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Simple eigenvalues of cubic
vertex-transitive graphs
Krystal Guo and Bojan Mohar

Abstract. If v ∈ RV(X) is an eigenvector for eigenvalue λ of a graph X and α is an automorphism
of X, then α(v) is also an eigenvector for λ. Thus, it is rather exceptional for an eigenvalue of
a vertex-transitive graph to have multiplicity one. We study cubic vertex-transitive graphs with a
nontrivial simple eigenvalue, and discover remarkable connections to arc-transitivity, regular maps,
and number theory.

1 Introduction

There is a surprising inverse correlation between the number of distinct eigenvalues
of a graph and the size of its automorphism group. If the automorphism group of a
graph G is arc-transitive, the graph has at most two simple eigenvalues. Conversely, if
a connected graph on n vertices has at most two distinct eigenvalues, then the graph
is complete and the automorphism group is the full symmetric group of n elements.
We would like to study classes of graphs with many automorphisms and several simple
eigenvalues, with the intuition that they should not be many in number and with the
hope that we may describe them.

We consider a vertex-transitive graph X on n vertices and let A denote its adjacency
matrix. We speak of eigenvalues and eigenvectors of A and of X interchangeably. There
has been extensive study about the interplay of eigenvalues of a graph and various
graph properties, such as the diameter [5, 18] or the chromatic number [15, 16] (see
also [19]). The relationship between symmetries of a graph and its eigenvalues has also
been investigated extensively, for example, in [4, 27, 28].

In this paper, we focus on simple eigenvalues of cubic vertex-transitive graphs.
If λ is a simple eigenvalue of such a graph, it must be equal to ±3 or to ±1. Cubic
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Figure 1: Eigenvectors for the prism graph of order 12. Left to right: the prism graph on 12
vertices, an eigenvector with eigenvalue 1, an eigenvector with eigenvalue −1, and the bipartite
classes of the prism with classes determined by whether or not the eigenvectors agree or disagree
at a vertex.

vertex-transitive graphs have been studied extensively [24, 25], and a census of all such
graphs with at most 1,280 vertices is maintained by Potočnik, Spiga, and Verret in [26].

Using tools from diverse areas including topological graph theory, and algebraic
number theory, we study the combinatorial structure of cubic, vertex-transitive graphs
with λ = 1 as a simple eigenvalue and give several families of graphs with such
spectral property, and completely classify some of special subfamilies. Somewhat more
generally, we classify all generalized Petersen graphs (which have one or two orbits
under the automorphism group action) with simple eigenvalue 1. We also consider the
possibility that −1 and +1 are both simple eigenvalues, and we prove that this happens
only when the graph is bipartite.

For example, there are 85 connected cubic graphs, up to isomorphism, on 12
vertices; of these, 21 have 1 as a simple eigenvalue. There is exactly one graph (up to
isomorphism) on 12 vertices, which is vertex-transitive, cubic, and has 1 as a simple
eigenvalue, which is the prism graph on 12 vertices, as shown in Figure 1. This graph
has both 1 and −1 as simple eigenvalues. The eigenvectors, depicted as assignments ±1
to the vertices, are shown in Figure 1; we will see in Section 2, from a classical result
of Petersdorf and Sachs [23], that any vertex-transitive graph has an eigenvector with
entries in±1 for each eigenvalue. Here, coloring a vertex with color 0 if the eigenvectors
for 1 and−1 agree and with color 1 otherwise results in a proper 2-coloring of the graph;
one of the color classes is shown by a dotted circle in the rightmost picture in Figure 1.
We show that this holds in general, in Section 3.

The organization of the paper is as follows. In Section 2, we give preliminaries
regarding eigenvectors of simple eigenvalues. In Section 3, we use these to show the
previously mentioned result that having both 1 and −1 as simple eigenvalues implies
that a cubic graph is bipartite. We continue to extract more information about the
structure of the graph, as constrained by the eigenvector, in Section 4. In Section 5, we
find a connection to regular maps; we show that the vertex deletion of a regular map
gives a cubic vertex-transitive graph with 1 as a (not necessarily simple) eigenvalue.
Finally, in Section 6, we give several infinite families of examples of cubic vertex-
transitive graphs with 1 as a simple eigenvalue; in each case, we find an infinite family
of cubic vertex-transitive graph with 1 as an eigenvalue and then we classify when 1
occurs as a simple eigenvalue. In particular, we classify which generalized Petersen
graphs have 1 as a simple eigenvalue, using classical results in number theory about
vanishing roots of unity and sums of cosines.
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2 Partitions and eigenvectors

Consider a vertex-transitive graph X with vertex-set V, and let A denote its adjacency
matrix. We index rows and columns of the adjacency matrix A = A(X) of X by vertices
of X. We will use functional notation where A(x , y) denotes the (x , y)-entry of A. For
a vector v indexed by the vertices of X and a vertex x of X, we write v(x) for the entry
of v corresponding to x.

An eigenvalue of a graph X is simple if the corresponding eigenspace is one-
dimensional. Let λ be an eigenvalue of X with eigenvector v. The elements of the auto-
morphism group of X, denoted Aut(X), can be represented by V × V permutation
matrices P such that PT AP = A. Note that PT = P−1.

We may observe that if Av = λv and v ≠ 0, then

A(Pv) = λPv,

and thus Pv is also an eigenvector of A with eigenvalue λ. Therefore, any automor-
phism P of X fixes the eigenspaces of A.

In particular, if λ is a simple eigenvalue of X, then the eigenspace of λ has dimension
1 and so

Pv = γv

for some scalar γ ∈ R. Since P is a permutation matrix, we have γ ∈ {1,−1}. If P is
an automorphism of X mapping vertex x to y, then v(x) = ±v(y). Since X is vertex-
transitive, for each pair of vertices x , y, there exists an automorphism P mapping x to y.
Therefore, v has entries±β for some β ∈ R. We may scale the eigenvector to obtain that
v is a ±1 vector.

We have the following standard theorem, which can be found in [2] or [10].

Theorem 2.1 (Petersdorf and Sachs [23]) Let X be a vertex-transitive graph of degree k.
If λ is a simple eigenvalue of X, then

λ = k − 2α

for some integer α ∈ {0, . . . , k}.
Proof Let λ be a simple eigenvalue of X, and let v be its ±1 eigenvector. Let x be a
vertex of X. Without loss of generality, we may assume v(x) = 1. We have that

∑
y∼x

v(y) = λv(x) = λ.(2.1)

Let α (0 ≤ α ≤ k) be the number of neighbors y of x such that v(y) = −1. Then (2.1)
implies that λ = k − 2α. ∎

This proof shows that X has a ±1 eigenvector whose signs determine a partition

V(X) = V+ ∪ V−

such that the induced subgraphs X[V+] and X[V−] are (k − α)-regular and the
bipartite subgraph between V+ and V− is α-regular. Conversely, every such partition
determines a ±1 eigenvector of X for eigenvalue λ = k − 2α. We have the following
observation.
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Lemma 2.2 Let X be a connected k-regular graph with an eigenvector v for an eigen-
value λ, whose coordinates are all ±1. Then λ is an integer and λ ≡ k(mod 2). The sets
V+ = {x ∈ V(X) ∣ v(x) = 1} and V− = V(X)/V+ induce ( k+λ

2 )-regular subgraphs,
while the edges joining V+ and V− form a ( k−λ

2 )-regular bipartite subgraph of X.
Conversely, every such partition determines a ±1 eigenvector for λ.

