(I")=6I'6"! is commensurable with I".
Let A= n8I'6~! and My=H?3/PA where (P: GL,(C)—PGL,(C)). It now follows that
M, admits an orientation-reversing involution. O
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The proof of Theorem 2 is then a consequence of Lemma 3 and the following two
facts about the Chern—Simons invariant noted in Section 2.2 of [16]:

(i) reversing the orientation of M changes the sign of CS(M).
(ii) taking the n-fold cover of a manifold multiplies CS(M) by a factor of n. a

Remark. It might be tempting to conjecture that CS(M) is rational for any
arithmetic, hyperbolic 3-manifold M. However, using computer calculations of Walter
Neumann, one can construct arithmetic hyperbolic 3-manifolds M for which CS(M) is
“seemingly” irrational. One such example is (5,1) surgery on the complement of the
figure eight-knot. This is known to be arithmetic by [5].

3.2. 1t is well-known from the results of Borel [3] that if we fix a field k with one
complex place and consider arithmetic Kleinian groups arising from quaternion algebras
over k then the covolumes of these groups are rationally related even though the groups
themselves may be incommensurable. From Theorem 2 we have:

Corollary 2. The set of Chern-Simons invariants of arithmetic hyperbolic 3-manifolds
which contain an immersion of a totally geodesic surface are all rationally related.

4. Totally geodesic surfaces in knot complements

4.1. As remarked in the introduction, the complement of the figure-eight knot in S3
contains many closed totally geodesic surfaces—which by [9] cannot be embedded (sce
[15] where the minimal genus of such a surface is computed). Thus, a natural question
is to ask whether this phenomena occurs more generally among knot complements;
particularly 2-bridge knot complements. Here we prove:

Theorem 3. There exist infinitely many non-commensurable hyperbolic knot comple-
ments in S* which contain no closed totally geodesic surfaces and exactly one commensura-
bility class of non-closed totally geodesic surface.

The proof of Theorem 3 will be a consequence of our next proposition and the work
of Riley [20] and [21].

4.2. In this section we aim to prove:

Proposition 2. Let I' be a non-cocompact Kleinian group of finite covolume such that:
(i) k=Q(try:yeTl) contains no proper real subfield other than Q and [k: Q] is odd.
(i) erT'={try:ye'} = R,—the ring of integers of k.

Then T contains no cocompact Fuchsian subgroups and at most one commensurability
class (up to conjugacy in PSL,(C)) of non-cocompact Fuchsian subgroup of finite covolume.
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Proof. Firstly I claim that if I' contains Fuchsian subgroups of finite covolume then
they are Fuchsian groups derived from a quaternion algebra (recall Section 2.1).

Thus, let FcI' be a Fuchsian subgroup of finite covolume. As the traces of the
elements of F are real we have by (ii) that tr FER, n R and R, n R=Z by (i). However,
the main result of [25] implies that integer traces characterizes a Fuchsian group
derived from a quaternion algebra defined over Q. This proves the claim asserted above.

Now let A(F)={),a:f;:a,€Q, ficF} and A(T)={},by;:b.ek,y;€T}. Then A(F) and
A() are quaternion algebras over @ and k respectively (cf. [25, Proposition 3] for
example). Moreover, clearly A(F) is a subalgebra of A(T).

Lemma 4. A(I)=M,(k).

Proof. Since I' contains parabolic elements, this implies that A(I') contains zero
divisors and hence as A(I') is a quaternion algebra over k the lemma follows. O

Now a dimension count and Lemma 4 shows that the quaternion algebra A(F) Xk
is isomorphic to M (k).

