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Abstract

Several species of Echinochloa P. Beauv., introduced at multiple events, have established
themselves as a persistent concern for U.S. rice production. In this review, we highlight the key
biological characteristics of economically relevant Echinochloa in U.S. rice production, revisit
their historical trajectory, and suggest research directions for their management with special
reference to barnyardgrass. Ecologically differentiated Echinochloa species have a distinct
association with rice culture methods that have been practiced for the last few decades,
barnyardgrass being historically predominant in drill-seeded rice in the mid-South, and early
watergrass and late watergrass in water-seeded California rice. However, the emerging evidence
challenges the dogma that other Echinochloa species for specific regions are of less importance.
Primarily managed by the water-seeding method of rice culture in the early years of the 20th
century, Echinochloa species have persisted in the sophisticated U.S. rice culture through the
evolution of resistance to herbicides in recent decades. Accumulating knowledge, including
those of recent genomic insights, suggests the rapid adaptability of Echinochloa. The last decade
has seen a (re)emergence of nonchemical methods as a key component of sustainable
management, among which use of harvest weed seed control (HWSC) methods and cover crops
in the mid-South and stale-drill seeding in California are being considered as potential methods
for managing Echinochloa. In recent years, furrow-irrigated rice has rapidly supplanted a
significant proportion of conventionally flooded rice in the mid-South, whereas the propensity
for compromised continuous submergence is increasing in California rice. On the cusp of this
shift, the question at the forefront is how this will affect Echinochloa interference in rice and how
this change will dictate the management efforts. Future research will lead to the development of
a clear understanding of the impact of the changing agroecosystems on Echinochloa species and
their response to the prospective integrated control interventions.

Introduction

After a decade of commercial rice (Oryza sativa L.) production, JW Jones (1926) wrote the
following in USDA Bulletin #1387: “Water grass (Echinochloa crusgalli) is reported to be in
several important rice-producing countries of the world, but apparently in none of these
countries has this grass become so troublesome as in California.” Introduced from multiple
sources and events, several economically relevant species of Echinochloa P. Beauv. have adapted
and persisted in the century since U.S. rice culture began, often ranking as the most pressing
issue in U.S. rice production (Butts et al. 2022; Fischer et al. 2000a; Norsworthy et al. 2007a,
2013, 2020). Echinochloa have ecologically co-evolved with rice for millennia in Asian countries
(Yangetal. 2015; Ye et al. 2019), and the species are believed to have invaded U.S. rice primarily
as contaminants in rice seed stocks (Barrett 1983; Huelma et al. 1996). Echinochloa species,
whether one or the other or a composite of them, have been the focal point of weed management
interventions ever since the beginning of commercial rice culture in the United States. They are
often collectively called “barnyardgrass,” especially in the U.S. mid-South, and “watergrass”
or “barnyardgrass” in California. Among the many Echinochloa species, barnyardgrass [E. crus-
galli (L.) P. Beauv.] is a persistent weed of global rice production (Krahemer et al. 2016; Mitich
1990), often ranking among the world’s most serious agricultural weeds receiving unparalleled
attention (Barrett and Seaman 1980; Holm et al. 1977; Wu et al. 2022; Yabuno 1966).
Colloquially referred to as barnyardgrass or watergrass, even by stakeholders in its
management, the existence of morphologically intergrading types within Echinochloa
(sometimes referred to as Echinochloa complex) is a well-known problem for taxonomists
(Danquah et al. 2002; Ruiz-Santaella et al. 2006) and has remained largely esoteric. Echinochloa
populations that are continuously associated with specific agricultural systems may have
evolved phenological patterns that optimize survival within the most favorable growing areas
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(Barrett 1983). The differentiation among local ecotypes was
probably further encouraged by the self-pollinating reproduction
in this genus (Honek and Martinkova 1996). Taxonomists have
named numerous intraspecific taxa within the barnyardgrass of
their respective regions; however, a comprehensive, worldwide,
monographic study is still lacking (Barrett and Wilson 1981; Hoste
and Verloove 2022). In the context of North America, multiple
introductions from varying sources followed by inbreeding have
further complicated the effort to accurately classify them (Barrett
and Wilson 1981). We agree with Barrett and Wilson (1981), Holm
etal. (1977), and Michael (1983) that until taxa in Echinochloa have
been correctly identified, interpretation of their biology is greatly
hindered. In the last few decades, the rise of molecular studies has
greatly improved the identification of these cryptic species of
Echinochloa. In this review, we integrate the recent delimitation of
taxonomic treatment achieved from genomic analysis of the global
collection of Echinochloa species (Wu et al. 2022), which closely
matches the nomenclature and taxonomic concepts reported by
Gould et al. (1972).