Proof If V+ = V(X) or V− = V(X), then λ = k and there is nothing to prove.
Otherwise, equation (2.1) gives the rest of the claims. ∎

3 Cubic vertex-transitive graphs having 1 and −1 as simple
eigenvalues

A cubic graph X has largest eigenvalue equal to 3, which is simple if and only if X is
connected. It is well known that if −3 is also an eigenvalue of X and X is connected,
then −3 is a simple eigenvalue and X is bipartite. By Theorem 2.1, the only possible
simple eigenvalues of a cubic vertex-transitive graph besides ±3 are ±1.

A partition {V1 , . . . , Vm} of the vertices of a graph X is said to be equitable if the
subgraph of X induced by each Vi is regular and the bipartite subgraph of X induced
by the edges from Vi to Vj is semiregular, for each pair i , j such that i ≠ j. If that is
the case, then we define the m ×m quotient matrix B = [b i j]mi , j=1 whose entries b i j are
number of neighbors of any vertex in Vi in Vj .

Theorem 3.1 If a cubic vertex-transitive graph X has both 1 and −1 as simple eigenval-
ues, then X is bipartite.

Proof Let v and u be the ±1 eigenvectors for eigenvalues 1 and −1, respectively. Let

V+ = {x ∈ V(X) ∣ v(x) = 1},
V− = {x ∈ V(X) ∣ v(x) = −1},
U+ = {x ∈ V(X) ∣ u(x) = 1}, and
U− = {x ∈ V(X) ∣ u(x) = −1}.

For any automorphism P in Aut(X), we have that P must either fix both V+ and V−
or interchange them as sets. Similarly, P either fixes both U+ and U− or interchanges
them. By using (2.1), we see that V+ and V− each induce a 2-regular subgraph of X
and U+ and U− each induce a 1-regular subgraph of X.

Let W++ = V+ ∩U+, W+− = V+ ∩U−, W−+ = V− ∩U+, and W−− = V− ∩U−.
Consider the subgraph Y induced by the vertices in W++. Since W++ ⊆ U+, each
vertex of W++ has degree 0 or 1 in Y. Since X is vertex-transitive, the automorphism
group of X must also act transitively on Y. Then Y is either 1-regular (an induced
matching) or an independent set of vertices. The same conclusion applies to W+−,
W−+, and W−−.

If Y is 1-regular, then we easily conclude that the quotient matrix of the partition
of V(X) induced by W++ , W+−, W−+ , W−− must be
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B =
⎛
⎜⎜⎜
⎝

1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1

⎞
⎟⎟⎟
⎠

,

and this partition is equitable. By the interlacing theorem (see, e.g., [3, Theorem 2.5.1]),
the eigenvalues of B are a sub-multiset of the eigenvalues of A. The matrix B has
eigenvalue 1 with multiplicity 2 and so A(X) also has eigenvalue 1 with multiplicity
at least 2. This contradicts the assumption that 1 is a simple eigenvalue of X.

Therefore, it must be that W++ is an independent set. In this case, by vertex
transitivity, the same holds for W+−, W−+, and W−−. This implies that each vertex in
W++ has two neighbors in W+−, one neighbor in W−+, and no neighbors in W++ ∪
W−−. In particular, the partition of V(X) into sets W++ ∪W−− and W+− ∪W−+ is a
bipartition of the graph X. ∎

4 Combinatorial structure

We now consider a cubic vertex-transitive graph X that has λ = 1 as a simple eigenvalue
with eigenvector v whose entries are in {1,−1}. We define vertex sets V+ and V− as
in the previous section. In this section, we will extract more information about the
combinatorial structure of V+ and V− in the graph.

For W ⊆ V(X), we use X[W] to denote the subgraph of X induced by W. Let M
denote the set of edges between V+ and V−; that is,

M = {e ∈ E(X) ∣ e = x y for x ∈ V+ and y ∈ V−}.

Lemma 4.1 For (V+, V−) and M as defined above, the following statements are true:
(i) X[V+] is the disjoint union of cycles of the same length;
(ii) X[V+] is isomorphic to X[V−], and V+ and V− are blocks of imprimitivity of the

action of Aut(X);
(iii){V+, V−} is the unique partition of V(X), such that both parts induce 2-regular

graphs;
(iv) M is a perfect matching of X; and
(v) Aut(X) acts arc-transitively on M and fixes M setwise.

Proof For every vertex x ∈ V+, we have that ∑y∼x v(y) = v(x) = 1. Since v(y) for
all y neighbors of x are either 1 or −1, it follows that x is adjacent to two vertices in V+
and one vertex in V−. This implies that M is a perfect matching of X and X[V+] is a
2-regular graph.

Any partition of V(X) into sets (V1 , V2) such that the induced graphs X[V1] and
X[V2] are 2-regular gives rise to an eigenvector for X with eigenvalue 1, by taking the
vector u defined as follows:

u(v) =
⎧⎪⎪⎨⎪⎪⎩

1, if v ∈ V1 ,
−1, if v ∈ V2 .

Since 1 is a simple eigenvalue of X, it follows that {V−, V+} is the only such partition.
Then every automorphism of X must fix V+ and V− or must swap V+ and V− setwise.
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This shows (v). Observe that there is an automorphism of X taking a vertex of V+ to a
vertex in V−. Such an automorphism must take every vertex in V+ to a vertex in V−
and every vertex in V− to a vertex in V+ and so is an isomorphism from X[V+] to
X[V−]. This shows that (ii) holds. Since Aut(X) acts transitively on X, the induced
action on V+ is also transitive, so X[V+] is a vertex-transitive 2-regular graph. Then
X[V+]must be a disjoint union of cycles of the same length. ∎

Lemma 4.1 motivates the question to classify cubic vertex-transitive graphs that
admit a decomposition into a “bipartite” 2-factor and a perfect matching, where both
factors are invariant under the full automorphism group. Inspired by this problem,
Alspach, Khodadadpour, and Kreher [1] classified all cubic vertex-transitive graphs
containing a Hamilton cycle that is invariant under the action of the automorphism
group. In Section 6, we classify the cases when G[V+] is a single cycle and when the
cycles in G[V+] are triangles, respectively.

We may assume that each of X[V+] and X[V−] is the disjoint union of m cycles of
length k. In this case, we say that X is of type C(m, k).

Let C i and D i (i = 1, . . . , m) be the cycles forming X[V+] and X[V−], respectively,
as observed above. Let G be the multigraph obtained from X by contracting each cycle
C i and each cycle D i to a single vertex. More precisely, G has 2m vertices c1 , . . . , cm
and d1 , . . . , dm (one for each cycle C i or D i ); there is an edge joining c i and dr in G for
each edge of X joining a vertex in C i to a vertex in Dr . We say that G is the contracted
multigraph of X. Observe that G is a k-regular connected graph.

Lemma 4.2 If G is the contracted multigraph of X, then Aut(X) ≤ Aut(G) and any
vertex-transitive subgroup of Aut(X) acts transitively on the arcs of G. In particular, G
is arc-transitive and bipartite.

