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SmartScope is a framework for automated evaluation and imaging of cryo-electron microscopy (cryo-

EM) specimens. It can learn from expert annotations on past experiments and refine its underlying AI to 

improve the selection of biologically relevant targets. Through its intuitive web interface, SmartScope 

assists users in exploring specimens and optimizing the outcome of each experiment, ultimately 

lowering the barriers to the adoption of cryo-EM. 

 

Optimal specimens are critical in structure determination by cryo-EM. The ideal specimen is a single 

layer of macromolecular complexes embedded into a thin slab of vitrified buffer. Macromolecules are 

thus confined between hydrophobic interfaces with air and substrates, which can lead to denaturation 

and aggregation. In addition, current vitrification methods typically yield variations in ice thickness 

across the grid. During optimization, several parameters are varied iteratively to improve the stability 

and mono-dispersity of the target, and the uniformity of the ice layer. Changes include purification 

protocols, chemical additives, support material and freezing conditions [1].  Each combination is 

subjected to comprehensive sampling using a cryo-electron microscope. This lengthy evaluation 

provides critical information for subsequent iterations but constitutes a rate limiting step in structure 

determination by cryo-EM. 

 

Manual specimen screening involves selecting area, adjusting the optical conditions of the microscope, 

and recording images. This requires attention to repetitive tasks and careful bookkeeping. The 

subjectivity in the selection of areas can lead to suboptimal sampling. Consequently, the quality of the 

process depends on skilled microscopists. SmartScope addresses these shortcomings by automating and 

optimizing how imaging experiments are conducted, thus significantly reducing the workload, and 

making cryo-EM accessible to non-specialists (Fig. 1A). 

 

SmartScope uses the SerialEM [2] API to automate all microscope operations necessary to navigate the 

specimen enabling autonomous exploration of specimens (Fig. 1A). Results are displayed through a 

secure web interface that allows modification of automatically selected targets in real time, effectively 

enabling remote operation of the microscope. Micrographs and metadata are stored in a consistent data 

structure preserving spatial relationships between images to ensure adequate record keeping. The web 

interface doubles as a portal to the database to facilitate off-line evaluation of the results. 
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Once a specimen is loaded for imaging, a low-magnification map (atlas) of the grid is acquired. Areas 

suitable for imaging appear as “windows”, commonly squares [4], through the grid in which the support 

layer is intact and not blocked by thick ice or large contaminants. Windows are automatically detected 

and classified using a pretrained Region-based Convolutional Neural Network [5] that identifies the 

“good” windows with 80% precision, efficiently guiding the instrument to desirable regions of the grid. 

(Fig 2A). A user-specified number of these windows selected based on size to maximize sampling 

diversity is imaged at a higher magnification to identify regions of interest. In this study, we 

implemented a robust method for hole detection for single-particle cryo-EM specimens based on the 

You-Only-Look-Once [6] object detection architecture (Fig. 2B). A classification step excludes 

contaminants, allowing for correct identification of 89% of the holes. After detection, a subset of holes 

is selected based on their relative pixel intensity. The robustness of these feature recognition algorithms 

allows complete automation of the screening process. 

 

In screening mode, the median sampling time for a specimen is 21 min, yielding a median of 9.0 high-

magnification images sampled from 3.0 different windows (Fig. 1B). Daily, our microscope screens 16 

specimens and perform data collecting for approximately 16 hours. 

 

In data collection mode, the microscope continuously acquires areas and finds targets using operator 

assistance to tune the selection to specific needs, reducing setup time to 32 min using a K2 detector. An 

algorithm was designed to group targets for beam-image shift (BIS) acquisition within a given radius 

while minimizing the number of stage movements and maximizing coverage. It also supports BIS data 

collection on tilted specimens by correcting coordinates and defocus based on tilt constraints (Fig. 1C) 

[7]. As an example, we used SmartScope to determine a 3.4 Å map of the 110 kDa POLG2 [8] (Fig. 3). 

 

SmartScope can fully automate the cryo-EM screening workflow and perform non-stop data acquisition 

facilitating data collection setup, and making the most out of each imaging session. The ability to change 

collection parameters on-the-fly opens the possibility of integrating feedback from in-line data 

processing workflows to adaptively improve image quality during acquisition. Most cryo-EM facilities 

collaborate with external users via remote desktop access to the instruments [9]. SmartScope offers a 

convenient web-based alternative where multiple users can simultaneously access their session. 

Unsupervised multi-specimen screening and short exploratory data collection sessions can be scheduled 

to run overnight, maximizing microscope usage. The software platform was designed to easily 

incorporate additional selection criteria [10–14] and workflows as plugins. The client-server architecture 

of SmartScope combined with its AI-driven feature detection engine, offers the possibility of 

envisioning a “virtual microscopist” that could constantly improve its capabilities through periodic re-

training based on voluntary submission of curated datasets. 

 

The source code will be available at https://gitlab.cs.duke.edu/bartesaghilab/smartscope. 
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Figure 1. Overview of the SmartScope framework. A Workflow for autonomous grid navigation and 

imaging. SmartScope handles specimen exchange, atlas acquisition, window identification, 

classification, and selection. It then visits the selected areas and identifies and selects holes which are 

acquired at higher magnification and preprocessed. B Screening mode statistics. Screening rates without 

and with BIS were 0.7 and 1.0 holes per minute respectively (RANSAC regression). The red arrow 

indicates specimen loading and atlas acquisition overhead time. C Example of the BIS hole grouping 

(left) and tilted acquisition with focus and coordinate correction based on tilt constraints (right). 
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Figure 2. Deep-learning based feature recognition for autonomous navigation. Inference phases of 

the window (A) and hole classifiers (B) applied to carbon and gold grids. Image sets were annotated 

manually, subjected to data augmentation, and used for training. These models are then used for real-

time object detection and classification. 

 

 

 
Figure 3. Acquisition of POLG2 dataset using SmartScope and data processing to 3.4Å resolution. 
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