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In a recent paper1 Turnbull, discussing a rational method for the
reduction of a singular matrix pencil to canonical form, has shown
how the lowest row, or column, minimal index may be determined
directly without reducing the pencil to canonical form. It is the
purpose of this note to show how all such indices may be determined,
and at the same time to give conditions, somewhat simpler than the
usual ones, for the equivalence of two matrix pencils.

For simplicity we adopt, as far as possible, Turnbull's notation
and, for convenience of the reader, in § 1 give an abstract of the
first part of his paper.

1. Let

(1) A = rA+sB = (ra,ij +sby), i=l, 2,.., n; j=\, 2, .., n'

be a matrix pencil, whei'e the elements a^, b^ all belong to the field K,
while r and s are independent variables. We exclude the case in
which A is a scalar multiple of B. If P and Q are two non-singular
matrices, with elements in K, of orders n and n' respectively,
such that

(2) PAQ =AX = rC.+sD,

the pencils A and Ax are said to be equivalent in K or briefly " to be
equivalent."

Let p be the rank of A in r and s; i.e. every determinant of
order p + 1 of A vanishes identically in r and s while at least one
determinant of order p does not. If fx = n — p and p.' = n' — p, then
^i^O and \x! S: 0. If one of the integers /x or [x!, say /n > 0, the
pencil (1) is singular. By an application of Smith's Theorem2,

1 H . W, Turnbull, "On the reduction of singular matrix pencils," Proc. Edin.
M<(th. Soc, 4(1935), 67.

2 Turnbull & Aitken, Canonical Matrices, p. 23.
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Turnbull shows that the rows of A satisfy exactly /A independent;
relations of the type

(3) S tf>t row; = 0,
t = i

where <f>t is a polynomial in r and s with coefficients in K.
The relation (3) may be written in the form of a vector equation,

identically in r and s. The /n vectors 6 are independent in the sense
that they satisfy no homogeneous linear equation with coefficients,
which are polynomials in r and s. We may further suppose that the
components <̂  of 0 are homogeneous polynomials in r and s of the
same degree and that they have no common factor. We thus have /x
vectors 0is i = 1, 2 , p, which annihilate A, that is satisfy the
equation

(5) #iA = 0, i= 1, 2, , fjL.

We arrange the vectors 9t in ascending degree so that, if ^ is of
degree mit

(6) 0 ̂  ?% ^ m2 ^ )••••> â "V-

This set of integers (6) is the set of Kronecker minimal indices of row
dependence characterising the singular pencil A. A like set {ra'J, /x'
in number, refers to column dependence and is obtained by con-
sidering the column vectors </r, which satisfy the equation Aip = Q.
These sets {mj and {m'J are invariant under transformations of type
(2) and, together with the invariant factors, completely characterise
the pencil A. Let

A B 0 (T
Bi, J f . - | - 1 » | . * . - | 0 A E 0

0 0 A B

N-111
A 0 0-
B A 0
0 B A
0 0 B

so that Mt is a matrix of in rows and (i + l)n' columns and Nt a
matrix of (i + 1) n rows and in' columns. Let pt and p\ denote the
ranks of Mt and Nt respectively. Then the integers

(8) Hi = in- Pi, fi'i = in' - p',-

are all greater than or equal to zero.
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2. Let F be a vector with elements in K which annihilates Mk, i.e.
which satisfies the equation

VMk = 0.

The vector F is of dimension nk and may be written in the form

V = («!, v2, vk)

where each component vector Vi is of dimension n. It now follows
that

(9) vxA=Q, vkB=0, viB + vi+1A=0, i= 1, 2, .., k - 1.

As a consequence of (9) the vector

(10) lf,=:v1r
k-1 + v2r

k~2s + -f- vks
k~'i

satisfies ip {rA + sB) — 0 identically in r and s. We say that >p is of
order k — 1 and corresponds to the vector V. If <p can be written as
a linear combination of vectors of order < k — 1, we say that ifi is
reducible. If </< cannot be so expressed, we say that </r is irreducible.
We now prove the lemma:

LEMMA I. The vector tfi in (10) corresponding to V is reducible, if and
only if the first component vector vx of V is the first component of a, vector
U which annihilates Mk_1.

Proof. Let the first component vector of U be vv Then, if 0 denotes
the zero vector of dimension n, the vector V — (U, 0) = (0, W)
annihilates Mk, so that W annihilates Mk_1. If ip± and t/i2 are the
vectors corresponding to U and W respectively,

(11) ifj = /•(/<! + sip2, and <ft is reducible.