Proof Consider any α ∈ Aut(X). If we take the contracted multigraph of α(X), we
again obtain G, since the cycles C i , D j form blocks of imprimitivity under the action
of Aut(X). Thus, α acts on G as an automorphism, and so Aut(X) ≤ Aut(G). Let
Γ ≤ Aut(X) act transitively on the vertices of X. Then Γ acts arc-transitively on the
edges of M, which are in one-to-one correspondence with the edges of G, and thus
acts arc-transitively on G. Clearly, every edge in G connects some c i to some d j , so G
is bipartite. ∎

5 Relation to regular maps

In this section, we explore the relation between the combinatorial structure given by
the eigenvector of 1, as a simple eigenvalue, in a cubic vertex-transitive graph and the
combinatorial structure of graph embeddings with a high degree of symmetry. In this
setting, we can obtain from a regular map a cubic vertex-transitive graph with 1 as an
eigenvalue.

First, we proceed with some preliminary definitions from the area of graph
embeddings. Further details may be found in [21] or [13]. Let G be a connected
multigraph. For each v ∈ V(G), let πv be a cyclic permutation of the edges incident
to v. Then Π = {πv ∣ v ∈ V(G)} is said to be a rotation system for G and πv is the
local rotation at v. An automorphism α of G is said to preserve the rotation system
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Π if it maps the local rotation πv around each vertex v onto the local rotation πα(v)
of α(v). More precisely, if πv = (e1 , e2 , . . . , ed) is the local rotation at v, then πα(v) =
(α(e1), α(e2), . . . , α(ed)). The subgroup of Aut(X) that preserves the rotation system
Π is called the automorphism group of the graph with rotation system, and is denoted
by Aut(G , Π).

Each rotation system of a graph describes a 2-cell embedding of G on an orientable
surface: it defines a collection of closed walks, called facial walks or faces, such that
each edge is traversed once in each direction by these walks, and by pasting disks
onto each facial walk, we obtain a map, i.e., an orientable surface in which G is 2-cell
embedded. Thus, we view the pair (G , Π) as a map, and we call Aut(G , Π) the group
of map automorphisms corresponding to the map determined by the rotation system
Π. A map is said to be orientably regular (or rotary [29]) if Aut(G , Π) acts transitively
on the arcs of G.

Let X be a cubic graph of type C(m, k). Suppose that Γ is a subgroup of Aut(X)
that acts transitively on V(X). Recall that V+ and V− are blocks of imprimitivity of
Aut(X) and hence also of Γ. Similarly, the cycles C1 , . . . , Cm and D1 , . . . , Dm form a
system of blocks of imprimitivity. The stabilizer of C1 in Γ (the subgroup of all elements
of Γ that fix C1) acts on the cycle C1 either as a cyclic group or as a dihedral group. In
this section, we shall assume that the action is regular:

(A1) The stabilizer of C1 in Γ acts regularly on C1.
Note that (A1) implies that the stabilizer of C1 in Γ preserves the orientation of C1

and acts on C1 regularly as the cyclic group Zk .
Let C1 = v1v2 . . . vk . Suppose that D1 = w1w2 . . . wk is chosen so that v1w1 ∈ E(X).

For i = 1, . . . , m, let γ i ∈ Γ be an automorphism that maps C1 to C i , and let δ i ∈ Γ be
an automorphism that maps C1 to D i . Moreover, we may assume that γ1 rotates C1
clockwise by one vertex, i.e., γ0(v j) = v j+1 for j = 1, . . . , k (indices taken modulo k)
and that δ1 maps v j to w j for j = 1, . . . , k.

Theorem 5.1 If Γ satisfies (A1), then Γ acts regularly on V(X) and hence X is a Cayley
graph of the group generated by γ1 and the involution δ1.

Proof The group Γ acts transitively on V(X). To see that it is a Cayley graph, it
suffices to show that its action is regular (no fixed points). So, suppose that γ ∈ Γ fixes
a vertex v. Let αv ∈ Γ be a group element that maps v1 to v. Then α−1

v γαv fixes v1, and
by (A1), it must be the identity automorphism. This implies that γ is the identity. This
conclusion confirms the claim. ∎
Theorem 5.2 If Γ satisfies (A1), then the contracted multigraph G of X admits a
rotation system Π such that Γ ≤ Aut(G , Π). The group Γ acts arc-transitively on (G , Π)
and therefore (G , Π) is an orientably regular map.

Proof Fix an orientation of C1 and orient each C i and D i according to the orien-
tation induced by γ i(C1) and δ i(C1), respectively. We claim that for each γ ∈ Γ, the
orientation of the cycle γ(C1) is preserved; that is, if e = uv is oriented as uv in C1,
then the edge {ϕ(u), ϕ(v)} is also oriented as ϕ(u)ϕ(v). Let us give the argument for
the case when γ(C1) = D i = δ i(C1). In that case, δ−1

i γ(C1) fixes C1 and hence by (A1)
fixes the orientation of C1. This implies that γ and δ i must induce the same orientation
on D i , which we were to prove.
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Figure 2: An example of a regular map (left) and its vertex truncation (right).

The orientations of cycles determine a rotation system on the contracted multi-
graph G of X, and as shown above, Γ preserves the rotation around the vertex
corresponding to C1. Suppose that there is γ ∈ Γ that does not preserve one of the
rotations, say it maps the rotation around C i onto the opposite rotation around D j .
(The proof of other cases is similar.) In that case, γγ i maps C1 onto D j with the
opposite rotation as δ j , which contradicts what we have proved above. This completes
the proof. ∎

A special case when m = 1 gives rise to regular embeddings of the two-vertex
contracted multigraph (with k parallel edges). This case will be treated in a somewhat
greater generality in Section 6.3.

Given a graph embedding (G , Π), we define the vertex truncation of (G , Π),
denoted T(G , Π) as follows: the vertices of T(G , Π) are all incident pairs (v , e) for
v ∈ V(G) and e ∈ E(G) such that v is incident to e. Two vertices of T(G , Π), say (v , e)
and (w , f ), are adjacent if e = f or if v = w and πv(e) = f . Roughly speaking, we
obtain T(G , Π) from G by replacing each vertex of G with a cycle determined by Π.
Figure 2 shows an example of a vertex truncation; on the left side of the figure, we have
the complete graph K5 embedded in the torus as a regular map, and on the right, we
have the vertex truncation of this embedding.

Lemma 5.3 If G is a bipartite, arc-transitive graph and (G , Π) is an embedding of G
on some orientable surface, then the vertex truncation T(G , Π) is a vertex-transitive
cubic which has 1 as an eigenvalue.

Proof Each vertex (v , e) of T(G , Π) is adjacent to exactly three vertices: (v , πv(e)),
(v , π−1

v (e)), and (w , e), where e = vw. Since G is an arc-transitive graph, the automor-
phism group also acts transitively on the vertices of T(G , Π), preserving adjacencies
in T(G , Π). Thus, T(G , Π) is a cubic vertex-transitive graph.