The genus Echinochloa (botanical family Poaceae) includes
approximately 250 species, of which only a few are agricultural
weeds (Bajwa et al. 2015). On a global scale, barnyardgrass is the
most prevalent Echinochloa species, followed by junglerice
[Echinochloa colona (L.) Link] and late watergrass [Echinochloa
oryzicola (Vasinger) Vasinger] (Krahemer et al. 2016; Yabuno
1966). These Echinochloa species evolved adaptive and competitive
characteristics to evade removal from rice fields during early rice
domestication (Guo et al. 2017; Ye et al. 2019), whereas in modern
agriculture, Echinochloa species have acquired or evolved
resistance to multiple herbicides, making them among the most
troublesome herbicide-resistant weeds in the world (Maun and
Barrett 1986; Norsworthy et al. 2014).

Owing to the regional and global economic relevance of
Echinochloa, the basic biology, interference in cropping systems,
and management techniques have been thoroughly reviewed since
the 1960s (Bajwa et al. 2015; Maun and Barrett 1986; Rahn et al.
1968; Rao 2021). Additionally, molecular analyses have provided
recent insights into its evolution as a weed (Guo et al. 2017; Wu
et al. 2022). Recently, global cases of herbicide resistance in
barnyardgrass were reviewed (Damalas and Koutroubas 2023).
With special reference to barnyardgrass, this article aims to 1)
highlight the current state of knowledge on economically relevant
Echinochloa species in U.S. rice production in terms of their
introduction and persistence/adaptation in U.S. rice agroecosys-
tems, provide a historical overview of their management and
emerging herbicide resistance issues; and 2) identify the research
needs for their sustainable management in U.S. rice on the cusp of a
paradigm shift in weed management approaches. Sustainability in
this context entails enhancing the prospect of sustained, long-term
positive outcomes through the implementation of measures to
mitigate the risk of rapid herbicide resistance evolution, to curtail
the abundance of emerged Echinochloa plants and its soil seed
banks, and to diminish its interference with rice.

The “Taxonomic Journey” of North American Echinochloa

In 1972, Gould et al. published a strikingly different classification
of Echinochloa species of North America (seven classes) than those
published by Hitchcock (1920) and Wiegand (1921) some 50 yr
earlier. In addition to Hitchcock’s and Wiegand’s classification, a
few more conflicting taxonomic treatments of the Echinochloa
complex and related taxa in North America were described or
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defined in the 1950s, 60s, and 70s. The status of native and
introduced (adventive) taxa and the intraspecific categories have
been the major sources of taxonomic disagreement. Hitchcock and
Chase (1950) and most authors who have published studies of the
species have combined native and introduced taxa listed under
barnyardgrass, whereas Gould et al. (1972), following the ideas
published by Wiegand (1921), separate the native populations as
rough barnyardgrass [Echinochloa muricata (P. Beauv.) Fernald].
Previously, many authors attempted to clarify the phylogenetic/
taxonomic problems in Echinochloa using seed protein electro-
phoresis and isozyme analyses (Asins et al. 1999; Gonzalez- Andres
et al. 1996), and several other molecular tools available at that time
(Aoki and Yamaguchi 2008; Danquah et al. 2002; Roy et al. 2000;
Tabacchi et al. 2006). Recently, Wu et al. (2022) have more
accurately distinguished Echinochloa species and varieties by
integrating morphological characteristics with multiple pieces of
genomic evidence, including genome size, reads mapping rate,
genome coverage, phylogeny, and population structure, providing
remarkable insights into the evolutionary trajectory of Echinochloa
species.