We can now complete the proof of Proposition 2. Suppose F is cocompact, in which
case A(F) is ramified at some prime peZ. Let £,,..., 4, be the k-prime divisors of p.
Now Lemma 2 can be suitably modified to yield in this case:

(A(F) @a k) R ks, 2(AF) Qo Q,) Ko, k4, (1)

for each k-prime divisor g;,i=1,...,g8.
But the left-hand side of (I) is M,(k,,) from Lemma 4 and the classification theorem
for quaternion algebras ([30, Chap. 3]). Thus

Mk, ) ~(A(F) Ra Q,) Ra,k,, for i=1,...,g. (I1)

As A(F) is ramified at p, A(F) K)o @, is (isomorphic to) the unique division algebra of
quaternions over @, (cf. [30, Chap. 2]). However this algebra is split by a field K if and
only if [K:Q,] is even (cf. [30, Chap. 2, Theorem 1.3]). Thus n,=[k,:Q,] is even for
each i=1,...,g. It is standard fact from local-global principles in number theory that
[k: @] =Y%_, n; (see for example [8, Corollary 5.1.7]). But [k: Q] is odd by assumption
and from above n; is even for each i=1,...,g. This contradiction implies no cocompact
Fuchsian subgroups.

Moreover, since up to conjugacy in PSL,(C) there is only one commensurability class
of non-cocompact arithmetic Fuchsian group, Proposition 2 now follows. O

Remark. A nice consequence of Lemma 4 is that the fundamental group of any
non-compact hyperbolic 3-manifold M has a faithful discrete representation I" such that
I'cPSL,(Q(trI). To see this, we can conjugate a faithful discrete representation of
n,(M) in PSL,(C) to contain the elements T,=(} }) and T,=(! 9) for some aeC, a#0.
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n crossings {

FIGURE 1

Notice that tr (T, T;)=2+a, so that ae Q(¢trI'). But then Proposition 3.1 of [12] implies
the coefficient field of this faithful discrete representation coincides with Q(tr I').

4.3. In this section we shall prove Theorem 3, which will require work of Riley on
2-bridge knots, relevant details of which are reviewed below (see [4, Chap. 12] or [20]
for details on 2-bridge knots).

Now a twist knot K (see Figure 1) is a 2-bridge knot with 2-bridge normal form
(o, a—2) for some a.e Z. The degree of the representative polynomial A,(y) of K (cf. [20])
is A=%(x—1). The following lemma is implicit in [21] (the notation is that of [23]):

Lemma 5. There exist infinitely many twist knots K such that an excellent represen-
tation of n,(S*\K) satisfies (i) of Proposition 2.

Proof. Choose a so that « and A are both prime (from [21, Lemma 3] « is
necessarily of the form 4m+ 3). It now suffices to show that under these hypothesis A (y)
is irreducible. However, this follows from [20]; in particular, the proof of Theorem 3
and Theorem 6 of [20] where it is shown that A,(y) is irreducible modulo 2. As
infinitely many such « exist the lemma follows. O

We can now prove Theorem 3, since from Theorem 2 of [20] the traces of an
excellent representation of any hyperbolic 2-bridge knot group satisfies (ii) of Proposi-
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tion 2. Thus we have constructed (from Lemma 5) infinitely many twist knot groups
satisfying (i) and (ii) of Proposition 2. The final assertion is that twist knot complements
given by Lemma 5 are all incommensurable, and this follows from Corollary 2 of [19]
where it is shown that the trace-field of an excellent representation of a hyperbolic knot
group is an invariant of the commensurability class. ad

Remarks. 1. Notice from Figure 1 we see (shaded region) an immersed twice
punctured disc which is a thrice punctured sphere. Now any thrice punctured sphere is
totally geodesic since the group of a thrice punctured sphere is the parabolic triangle
group of type (o, o0, 00) and all such are Fuchsian and conjugate in PSL,(C) (cf. [10,
Lemma 4] or [1]). It also arithmetic by [27] as predicted by the proof of Proposition 2.
Of course the figure-eight knot is a twist knot, thus it would be of interest to try to
understand geometrically why there is this difference in the structure of the totally
geodesic surfaces that occur in these knot complements.

2. From [23] and [24] together with unpublished work of Riley, the following 3-
bridge knots give further examples of knot complements with no closed totally geodesic
surfaces:

8lOa 815’ 922’ 932’ 935a 942, 948

3. Using the methods of [1,2] and [29, Chap. 6], it is rather easy to construct many
hyperbolic link complements which contain thrice punctured spheres. Moreover, by
being careful in these constructions one can construct numerous non-arithmetic link
complements containing thrice punctured sphere.

Examples of cocompact, non-arithmetic Kleinian groups which contain arithmetic
Fuchsian subgroups can also be constructed (cf. [17]).
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