Let (A, B) be the bipartition of G. We will partition the vertices of T(G , Π) into
A′ ∪ B′ as follows: let

A′ = {(v , e) ∣ v ∈ A} and B′ = {(u, f ) ∣ u ∈ B}.
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We note that each vertex (v , e = vw) of A′ has two neighbors, (v , πv(e)) and
(v , π−1

v (e)), in A′ and one neighbor (w , e) in B′. Similarly, each vertex of B′ has two
neighbors in B′ and one neighbor in A′. Thus, the vector which takes value 1 for each
vertex of A′ and value −1 for each vertex of B′ will be an eigenvector for A(T(G , Π))
with eigenvalue 1. ∎

We note that the vertex truncation of a bipartite arc-transitive graph does not
necessarily have 1 as a simple eigenvalue, but such graphs are good candidates for
having 1 as a simple eigenvalue because they have a ±1 eigenvector for eigenvalue 1,
like the vertex-transitive cubic graphs with 1 as a simple eigenvalue. The example in
Figure 2 does not have 1 as a simple eigenvalue. We note that if a graph embedding
(G , Π) is a regular map, then G is arc-transitive.

In Appendix B, we construct the vertex truncations of small regular maps from the
census of Conder [6, 7] and check when 1 is indeed a simple eigenvalue. For example,
the Möbius–Kantor graph has an embedding in the double torus which is a regular
map; this embedding has with six octagonal faces and the full automorphism group,
whose order is 96, of the graph can be realized as the automorphism group of the
map [9]. We computed that the vertex truncation of this embedding of the Möbius–
Kantor graph has 1 as a simple eigenvalue (see Table B.1).

6 Families of graphs

In this section, we show the existence of several infinite families of cubic vertex-
transitive graphs with 1 as a simple eigenvalue. While it is not difficult to find infinite
families of such graphs with 1 as an eigenvalue, it is often difficult to determine that
1 is a simple eigenvalue. For these families, we have the characterization of when 1
is simple, using some number-theoretic methods, as well as results about the sum of
cosine, resulting from vanishing sums of roots of unity.

6.1 Cubic multigraphs (type C(m, 2))

Let X is a cubic vertex-transitive graph with 1 as a simple eigenvalue. We first discuss
the case when X contains multiple edges. When there is a triple edge, we have a two-
vertex graph, denoted K3

2 in Figure 3, whose eigenvalues are ±3. Otherwise, there are
only double edges and single edges. Since X is vertex-transitive, every vertex x has two
neighbors, one is joined to x by a double edge, the other one by a single edge. It follows
that X is obtained from an even cycle C2n by adding an edge in parallel to every second
edge on the cycle. Let F2n be the graph obtained from an even cycle C2n by adding an
edge in parallel to every second edge on the cycle. We will now determine the values
of n for which F2n has 1 as a simple eigenvalue, in order to fully determine the class of
cubic vertex-transitive graphs with 1 a simple eigenvalue, which contain at least one
multiple edge.

We see that F2n has unique partition into sets V+ and V− as in Lemma 4.1; the
induced graphs on V+ and V− consist of m digons each, and thus n is even and
X = F4m . Figure 3 shows this partition for F8. Therefore, it has a unique ±1 eigenvector
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Figure 3: F8 (left) is a regular cyclic cover of K3
2 (right); the top four vertices of F8 form the fiber

corresponding to the top vertex of K3
2 and, likewise, the bottom vertices of F8 form the fiber

corresponding to the bottom vertex of K3
2 . The partition given by the blue and red decorations

on the vertices is the partition into V+ and V−.

for eigenvalue λ = 1. It is a simple exercise to exclude eigenvectors for λ = 1 that are not
multiples of this one. Instead of doing this, we note that F2n is a regular cyclic cover
over the two-vertex graph with triple edge, K3

2 (see Figure 3). Therefore, its eigenvalues
are (see [17] or [20] for details) the union of eigenvalues of n matrices of the form

A j = (
0 2 + exp( 2πi j

n )
2 + exp(−2πi j

n ) 0
) , j = 0, 1, . . . , n − 1.

The matrix A j has eigenvalue 1 if and only if n is even and j = n/2. This gives the
following result.

Lemma 6.1 The eigenvalues of the graph F2n are

±
√

4 cos(2π j/n) + 5, j = 0, 1, . . . , n − 1.

Thus λ = 1 is an eigenvalue if and only if n is even, in which case this is a simple
eigenvalue.

Proof A short computation shows that the eigenvalues of the matrix A j are

±
√

4 cos(2π j/n) + 5.

Such an eigenvalue is equal to 1 if and only if cos(2π j/n) = −1, i.e., j = n/2. ∎

6.2 Truncations of cubic arc-transitive graphs (type C(m, 3))

The truncation of a cubic multigraph G is a cubic graph T(G) where every vertex
v of G corresponds to a triangle in T(G) and every edge uv of G gives an edge of
T(G) between the triangles corresponding to u and v. Figure 4 shows two examples
of truncations of cubic graphs. The truncation is isomorphic to the line graph of
the subdivision of G. Thus, the eigenvalues of T(G) are easy to compute from the
eigenvalues of G (see [10] or [30, Theorem 2.1]).
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Figure 4: The truncation of the cube graph (left) and the truncation of the Pappus graph (right).

Theorem 6.2 If the eigenvalues of a cubic graph G are μ1 , . . . , μn , the eigenvalues of
the truncation of G are

λ i =
1 ±√4μ i + 13

2
for i = 1, . . . , n and −2 and 0, each with multiplicity n

2 .

This implies the following result.

Corollary 6.3 For a connected cubic graph G, the following statements are equivalent:
(a) G is bipartite.
(b) λ = 1 is an eigenvalue of the truncation T(G) of G.
(c) λ = 1 is a simple eigenvalue of T(G).
Proof We see from Theorem 6.2 that λ i = 1 if and only if μ i = −3. A connected cubic
graph has −3 as an eigenvalue if and only if it is bipartite, in which case −3 is a simple
eigenvalue (and hence 1 is a simple eigenvalue of T(G)). ∎
Corollary 6.4 If X is a connected vertex-transitive cubic graph containing a cycle of
length 3, then X has 1 as a simple eigenvalue if and only if X = T(G), where G is a
connected, bipartite, arc-transitive cubic multigraph.

Proof First, we show that if X is vertex-transitive, contains a triangle, and has 1 as a
simple eigenvalue, then X must be the truncation of a graph G. Since X has 1 as a simple
eigenvalue, we may partition the vertices of X into cycles V+ and V−, as in Lemma 4.1.
Let v be vertex in V+. We have that v is incident to a cycle of length 3, say T, in X. Since
there is a matching between V+ and V−, the triangle T does not use any edge of the
matching. Thus, v must be incident to a cycle of length 3 in the subgraph of X induced
by V+. Since V+ induces a vertex-transitive 2-regular subgraph of X by Lemma 4.1,
X[V+]must be a disjoint union of cycles of length 3. The same holds for X[V−]. Let G
be obtained from X by contracting all the 3-cycles in X[V+] and X[V−]. We see that
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Figure 5: Examples of generalized Petersen graphs.

G is cubic, since each vertex of X is incident to exactly 1 edge which is not contracted
to obtain G. By part (v) of Lemma 4.1, G is an arc-transitive bipartite graph, as claimed.