Barnyardgrass is native to Eurasia but is distributed worldwide,
principally in a latitudinal zone from 50°N to 40°S (Michael 2003).
It is common as an agrestal and as a ruderal weed in more than 60
countries and three dozen different crops (Holm et al. 1991) and is
widespread in North America from southern Canada to Mexico,
occurring on disturbed, moist, waste ground and as a serious weed
of rice and other irrigated crops. Barnyardgrass is highly variable
with respect to growth form (Smith et al. 1977), flowering time,
inflorescence architecture, anthocyanin pigmentation, and awn
length. Several ecological and physiological biotypes varying in
sensitivity to herbicides were reported from the northwestern
United States in the 1960s (Roché and Muzik 1964). In North
America, barnyardgrass is uniformly hexaploid, 2n=6x=>54
(Gould et al. 1972). Although the native species of North America,
rough barnyardgrass, closely resembles barnyardgrass morpho-
logically, they are genetically distant (Ruiz-Santaella et al. 2006).

Also native to Eurasia, late watergrass (2n=4x=36), pre-
viously classified as E. crus-galli (L.) Beauv. var. oryzicola (Vasing.)
Ohwi, E. oryzicola, E. oryzoides, E. phyllopogon, and E. macrocarpa
is an obligate weed of rice fields occurring in rice-growing regions
of Asia, Europe, Australia (Michael 1983; Yabuno 1966), and
California (Barrett and Seaman 1980). The introduction of late
watergrass was primarily as a seed contaminant of rice seed stocks,
as indicated by its collections right after the commencement of rice
culture in California in 1912 through 1915 (Barrett and Seaman
1980). Late watergrass established in monoculture Californian rice
fields in the 1970s and is rarely found outside of the rice
agroecosystem (Barrett and Wilson 1981), but this variety is not
present in the mid-South rice growing regions (Smith 1970). In
California, it is called “late watergrass” because it flowers late in
August to September (“late form”) with a close synchrony to rice.
This species is an example of a seemingly perfect crop mimic,
resembling rice in its morphology and phenology (Vasinger-
Alektorova 1931). Yabuno (1966), Gould et al. (1972), Barrett and
Seaman (1980), and later followed by Yamasue (2001), were not
sure of the ploidy status of this variety, and they identified it as a
variety of barnyardgrass, although Crampton (1964) and Yabuno
(1966) previously differentiated and elevated this taxon to late
watergrass.

Strikingly different from barnyardgrass and late watergrass is
early watergrass, 2n = 6x = 54 (sometimes previously identified as
E. crus-galli var. oryzicola or E. oryzoides). It has defining features
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such as long awns, and lacks visible anthocyanin pigments.
Nevertheless, it was considered a part of the variation encompassed
within barnyardgrass prior to the 1980s in California, as implied by
Barrett and Wilson (1980). This variety is confined to rice fields in
California, with its prominent erect plant architecture and
drooping inflorescence. There had been some confusion regarding
the taxonomic classification of early watergrass and late watergrass.
Barrett and Seaman (1980) wrote that two morphologically and
phenologically distinct forms of watergrass exist in California (the
“early form” and the “late form”), and considered both forms to be
under the same variety despite the fact that Yabuno (1984)
elucidated, from cytological and morphological studies, that early
watergrass is closely related to barnyardgrass, leading to the
suggestion that early watergrass be relegated to a variety of
barnyardgrass, which was apparently not well received by
researchers around the world. However, the recent genome-based
global delimitation of Echinochloa species by Wu et al. (2022)
places the “early form” in a separate variety of E. crus-galli (hence,
E. crus-galli var. oryzoides), corroborating the classification
reported by Yabuno (1984), and as opposed to earlier classification
as E. oryzoides (Ard.) Fritsch by Vickery (1975), Chirila and
Melachrinos (1976), and Clayton (1980).