Conversely, if tp is reducible, </> has the form (11), where i/̂  and
ip2 are of order k — 2. If U is the vector corresponding to fa, which
annihilates Mk_1, the first component of V is the same as the first
component of U and our lemma is proved.

As in § 1, by an application of Smith's theorem, there exist
exactly fxk linearly independent linear relations connecting the rows
of Mk. That is, there exist exactly /j,k linearly independent vectors
Fa with elements in K, which annihilate Mk, i.e. which satisfy

(12) VaMk = 0, a = 1, 2 fjik.

Moreover, every vector, which annihilates Mk, is a linear combination
of the vectors Fa of (12), so that the vectors Va form a basis for the
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set of all vectors annihilating Mk. Each vector Va in (12) is of
dimension kn and may be written as

V. = fu-i, v.o. . . . . . v.u\,

where each component vector vai is of dimension n. '

Let the vectors Va be so arranged that their first component
vectors vu, v2i, v31, . . . . , vXkl, are linearly independent, but that

vn = 2 cja val, j = Xk + 1, , nk.

Now the vectors

Ua=Va, a=l,2,....,Xk,

Ua = Va - 2 caP Fp, 0 = ^ + 1 , . . . . , ^ ,
0 = 1

are linearly independent and hence also form a basis for the set of
vectors which annihilate Mk.

We may therefore suppose that the vectors Va of (12) are such
that, as regards their first component vectors,

(13) vn, i>2i , vX]cl are independent, vai = 0, a > Â .

If 0 denotes the zero vector of dimension n, each of the Xk

vectors Wp and the fj.k vectors Xa, defined by

fTTfl = (Ffl, 0), j8 = l, 2, A*,
t z . = (0,7B). a = 1,2, ^

is of dimension (k + 1) n and annihilates Mk+1.

LEMMA 2. The \j,k + Xk vectors (14) are linearly independent with
respect to K.

Proof. Let
H n

/3 = 1 a = l

h
then, since the first component vector of Xa is zero, 2 cpv^ = 0, and

by (13) cp= 0, /S = 1, 2 Xk. Hence 2 daXa= 0 and consequently

2 da Va =[0. As the \ik vectors Va are linearly independent this last
o = l
equation implies da = 0, a = 1,2, .. .., pk. Consequently the lemma
is proved.
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But there exist /xj+i linearly independent vectors which
annihilate Mk+1. Accordingly a non-negative integer oh must exist
such that

= [ik -\- Ak -\- ak, ak ^ 0.

Hence there also exist ak vectors

which annihilate Mk+X and such that the /xi+1 vectors W8, Xa, Yy are

linearly independent. (If ak = 0, no vector Yy appears).

L E M M A 3 . The first component vectors vpl, yyl of Wp and Yy respectively

are linearly independent with respect to K, where j 9 = l , 2, Xk,

y = 1, 2, ak.

Proof. Let
h "k
2 Cg VpX -f 2 dy yyi = 0.

8 = 1 y = l
Then

(17) icpWp+^dyTy={0,0),
p=i y=i

where, since the vector on the left of (17) annihilates Mk+1, the
vector G annihilates Mk. By there mark that follows (12), such a

vector must take the form G = 2 fa Va, so that (0, G) = 2 fa Xa.
a = l a = l

Therefore, by (17),

I Cg Wp + i dy Yy - S /̂a ^a = 0.

Since the vectors Wp, Xa, Yy are linearly independent, cs = dy= fa = 0,

j8 = 1, 2 ,\k; y = 1, 2, ,ak; a = 1, 2, , (j,k. Accordingly

the lemma is proved.

The formula corresponding to (15) when k is replaced by k + 1 is

where by definition A4+1 is the maximum number of vectors among
those which annihilate Mk+i, whose first component vectors are
linearly independent. But a vector U, which annihilates Mk+1, is a
linear combination of the vectors T7fl, Xa, Yy, and accordingly its
first component vector iix is a linear combination of the vectors
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vpl and yyl, where jS = 1, 2 , Xk, y = 1, 2 ,ak. Since, by
lemma 3, these AA. -f at vectors are linearly independent, it follows
that

K + l — \ + ak'>

and accordingly (18) becomes

so from (15) we have

( 2 0 ) °k+i = H-k+z + H-k ~ 2Mfc+i> 4 = 1 , 2 , . . . . , .

I t is easily seen that formula (20) also holds for k = — 1, 0, if /J._1 and
H0 are defined to be zero.