The converse implication is clear by Corollary 6.3. ∎

Since the cube graph and the Pappus graph are both cubic, arc-transitive, bipartite
graphs, their truncations, as shown in Figure 4, are examples of cubic vertex-transitive
graphs with 1 as a simple eigenvalue.

6.3 Prisms and generalized Petersen graphs

In this section, we classify which prisms and which generalized Petersen graphs have
1 as a simple eigenvalue.

The prism of order 2n is the Cartesian product of Cn with K2. The prism of order 12
appears in Figure 1. The eigenvalues of the prism graph of order 2n are (see, e.g., [10])

2 cos 2π j
n
± 1, j = 0, 1, . . . , n − 1.

When j = 0, this gives the eigenvalue 1. Thus, a prism is a cubic vertex-transitive graph,
which always has 1 as an eigenvalue. However, this eigenvalue is not always simple.
This happens if and only if cos 2π j

n = 0 for some j, which is the case if and only if j = n/4
or j = 3n/4. This immediately gives the following characterization.

Lemma 6.5 The prism of order 2n has λ = 1 as simple eigenvalue if and only if
n /≡ 0 (mod 4).

Prisms are a special case of the generalized Petersen graphs, where the multiplicity
of eigenvalue 1 is relatively straightforward to understand. We now turn our attention
to the more general case.

The generalized Petersen graph, denoted P(n, k), is the graph with vertex set
[n] × [2], where [n] = {1, . . . , n}, and each vertex ( j, 1) is adjacent to ( j, 2) and to the
vertices ( j ± 1, 1), while ( j, 2) is adjacent to ( j ± k, 2), all operations taken modulo n.
The well-known Petersen graph is isomorphic to P(5, 2), and the prism of order 2n is
isomorphic to P(n, 1). See Figure 5 for some other examples of generalized Petersen
graphs.
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The vertex-transitivity of the generalized Petersen graphs is given in the following
theorem.

Theorem 6.6 [11] The generalized Petersen graph P(n, k) is vertex-transitive if and
only if (n, k) = (10, 2) or k2 ≡ ±1 (mod n).

The following theorem gives the eigenvalues of P(n, k).
Theorem 6.7 [12] The graph P(n, k) has eigenvalues δ for every root δ of

x2 − (α j + β j)x + α j β j − 1 = 0(6.1)

for j = 0, . . . , n − 1, where

α j = 2 cos( 2π j
n ) and β j = 2 cos( 2π jk

n ) .

The eigenvalues of P(n, k) which are equal to 1 are solutions for equation (6.1)
where x = 1, which we may simplify as

α j + β j = α j β j .

We may let θ = 2π j
n and rewrite it as

cos θ + cos kθ = 2 cos θ cos kθ = cos((k − 1)θ) + cos((k + 1)θ).(6.2)

Observe that j = 0 gives a solution to this equation for any k. Hence, every generalized
Petersen graph has eigenvalue 1 with multiplicity at least one.

Theorem 6.8 P(n, k) has 1 as a simple eigenvalue if and only if one of the following
holds:

(i) 4 ∤ n and 5 ∤ n.
(ii) 4 ∣ n and k is even.

(iii) 5 ∣ n and k ∉ {2, 3, n − 3, n − 2}.
Proof As shown above, every P(n, k) has eigenvalue 1 corresponding to the solution
j = 0 to (6.2). We note that solutions to (6.2) are equivalent to solution to (6.4) of the
form ( j, jk) and thus we will make use of the solutions that we found in the proof of
Lemma A.1. In light of this, Lemma A.2 shows that 1 is a simple eigenvalue when 4 ∤ n
and 5 ∤ n.

Suppose now that n = 4a, where a is an integer. If k ≡ 1(mod 4) (resp. k ≡ 3
(mod 4)), we see that j = a (resp. j = 3a) is a nontrivial solution to (6.2). Suppose now
that k is even. By Lemma A.2, if 4∣n, the only nontrivial solution to (6.4) are when
{ j

n , �
n} ⊆ {

1
4 , 3

4}. In the case for the generalized Petersen graphs, solutions to (6.4)

where � = k j are exactly the solution to (6.2). We see that if k is even, then { j
n , jk

n } is
either { 1

4 , k
4} or { 3

4 , 3k
4 }, neither of which can be a subset of { 1

4 , 3
4} since k is even.

Thus, in this case, 1 is a simple eigenvalue.
Suppose now that 5 ∣ n. By Lemma A.2, if n = 5a, the only nontrivial solutions to

(6.4) are ( j, �) ∈ {a, 4a} × {2a, 3a} ∪ {2a, 3a} × {a, 4a}. Again, we need solutions to
(6.4) where � = k jmod 5a. We summarize the values of j, �, and k that we obtain in
Table 1.

Thus, we get additional solution if and only if k ∈ {2, 3, n − 3, n − 2}mod n. ∎
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j a 4a 2a 3a

� 2a 3a 2a 3a a 4a a 4a

k 2, n − 3 3, n − 2 3, n − 2 2, n − 3 3, n − 2 2, n − 3 3, n − 3 2, n − 2

Table 1: Solution to (6.4) and (6.2) when n = 5a.

Figure 6: The graphs T3 (left) and T4 (right). The vertex labels have been repressed for T4 , for
readability, but can be easily inferred from those for T3 .

For the examples in Figure 5, we see by Theorem 6.8 that P(10, 4) and P(13, 5)
have 1 as a simple eigenvalue, while P(8, 3) does not. In fact, P(13, 5) is the smallest
generalized Petersen graph with 1 as a simple eigenvalues, which is not isomorphic to
a prism.

6.4 Regular embeddings of Km ,m

In this section, we consider the truncation, Tm , of regular embeddings of the complete
bipartite graph Km ,m . This is an application of the ideas from Section 5. Here, we
characterize which orders of m give graphs where 1 is a simple eigenvalue, using
results on vanishing sums of roots of unity and sums of cosines, which are included
in Appendix A.

For m ≥ 3, let Tm be the cubic graph of order 2m2 defined in the following way. The
vertices of Tm are {v i , j , w i , j ∣ i , j ∈ Zm}. The edges are

{v i , j , v i , j+1}, {w i , j , w i , j+1}, {v i , j , w j, i}

for all i , j ∈ Zm . It is easy to see that Tm is a cubic, vertex-transitive graph with 1 as an
eigenvalue, not necessarily simple, by considering the eigenvector that is +1 on every
vertex v i , j and −1 on every vertex w i , j . Figure 6 shows T3 and T4.
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Alternatively, we can construct Tm from the regular embedding of Km ,m , given by
Nedela and Škoviera in [22]. We consider Km ,m as a Cayley graph on Z2m with the
connection set {1, 3, 5, . . . , 2m − 1} as the generating set. The rotation system Π has
vertex rotations at each vertex given by the cyclic permutation (1, 3, 5, . . . , 2m − 1) of
the generators. The graph Tm is isomorphic to the vertex truncation T(Km ,m , Π).

Let B be the m2 ×m2 matrix such that B = Im ⊗ Cm , where Cm is the adjacency
matrix of the cycle of order m and Im is the m ×m identity matrix. Let P be
the permutation matrix indexed by Zm ×Zm such that P takes (i , j) to ( j, i). The
adjacency matrix of Tm can be written as

A ∶= A(Tm) = (
B I
I PT BP) .