Although Yabuno (1966) suggested that barnyardgrass is an
allohexaploid produced by natural hybridization between the
tetraploid late watergrass with a not-yet-discovered diploid species
of Echinochloa and subsequent chromosome doubling, it was not
clear until Ye et al. (2020) and Wu et al. (2022) revealed the
evolutionary trajectory of barnyardgrass and other species and
varieties of the genus Echinochloa (Figure 1A). Ye et al. (2020)
found that the diploid genome of E. haploclada (Stapf) Stapf is
similar to the unknown diploid progenitor genome of barnyard-
grass and used it as a female proxy progenitor. Late watergrass was
assumed to be a male donor in the polyploidization of hexaploid
barnyardgrass (Akoi and Yamaguchi 2008), but recent chloroplast
phylogeny analysis indicated that at least two male donors
contributed to the origin of barnyardgrass (Wu et al. 2022). The
whole-plant and a typical seed and inflorescence morphology of
barnyardgrass are shown in Figure 1 B and C, respectively.

Seed Size and Ecological Differentiation

The four Echinochloa species that are of major concern in U.S. rice
production, in order of ascending seed size, are junglerice,
barnyardgrass, late watergrass, and early watergrass (Costea and
Tardif 2002; Wu et al. 2022; Figure 2A). Seed sizes vary to some
extent, with barnyardgrass being the most diverse. Barnyardgrass
in California generally produces bigger seeds, as heavy as 3 mg
(Keeley and Thullen 1989). Junglerice and barnyardgrass seed
germination is relatively water intolerant, as explained below,
making these weeds common in the predominantly dry-seeded
mid-South rice fields (Jones 1952). Conversely, early watergrass
and late watergrass seed germination is flood tolerant and found in
water-seeded California rice (Kennedy et al. 1980). Seedling
emergence generally decreases with increasing depth, and to a
greater extent, under flooding conditions (discussed in the Seed
Germination and Seedling Emergence section). A generalized
scheme of their ecological differentiation is shown in Figure 2B.
The consequence of flooding (submergence) is anoxia in plant
tissues, which in turn, reduces the rate of energy production by
65% to 97% compared with the rate in air (Gibbs and Greenway
2003). Like rice, early watergrass and late watergrass can germinate
under the reduced oxygen of submerged conditions (Kennedy et al.
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Figure 1. Economically most relevant Echinochloa in U.S. rice fields. (A) Origin of
barnyardgrass (E. crus-gallivar. crus-galli) (adapted from Wu et al. 2022; Ye et al. 2020).
(B) Intrapopulation variation in whole plant morphology of a barnyardgrass
population from California (adapted from Norris 1996). (C) A typical seed and
inflorescence morphology of barnyardgrass (adapted from Jepson Flora Project).
Adapted with permission.

1980; Pearce and Jackson 1991; VanderZee and Kennedy 1981)
through an array of metabolic adaptations (Kennedy et al. 1992).

Echinochloa Interference and Seed Production
Interference with Rice

Echinochloa species have co-existed and co-evolved with rice for
millennia (Guo et al. 2017), and they have been competitive against
both primitive rice and modern, high-yielding rice varieties. Such
was probably not the case everywhere; Echinochloa once
threatened large-scale commercial rice production in California
(Chambliss 1915; Jones 1926). Impacts of barnyardgrass interfer-
ence have been documented in literature from various parts of the
world in several crops (reviewed in Bajwa et al. 2015). In the United
States, season-long interference from barnyardgrass can reduce
rice yield by up to 70% (Smith 1988). Interference by barnyardgrass
at 50 plants m~2 reduced rice yields of a short-statured cultivar
and a semidwarf cultivar by 28% and 65%, respectively, from
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Figure 2. Seed size in relation to ecological differentiation in Echinochloa species. (A)
Caryopsis size of three Echinochloa species (left, adapted from Costea and Tardif 2002)
and seed size distribution of the global collection of Echinochloa species (right,
adapted from Wu et al. 2022). (B) Flood as an ecological determinant for the
emergence and establishment of Echinochloa species along with the effect of seed
placement in the soil profile.