The vectors (/rv, y = 1, 2, . . . . , ak, which correspond to the
vectors Yy in (16), annihilate rA + sB and are of order k. As a
consequence of lemma 3, no linear combination of the vectors t/y] is
equal to a linear combination of the vectors vpl. Hence no linear
combination of the first components of the vectors Yy is equal to the
first component of a vector which annihilates Mk. Consequently, by
lemma 1, all linear combinations, with constant coefficients, of the
ak vectors tpy are irreducible. Moreover, if j> is any vector of order k
which annihilates A, and V is the corresponding vector which
annihilates Mk+1, then

U = i bp W,, + S caXa + i dy Yy.
0=1 a = l y = l

It follows by an argument similar to the above that the vector
"k

<f> — 2 dy tfiy is reducible. Hence the ak vectors ipy form a maximal set

of vectors of order k, with the property that no linear combination
of them, with constant coefficients, is reducible. Consequently, the
ak vectors </>y form a maximal set of independent vectors 6 satisfying
(5) of index k. Accordingly, we have proved

THEOREM I. The number of minimal row indices (6) which have the
value k is exactly fi.k+1 + /iii_1 — 2 ^ .

COR. 1. / / fik+i is the first of the sequence ii\, \».i, fj.3, • • • • which is
different from 0, then k is the value of the smallest minimal index of
row dependence and jxk+1 is the number of such indices which are equal.

This is Turnbull's Theorem 2.

https://doi.org/10.1017/S0013091500027486 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500027486


230 J. WILLIAMSON

COB. 2. The number of minimal column indices (6) which have the
value k is exactly

P-'k+i + P-'k-i — 2/LA'A..

By (20) and (8) we have

ak+1 = (k + 2) n — Pk+2 + kn — Pk — 2 (k + 1) n + 2Pk+1

= %Pk + l — Pk+2 — Pk

and similarly the analogous formula

a'k + \ = 2 P ' * + 1 — p'k + 2 — P'jc-

Conversely, the pk can now be expressed in terms of the ak.
Accordingly we have proved

COR. 3. The minimal indices {mj and {m'J are completely determined
by the ranks of the matrices Mk and N k. Conversely the ranks pk, p'k of
the matrices Mk and Nk are completely determined by the minimal
indices {m^j and {m'J.

In order to determine the minimal indices it is sufficient to form
the sequence of the positive or zero integers

(21) P-i, M2 — M l r fj,3 — iu.2, n-i — ^3,

Since fik+1 — nk — (/** — p-k+1) = ak ^ 0,

each term in the sequence is greater than or equal to its predecessor.
The difference between the (k + l)th term and the kth term of the
sequence (21) is the number of minimal row indices which have the
value k. Since

<*0 + <*1 + °2. + • • • • + °k = H'k + l — Hk,

the (k + l)th term of (21) gives the total number of independent
vectors of order 5S k, which annihilate A. But the maximum number
of such vectors is p, where p is the rank of A in r and s. Accordingly

P-k ^ P-

Hence in forming the sequence (21), if the (k + l)th term has the
value p all succeeding terms will have the value p and we need
calculate no further.

By a proof exactly similar to that of Turnbull's Theorem 3, if
Y = (yu y2 , yk+\) is one of the vectors (16), the component
vectors ylt yz, Vk+i a re linearly independent. Since each yt is
of dimension n, it follows that k < n and consequently that

(22) ak = 0, k>n—l.
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Hence in forming the sequence (21) we need never proceed beyond
the nth term; and in corollary 3, k takes only the values I, 2, .... ,n
and k' the values 1,2, .. .., n'.

Let A, =rC + sD be a second pencil of the same order as A

and let
lk, k= 1, 2, . . . . , « , ; Jk; fc' = l, 2, n',

be the matrices for this pencil corresponding to Mk and Ne respec-
tively. Since a necessary and sufficient condition that the two
pencils A and Ax be equivalent in the sense of (2), is that A and Ax
have the same invariant factors and the same minimal indices1, as a
consequence of corollary 3 we have

THEOREM 2. A necessary and sufficient condition that two pencils
rA + sB and rC + sD, with elements in a field K be equivalent in K is:

(a) that the invariant factors of rA + sB be the same as the

invariant factors of rC + sD,

(b) that the rank of Mk be the same as the rank of Ik, k= 1, 2 , . . . , n,

(c) that therank of Nk' be thesame as therankof Je, k'—l, 2 , . . . , n'.

1 Turnbull and Aitken, Op. cit., p. 129.
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