Observe that P2 = I and P = PT . By definition, we see that

P(e i ⊗ e j) = e j ⊗ e i ,

where ek denotes the kth elementary basis vector. Then, for any m × 1 vectors v and
w, we see that

P(v ⊗w) = w ⊗ v.

Theorem 6.9 The eigenvalues of Tm are

cos 2π j
m + cos 2π�

m ±
√
(cos 2π j

m − cos 2π�
m )

2
+ 1

for all ( j, �) ∈ Zm ×Zm .

Proof To find these eigenvalues, we use the proof method developed in [12] in order
to find the eigenvalues of generalized Petersen graphs. Let v, w be eigenvectors of Cm
with eigenvalues λ and θ, respectively. Then

B(v ⊗w) = (Im ⊗ Cm)(v ⊗w) = v ⊗ θw = θ(v ⊗w)

and

PT BP(v ⊗w) = PT(Im ⊗ Cm)(w ⊗ v) = P(λv ⊗ θw) = λ(v ⊗w).

Let V be an eigenbasis for Cm in Rm . Then the basis

W = {v ⊗w ∣ v, w ∈ V}

of Rm2
simultaneously diagonalizes B and PT BP. We construct an eigenbasis U of A

over R2m2
such that the elements of U are

(αv ⊗w
v ⊗w ) ,

where v, w ∈ V with eigenvalues λ and θ, respectively, and α = δ − λ for each δ a
solution to

δ2 − (θ + λ)δ + θλ − 1 = 0.(6.3)
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Observe that since

2(θ + λ
2
)

2
= θ2 + λ2

2
+ θλ > θλ − 1

for any λ, θ ∈ R, equation (6.3) always has two distinct solutions for δ. The set U
consists of 2m2 linearly independent vectors inR2m2

. We now verify that each element
of U is an eigenvector of A by observing

A(αv ⊗w
v ⊗w ) = (

B I
I PT BP)(

αv ⊗w
v ⊗w )

= (αθv ⊗w + v ⊗w
αv ⊗w + λv ⊗w)

= ((αθ + 1)v ⊗w
(α + λ)v ⊗w ) .

But α has been carefully chosen such that α + λ = δ and αλ + 1 = δα, so

A(αv ⊗w
v ⊗w ) = δ (αv ⊗w

v ⊗w ) .

Then U is an eigenbasis for A, as claimed, and the eigenvalues of A are the solution
for δ in equation (6.3) where θ and λ range over the eigenvalues of Ck . We use the
quadratic formula to see that

δ = θ + λ ±
√
(θ + λ)2 − 4(θλ − 1)

2
= θ + λ ±

√
(θ − λ)2 + 4
2

.

The eigenvalues of Cm are 2 cos 2π j
m for j ∈ Zm (see [3] or [10]). Putting these values in

place of θ and λ, we obtain the expressions given by the theorem. ∎

By restricting our attention to the eigenvalue 1, we have the following consequence
of Theorem 6.9.

Corollary 6.10 The multiplicity of 1 as an eigenvalue of the graph Tm is equal to the
number of solutions ( j, �) to the equation:

cos 2π j
m + cos 2π�

m = 2 cos 2π j
m cos 2π�

m ,(6.4)

where j, � ∈ {0, . . . , m − 1}.

Proof Let a = cos 2π j
m and b = cos 2π�

m . By Theorem 6.9, we are looking for the
number of pairs ( j, �) for which a + b − 1 = ±

√
(a − b)2 + 1. For a = b, this is satisfied

precisely when a = b = 1 and when a = b = 0, both of which provide solutions for (6.4).
On the other hand, if a ≠ b, then the value under the square root is bigger than 1,
which implies that the solutions must satisfy the equation a + b − 1 = −

√
(a − b)2 + 1.

For values a, b that are smaller or equal to 1, this is equivalent to (a + b − 1)2 =
(a − b)2 + 1, which holds if and only (6.4) holds. ∎
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Theorem 6.11 Tm has 1 as a simple eigenvalue if and only if 4 ∤ m and 5 ∤ m.

The theorem follows from Corollary 6.10 by Lemmas A.1 and A.2 that are proved
in Appendix A.

A Sums of cosines

The multiplicity of 1 as an eigenvalue of the graph Tm is equal to the number of
solutions ( j, �) to equation (6.4). We observe that, if we set � = k j, we obtain exactly
(6.2) in Section 6.3. Note that this equation is always satisfied for j = � = 0, which we
will refer to as the trivial solution.

We will first determine that when 4∣m or 5∣m, equation (6.4) has nontrivial
solutions. Then we will show that there are no nontrivial solutions in the other cases.

Lemma A.1 If 4 divides m, then (6.4) has at least four nontrivial solutions. If 5 divides
m, then (6.4) has at least eight nontrivial solutions.

Proof We will describe additional solutions to (6.4) when m is divisible by 4 and
when m is divisible by 5. Note that

cos π
2 = cos 3π

2 = 0.

Then, if m = 4a for some a, then for each

( j, �) ∈ {(a, a), (a, 3a), (3a, a), (3a, 3a)},

we obtain a solution to (6.4).
Similarly, suppose now that m = 5a for some a. We note that

cos 2π
5 = cos 8π

5 =
−1 +

√
5

4
and cos 4π

5 = cos 6π
5 =

−1 −
√

5
4

,

and we see that

cos 2π
5 + cos 4π

5 =
−1 +

√
5

4
+ −1 −

√
5

4
= − 1

2
and

2 cos 2π
5 cos 4π

5 =
(−1 +

√
5 ) (−1 −

√
5 )

8
= − 1

2
.

Then let A = {a, 4a} and B = {2a, 3a}. For every choice of j ∈ A and � ∈ B (or vice
versa), we obtain distinct solution ( j, �) to equation (6.4). ∎

Solutions of equation (6.4) can be limited further by using an old result of Conway
and Jones [8].

Lemma A.2 If 4 ∤ m and 5 ∤ m, then (6.4) has only the trivial solution. Further, if 4∣m,
the only nontrivial solution is { j

m , �
m} ⊆ {

1
4 , 3

4}. If m = 5a, the only nontrivial solution
is ( j, �) ∈ {a, 4a} × {2a, 3a} ∪ {2a, 3a} × {a, 4a}.

https://doi.org/10.4153/S0008414X23000482 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000482


Simple eigenvalues of cubic vertex-transitive graphs 1513

Proof We will make extensive use of [8, Theorem 7], which gives the complete
description of solutions to the equation

A cos 2πa + B cos 2πb + C cos 2πc + D cos 2πd = E ,(A.1)

where all variables A, . . . , E and a, b, c, d are rational numbers. We may use an
elementary trigonometric identity for cosine of angle sums to rewrite (6.4) as follows:

cos x + cos y = 2 cos x cos y = cos(x + y) + cos(x − y),(A.2)

where x = 2π j
m and y = 2π �

m . This is a special case of (A.1) with A = B = 1, C = D = −1,
and E = 0. Observe that if y′ = 2π − y, then

cos(x + y′) + cos(x − y′) = cos(x + 2π − y) + cos(x − 2π + y) = cos(x − y) + cos(x + y).

Without loss of generality, we may therefore assume that 0 ≤ x ≤ y ≤ π. Let

C = {cos x , cos y, cos(x + y), cos(y − x)}.