season-long competition, and barnyardgrass densities of 5 to 10
plants m~2 were determined to be economic thresholds for short-
statured rice cultivars (Stauber et al. 1991). Among semidwarf
cultivars, those with a longer maturity period competed more
effectively with barnyardgrass (Smith 1974). In a water-seeded
culture in California, barnyardgrass at a density of 86 plants m™>
reduced rice grain yields by 50% (Hill et al. 1985). Previously, it was
reported that the density of barnyardgrass is more important than
the density of rice for the outcome of the competition in terms of
rice yield loss and rice panicle number (Smith 1968; Figure 3A).
These results were later further supported by Ottis and Talbert
(2007) and by Ni et al. (2004) on relatively advanced rice varieties,
indicating no or little scope for using crop density as a management
strategy for barnyardgrass. It is noteworthy that barnyardgrass has
the potential to cause complete yield loss in rice (Johnson et al.
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1998) and nearly total crop failure in cotton (Gossypium hirsutum
L.) (Keeley and Thullen 1991).

Late watergrass, a common Echinochloa species in water-
seeded California rice, causes up to 50% rice yield losses (Barrett
1983). Interference by one plant of late watergrass with rice in
California was 2.3 times greater than intraspecific interference by
one rice plant, and the interference was mostly driven by root
interactions (Boddy et al. 2012). In that study, late watergrass
plants placed their roots deeper and on average produced seven
times more root dry weight than a widely used short-stature
modern japonica-type rice cultivar, indicating a remarkable niche
differentiation between the two species. When plots were kept
free of weeds, including Echinochloa species, for 30 d or longer
during a field experiment in California, rice yields were not
affected (Gibson et al. 2002). That finding leads to the suggestion
that management strategies that delay the germination or growth
of Echinochloa species relative to rice may give the crop a
significant competitive advantage. Early competition from
barnyardgrass for up to 20 d did not cause any rice yield loss
in Arkansas (Smith 1974). The interactions between weed and
crop could be influenced by several variables, two of which would
be maturity of the crop and crop stature.

According to a recent genomic analysis, Echinochloa lost a
considerable portion of disease-resistance genes during polyploid-
ization, indicating that natural selection may prefer a lower
investment in the resistance in this weed to maximize its growth
and reproduction (Ye et al. 2020). The next paragraphs highlight
the two distinctive characteristics that Echinochloa species possess
that allow them to successfully compete with rice.

C4 Photosynthesis

Echinochloa species possess C, photosynthetic cellular machinery.
Bouhache and Bayer (1993) studied photosynthetic characteristics
of rice (C;) and three species of Echinochloa to determine how
these characteristics vary with changes in light (Figure 3B) and
temperature. Echinochloa species showed higher photosynthetic
activity than rice as indicated by both plants’ response to changes
in intercellular partial CO, pressure, light, and leaf temperature. A
C,-specific carbon fixation enzyme in conjunction with spatially
separated photosynthesis phases with Kranz anatomy ensures high
photosynthetic efficiency in C, plants (Cui 2021; Sage et al. 2012),
providing ostensible competitive advantages such as higher rates of
CO, fixation, decreased photorespiration, and reduced transpira-
tion (Elmore and Paul 1983). However, the C, feature does not
confer a universal selective advantage (Elmore and Paul 1983).
Rather, a C, weed should have a competitive advantage over crop
species under many field situations, such as under high light
intensities and temperatures, and in dry conditions (Elmore and
Paul 1983). Black et al. (1969) also suggested that C, photosyn-
thesis may be associated with the more competitive weeds. As is the
situation when both weeds and crops are acclimated to the same
growth conditions, the C, weed frequently overwhelms the crop
(Holm et al. 1977) due to its higher net photosynthetic rate, which
drives biomass production and reduces environmental stressors in
C, plants, whereas these stressors are more readily experienced in
C; species (Elmore and Paul 1983). Estimates suggest that the
photosynthetic efficiency of C; plants is less than 4.6%, whereas it
can reach over 6% in C, plants (Zhu et al., 2008). Moreover, C,
plants are known to use water and nitrogen resources more
effectively than C; plants (Cui 2021).
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Smith 1968). (B) Photosynthetic output of Echinochloa species at increasing CO, concentration in comparison with rice (a. barnyardgrass, b. early watergrass, c. late watergrass,
and d. rice; adapted from Bouhache and Bayer 1993). (C) Inhibition of rice seedlings by 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) extracted from barnyardgrass