We will consider the following cases:
(i) There exists c ∈ C such that c is rational.

(ii) C ∩Q = ∅ and some two elements of C have rational sum.
(iii) No proper subset of C has rational sum.
Case (i). It is known that if cos θ ∈ Q and θ is a rational multiple of π, then cos θ ∈
{±1,± 1

2 , 0}.
We first suppose cos x ∈ Q. If cos x = 1, then (A.2) implies that 1 + cos y = 2 cos y.

Then x = y = 0, giving the trivial solution. If cos x = 1
2 , then (A.2) implies that 1

2 +
cos y = cos y, which is impossible. Similarly, if cos x = − 1

2 , then (A.2) implies that− 1
2 +

cos y = − cos y and cos y = 1
4 ∈ Q, which is not possible since y is a rational multiple

of π.
If cos x = −1, then (A.2) implies that −1 + cos y = −2 cos y, which gives that

cos y = 1
3 . Since y is a rational multiple of π, this is impossible. If cos x = 0, then (A.2)

implies that cos y = 0. In this case, x , y ∈ { π
2 , 3π

2 } and j
m , �

m ∈ {
1
4 , 3

4}. Then 4∣m and
j

m , �
m ∈ {

1
4 , 3

4} give all nontrivial solutions when some c ∈ C is rational.
Since (A.2) is symmetric in x and y, we may now assume that both cos x and cos y

are irrational.
If both cos(x + y) and cos(x − y) are rational, then cos x + cos y ∈ Q and

cos x , cos y ∉ Q. Note that x , y ∉ {0, π, π
2 }. Let ϕ(θ) be the following:

ϕ(θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

θ , if 0 < θ < π
2 ,

π − θ , if π
2 < θ < π,

θ − π, if π < θ < 3π
2 ,

2π − θ , if 3π
2 < θ < 2π.

Then we note that cos(ϕ(x)) ± cos(ϕ(y)) ∈ Q and cos(ϕ(x)), cos(ϕ(y)) ∉ Q. We
can apply Theorem 7 of [8] to obtain that a cos(ϕ(x)) + b cos(ϕ(y)) = q for some
q ∈ Q is proportional to cos π

5 − cos 2π
5 =

1
2 . This implies that 5 divides m and we can

see that the only additional solutions are the ones found in Lemma A.1.
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In the remainder of Case (i), we may assume that exactly one of cos(x + y) and
cos(x − y) is rational. Let θ be the corresponding argument. We may also assume that
no rational linear combination of a proper subset of C/{cos θ} has a rational sum. Let
τ be the argument of the irrational element of {cos(x + y), cos(x − y)}. Since cosine
is an even function, we may take y − x instead of x − y and assume that 0 ≤ τ, θ ≤ π.
We have that

cos x + cos y − cos τ = cos θ ∈ Q
and let a, b, c ∈ {±1} be such that

a cos(ϕ(x)) + b cos(ϕ(y)) + c cos(ϕ(τ)) = cos θ .(A.3)

Theorem 7 of [8] gives that (A.3) is proportional to one of the following:
(a) − cos δ + cos( π

3 − δ) + cos( π
3 + δ) = 0 for some 0 < δ < π

6 ;
(b) cos π

7 − cos 2π
7 + cos 3π

7 =
1
2 ;

(c) cos π
5 − cos π

15 + cos 4π
15 =

1
2 ; and

(d) − cos 2π
5 + cos 2π

15 − cos 7π
15 =

1
2 .

Observe that if (A.3) is proportional to either (c) or (d), then 5 divides m. If (A.3) is
proportional to (c), then we have that θ = π

3 , ϕ(τ) = π
15 and {ϕ(x), ϕ(y)} = { 4π

15 , 5π
15 }.

We can see that there are no solutions for x , y in this case. If (A.3) is proportional to
(d), then we have that θ = 2π

3 , ϕ(τ) = 2π
15 and {ϕ(x), ϕ(y)} = { 6π

15 , 7π
15 }. There are also

no solutions for x , y in this case.
To finish Case (i), we will show that (A.3) cannot be proportional to either (a) or (b).
If (A.3) is proportional to (a), then cos θ = 0 and thus θ ∈ { π

2 , 3π
2 }. We have three

cases: x + y = π
2 , y − x = π

2 , or x + y = 3π
2 . If θ = x + y = π

2 , then x ≤ y ≤ π
2 so ϕ(z) = z

for z ∈ {x , y, y − x}. Since (A.3) is proportional to (a), {x , y, y − x} = {δ, π
3 ± δ}. If

we sum all three elements, we obtain x + y + y − x = 2y = δ + 2π
3 and so y = δ

2 +
π
3 ∉

{δ, π
3 ± δ}, a contradiction.

If y − x = θ = π
2 , then x ≤ π

2 = ϕ(x). If x = δ, then y = π
2 + δ and ϕ(y) = π − y =

π
2 − δ. We see that π

2 − δ ≠ π
3 − δ, so y = π

3 + δ = π
2 − δ. Then x = ϕ(x) = π

12 . It follows
that 4∣m, a contradiction. If x = π

3 − δ, then y = π
2 + x = 5π

6 − δ and ϕ(y) = π − y =
π
6 + δ ∉ {δ, π

3 + δ}, a contradiction. If x = π
3 + δ, then y = π

2 + x = 5π
6 + δ and ϕ(y) =

π − y = π
6 − δ. Then ϕ(y) = δ and δ = π

12 . We obtain that x = 5π
12 and so 4∣m, a

contradiction.
If x + y = θ = 3π

2 , then y = 3π
2 − x and π ≥ x ≥ π

2 so ϕ(x) = π − x. See Table A.1 for
all possible values of x, y, and y − x, based on the possible values of ϕ(x). If ϕ(x) =
π
3 + δ, then ϕ(y) = π

6 − δ, which must equal δ; hence, δ = π
12 and y = 13π

12 and 4∣m,
a contradiction. If ϕ(x) = π

3 − δ, then ϕ(y) = π
6 + δ ∉ {δ, π

3 + δ}, a contradiction. If
ϕ(x) = δ, then y − x = − π

2 + 2δ ≥ 0, since y ≥ x. But δ ≤ π
6 , so this cannot happen.

If (A.3) is proportional to (b), then cos θ = ± 1
2 and thus θ ∈ { π

3 , 2π
3 , 4π

3 , 5π
3 }. Since

3 and 7 are prime, it is easy to see that any sum of two terms each of the form

aπ + b π
7 ,

where a, b ∈ Z, will not be in the set { π
3 , 2π

3 , 4π
3 , 5π

3 }. Thus, we cannot write θ as x′ + y′
or x′ − y′ for any x′ , y′ pre-images under ϕ of the arguments in (b), a contradiction.
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ϕ(x) = π − x δ π
3 − δ π

3 + δ

x π − δ 2π
3 + δ 2π

3 − δ

y π
2 + δ 5π

6 − δ 5π
6 + δ

y − x − π
2 + 2δ π

6 − 2δ π
6 + 2δ

Table A.1: Possible values of ϕ(x).

Case (ii). In this case, two of the elements of C sum to a rational number, say cos θ +
cos τ. Then, applying Theorem 7 of [8] to a cos(ϕ(θ)) + b cos(ϕ(τ)) for a, b ∈ {±1},
we obtain that

a cos(ϕ(θ)) + b cos(ϕ(τ)) = cos(π
5
) − cos(2π

5
) = 1

2
.

Here, 5 ∣ m and we see again that the only additional solutions are the ones found in
Lemma A.1.

Case (iii). In this case, no proper subset C has rational sum. We have that

cos(ϕ(x)) ± cos(ϕ(y)) ± cos(ϕ(x + y)) ± cos(ϕ(x − y)) = 0

(for some choice of the signs). We apply Theorem 7 of [8] and see that this cannot hold,
since all 4 term sums in the theorem have nonzero sum. This completes the proof. ∎

B Computation on regular maps

We looked at the regular maps as given in the census of Conder [6, 7]. For each map,
we considered the map and its dual, and determined their vertex truncations. We
restricted our computation to bipartite regular maps on at least four vertices (since the
two-vertex case is completely covered in Section 6.3) and with vertex (face) degree at
least 3. Note that the underlying graph of the multigraph does not necessarily have
degree at least 3. Up to and including regular maps with 100 edges, there are 351
such regular maps. We determined the vertex truncations of these maps, as described
in Section 5. Recall that the vertex truncation of a regular map with e edges is a
vertex-transitive cubic graph on 2e vertices that has 1 as an eigenvalue. Among the
351 considered vertex truncations of regular maps, 62 have 1 as a simple eigenvalue.
Their properties are listed in Table B.1.

One can make some basic observations. The graphs of type C(m, k) are obtained
when k is the vertex degree of the regular map. From these examples, it looks that
k is always even or divisible by 3. Of course, this could be the case because the
graphs are too small and because we have excluded the two-vertex case (which gives
the generalized Petersen graphs). Note that the two-vertex case includes k = 5 with
two examples: the 5-prism (which has 1 as a simple eigenvalue) and the Petersen
graph (where 1 is not simple). More generally, for every odd k, the k-prism has 1 as
a simple eigenvalue. For k = 3, there are infinitely many examples of type C(⋅, 3) (see
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∣E∣ ∣V ∣ ∣F∣ Orientability Genus d(v) d( f ) Truncation graph

12 8 6 orientable 0 3 4

12 4 6 orientable 2 6 4 bipartite

18 6 6 orientable 4 6 6 bipartite

20 4 10 orientable 4 10 4 bipartite

24 8 6 orientable 6 6 8 bipartite

24 8 6 orientable 6 6 8

24 16 6 orientable 2 3 8

28 4 14 orientable 6 14 4 bipartite

30 10 6 orientable 8 6 10 bipartite

30 6 10 orientable 8 10 6 bipartite

30 20 6 non-orientable 6 3 10

36 4 18 orientable 8 18 4 bipartite

36 24 12 orientable 1 3 6

36 8 18 orientable 6 9 4

36 12 6 orientable 10 6 12 bipartite

40 8 10 orientable 12 10 8 bipartite

42 6 14 orientable 12 14 6 bipartite

42 14 6 orientable 12 6 14 bipartite

44 4 22 orientable 10 22 4 bipartite

48 16 6 orientable 14 6 16 bipartite

48 32 16 orientable 1 3 6

52 4 26 orientable 12 26 4 bipartite

54 18 18 orientable 10 6 6 bipartite

56 8 14 orientable 18 14 8 bipartite

60 20 6 orientable 18 6 20 bipartite

60 4 30 orientable 14 30 4 bipartite

Table B.1: Vertex truncations of regular maps which have 1 as a simple eigenvalue. The
first seven columns give information about the regular map. The last column records
if the truncation obtained is bipartite.
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∣E∣ ∣V ∣ ∣F∣ Orientability Genus d(v) d( f ) Truncation graph

60 8 30 orientable 12 15 4

60 8 20 orientable 17 15 6

60 12 10 orientable 20 10 12 bipartite

60 20 12 non-orientable 30 6 10

60 40 12 orientable 5 3 10

66 6 22 orientable 20 22 6 bipartite

66 22 6 orientable 20 6 22 bipartite

68 4 34 orientable 16 34 4 bipartite

70 14 10 orientable 24 10 14 bipartite

70 10 14 orientable 24 14 10 bipartite

72 8 18 orientable 24 18 8

72 24 12 orientable 19 6 12

72 48 12 orientable 7 3 12

72 8 18 orientable 24 18 8 bipartite

72 24 18 orientable 16 6 8 bipartite

72 16 18 orientable 20 9 8

72 24 6 orientable 22 6 24 bipartite

76 4 38 orientable 18 38 4 bipartite

78 6 26 orientable 24 26 6 bipartite

78 26 6 orientable 24 6 26 bipartite

80 16 10 orientable 28 10 16 bipartite

84 8 28 orientable 25 21 6

84 12 14 orientable 30 14 12 bipartite

84 8 42 orientable 18 21 4

84 28 6 orientable 26 6 28 bipartite

84 4 42 orientable 20 42 4 bipartite

88 8 22 orientable 30 22 8 bipartite

90 18 10 orientable 32 10 18 bipartite

Table B.1: (Continued).
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∣E∣ ∣V ∣ ∣F∣ Orientability Genus d(v) d( f ) Truncation graph

90 10 18 orientable 32 18 10 bipartite

90 30 6 orientable 28 6 30 bipartite

92 4 46 orientable 22 46 4 bipartite

96 32 24 orientable 21 6 8

96 64 24 orientable 5 3 8

96 32 6 orientable 30 6 32 bipartite

98 14 14 orientable 36 14 14 bipartite

100 4 50 orientable 24 50 4 bipartite

Table B.1: (Continued).

Section 6.2), but it is not known whether there are infinitely many examples of type
C(⋅, k) for any other k.

References

[1] B. Alspach, A. Khodadadpour, and D. L. Kreher, On factor-invariant graphs. Discret. Math.
342(2019), no. 8, 2173–2178.

[2] N. Biggs, Algebraic graph theory. Second ed., Cambridge Mathematical Library, Cambridge
University Press, Cambridge, 1993.

[3] A. E. Brouwer and W. H. Haemers, Spectra of graphs, Universitext, Springer, New York, 2012.
[4] A. Chan and C. D. Godsil, Symmetry and eigenvectors. In: Graph symmetry (Montreal, PQ, 1996),

NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, 497, Kluwer
Academic, Dordrecht, 1997, pp. 75–106.

[5] F. R. K. Chung, Diameters and eigenvalues. J. Amer. Math. Soc. 2(1989), no. 2, 187–196.
[6] M. Conder, Regular maps with small parameters. J. Aust. Math. Soc. Ser. A 57(1994), no. 1,

103–112.
[7] M. Conder, Orientable regular maps of genus 2 to 101. https://www.math.auckland.ac.nz/conder/

OrientableRegularMaps101.txt (accessed November 4, 2019).
[8] J. H. Conway and A. J. Jones, Trigonometric Diophantine equations (on vanishing sums of roots of

unity). Acta Arith. 30(1976), no. 3, 229–240.
[9] H. S. M. Coxeter, Self-dual configurations and regular graphs. Bull. Amer. Math. Soc. 56(1950),

413–455.
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