seedlings (adapted from Guo et al. 2017).

Allelopathy

Recent studies have shed insight on how barnyardgrass interacts
with rice. In response to rice allelopathy, barnyardgrass is thought
to respond by inhibiting the signal transduction of plant hormones
(Fang et al. 2015). Recently, three functional copies of the 2,4-
dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) synthe-
sis gene cluster have been discovered in barnyardgrass (Guo et al.
2018). DIMBOA or its analogs are the predominant representa-
tives of benzoxazinoids in plants (Frey et al. 2009), which function
as allelopathic compounds against rice in the field (Guo et al. 2017).
When barnyardgrass was cocultured with rice, transcriptomic
analysis showed that expression of genes implicated in metabolic
pathways and those associated with cytochrome p450 monoox-
ygenases (CYPs) were enriched and elevated (Guo et al. 2017).
Also, the allelochemical DIMBOA gene cluster was activated in
response to co-cultivation with rice (Guo et al. 2017), indicating a
key role for DIMBOA in competitive interactions with rice (Guo
et al. 2018). As low as a 0.08 mM concentration of DIMBOA
inhibited rice height and biomass in laboratory conditions (Guo
etal. 2017; Figure 3C). Intriguingly, a gene cluster for momilactone
A synthesis in barnyardgrass concurrently expressed more after a
fungal pathogen infection, indicating that cohabiting with rice
benefits barnyardgrass because of enhanced resistance to blast-
infection (Guo et al. 2017, 2018).

Seed Production

Seed production of Echinochloa species, specifically barnyardgrass,
has been reported to be highly variable across environments (Clay
et al. 2005; Holm et al. 1977; Maun and Barrett 1986; Norris
1992b). Barnyardgrass plants produced 7,170 total seeds according
to Stevens (1932), whereas Barrett and Wilson (1983) recorded
nearly 18,000 seeds, and Holm et al. (1977) reported up to 40,000
seed per plant. Research in California exceeded those numbers and
estimated that barnyardgrass growing in sugarbeet (Beta vulgaris
L.) fields averaged nearly 100,000 seed per plant (Norris 1992a).
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According to Mitich (1990), barnyardgrass has the potential to
produce up to 1 million seeds per plant in California. Seed
production in barnyardgrass can be highly variable depending on
local growing conditions, nutrient availability, and day length
(Maun and Barrett 1986), the associated crop (Clay et al. 2005;
Gibson et al. 2003; Lindquist and Kropff 1996), and time of
emergence relative to the crop (Bagavathiannan et al. 2012; Bosnic
and Swanton 1997). In Ontario, Canada, Bosnic and Swanton
(1997) investigated the seed production of barnyardgrass in corn
(Zea mays L.) crops and reported that at a density of 10 plants m~2,
barnyardgrass produced up to 34,600 seeds m~2 when it emerged
by the 3-leaf stage of the crop, whereas the seed production
drastically decreased to 2,800 seeds m™? when it emerged after the
4-leaf stage. In Greece, at a similar density (5 to 10 plants m™ of
crop row), barnyardgrass produced many fewer seeds per plant
(1,300) when it emerged with corn, and only 170 seeds per plant
when emergence was delayed until the 6-leaf stage (Travlos et al.
2011). Likewise, in South Dakota, barnyardgrass at a density 1.3 of
plants m™ among corn plants produced seed ranging from 3,385
seeds per plant when planted prior to crop emergence to 158 seeds
per plant when planted at the 2-leaf stage (Clay et al. 2005). With
soybean [Glycine max (L.) Merr.], however, Clay et al. (2005)
reported that barnyardgrass failed to produce any mature seeds.
With rice, barnyardgrass seed production ranged from 2,800 seeds
per plant when it emerged with the crop to 100 seeds per plant
when it emerged 45 d after rice emergence (Chauhan and Johnson
2010). When emerging with the crop, barnyardgrass produced
16,500 to 35,500 seeds per plant with cotton and 2,900 to 39,000
seeds per plant with rice in Arkansas, and the seed production
drastically decreased when barnyardgrass emerged 5 wk or more
later (Bagavathiannan et al. 2012). Similarly, Tahir and Roma-
Burgos (2021) reported variable seed production among bar-
nyardgrass accessions collected from rice fields in Arkansas in a
common garden study. In the same study, few accessions of E.
colona produced as much as a three-fold greater number of seed
(>200,000 seeds per plant) compared to barnyardgrass.
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Collectively, these data suggest that seed production by
Echinochloa is highly variable across crops and environments,
and ecotype differences likely play a significant role in its fecundity.

Seed Dormancy, Germination, and Seedling Emergence
Seed Dormancy

Seed dormancy is crucial for plant ecology because it enables seeds
to endure conditions that are unfavorable for seedling emergence.
Seed longevity and seed dormancy characteristics are also
attributed to the persistence and weediness of Echinochloa species.
It has long been known that fresh seeds of barnyardgrass exhibit
innate dormancy, the duration of which varies considerably
(Barrett and Wilson 1983; Rahn et al. 1968), and the dormancy is
attributed to the pericarp and epidermis (Arai and Miyahara 1963).
Even more pronounced is the variability among accessions as
reported by Barrett and Wilson (1983), for which germination
capacity ranged from 0% to >75%. The duration of dormancy is
partly determined by the size of caryopses (Honek and Martinkova
1996). As a result, a fraction of early produced large caryopses may
germinate shortly after they ripen, and a new cohort of seedlings
may be established in the same year. In a common garden
experiment, three out of nine accessions of barnyardgrass from
Arkansas that were after-ripened at room temperature for 6 mo
remained dormant, whereas only two accessions of junglerice out
of 77 accessions were dormant (Tahir and Roma-Burgos 2021).
The other larger-seeded types (early watergrass and late water-
grass) are known to have minimal dormancy. Barrett and Wilson
(1983) compared germination of 18 populations of barnyardgrass
and 11 populations of late watergrass with 9- or 15-mo-old seeds
and found that the decay of dormancy in barnyardgrass was less
rapid than it was in late watergrass following dry storage and burial
in soil. Dormancy is generally greater in barnyardgrass than in
junglerice seeds (Chul and Moody 1989).

Most research on dormancy has occurred in ex situ
environments involving a single population. A better compre-
hension of the dormancy and germination behavior of varieties of
Echinochloa species and populations as affected by tillage and seed
depth in situ would aid in the more accurate prediction of seedbank
dynamics of Echinochloa species. Despite the fact that seed
dormancy is the single most important feature of weed seedbank
dynamics and periodicity, it has been customary to avoid
addressing dormancy directly within predictive models due to
its complexity (Grundy 2003).

Seed Germination and Seedling Emergence

Seedling emergence is a manifestation of the dormancy status,
germination requirements, and growth of seedlings to the surface
(Vleeshouwers and Kropft 2000). It is one of the most important
demographic events in the life cycle of an annual plant species
because the emergence timing determines its survival and
reproductive success (Forcella et al. 2000), and this is especially
true for agricultural weeds. Much research has occurred since the
1930s to understand the effect of manipulation of moisture and
seeding depth on Echinochloa emergence. Important research
findings on aspects that have shaped today’s rice production
practices and been the major determinant of the population
dynamics of Echinochloa species are highlighted below.
Common varieties of Californian barnyardgrass populations
seeded on puddled soil emerged to a 100% stand, but those
submerged 5, 10, 15, 20, and 25 cm emerged to a 10%, 5%, 1%, 0%,

https://doi.org/10.1017/wet.2023.52 Published online by Cambridge University Press

457

and 0% stand, respectively (Jones 1933). Later, in the 1960s, it
became apparent that some Echinochloa plants were emerging
through the water-flooded rice fields. Barrett and Wilson (1983)
studied the effects of soil moisture and seed burial depth on two
Echinochloa species, barnyardgrass and late watergrass. When soil
moisture was at field capacity, the seeds of both types germinated
equally well at all depths, but the maximum number of seedlings
emerged from 1- to 2-cm depths. Seedling emergence decreased
with the depth below 2 cm, reaching zero at 10-cm depth. The
emergence occurred first at shallower depths. Most of the surface-
lying seeds that germinated failed to produce seedlings, probably
because of a lack of moisture. In saturated soils, however, seed
burial caused a reduction in the rate of emergence even at 0.5- to 2-
cm depths; seedling emergence was significantly greater at all
burial depths in late watergrass as compared to barnyardgrass; and
no seedling emergence in barnyardgrass occurred from 2 ¢cm or
deeper depths.

In another study, seedling emergence of late watergrass was also
greater than barnyardgrass from soil flooded to 9- and 18-cm water
depths (Barrett 1983). Anaerobically grown late watergrass seeds
are metabolically active, which may explain their ability to emerge
from flooded rice fields (Kennedy et al. 1980). In a pot culture
experiment with Crowley silt loam soil in Stuttgart, Arkansas,
seedling emergence of barnyardgrass decreased by 90% with
flooding to 1.3 cm (Smith and Fox 1973). Arai and Matsunaka
(1966) reported that when the soil moisture content was 70% to
80% of field capacity, a Japanese population of barnyardgrass seed
germinated as deep as 10 cm in the soil. But when the soil was
submerged, the seeds germinated only in the top 2 cm of soil. The
seedling emergence of barnyardgrass was greatest from shallow
depths of 1 to 2 cm in a fine, sandy loam soil (Dawson and Bruns
1962), and the best germination occurred at 70% to 90% field
capacity (Arai and Miyahara 1963; Brod 1968). The relatively large
seeds of Californian barnyardgrass (weighing up to 3 mg) have
been reported to emerge (up to 16%) from 10.1 cm or deeper
depths under nonflooded conditions (Keeley and Thullen 1989).
Collectively, these results give insight into how moisture and
seeding depth affects emergence of Echinochloa species
(Figure 2B).

Several other factors have been shown to affect Echinochloa
emergence. Seeds in which dormancy had been broken (1 yr old)
germinated best with continued exposure to light (60%) as
compared with continuous darkness (6%) (Rahn et al. 1968). More
mature (dark gray, brownish, and shiny) seeds produced
significantly greater germination than immature (light gray) seeds
(Rahn et al. 1968). The seeds may germinate at a wide soil pH range
of 4.1 to 8.3 (Arai and Miyahara 1963), but the optimal pH for
germination is around neutral (Brod 1968). Echinochloa species
seeded 30 d after rice in a field experiment in California did not
survive (Gibson et al. 2002). No reduction in germination of seeds
buried in submerged soil for 30 mo was observed by Roché and
Muzik (1964); however, seeds buried at 10- and 20-cm depths
under nonflooded soil conditions for the same period lost
considerable viability. Dawson and Bruns (1975) buried seeds of
barnyardgrass at 2.5-, 10-, and 20-cm depths in irrigated and
nonirrigated sandy loam soil, and they showed that seeds exhumed
from 10- to 20-cm depths had highest germination rates in the
second year after burial. The seeds buried for 13 yr had 3% viability
but those buried for 15 yr were nonviable. Seeds buried at a 20-cm
depth remained viable for a longer period than at 10 cm probably
because of greater induced dormancy (Roché and Muzik 1964).
Germination was more rapid in sandy loam rather than loam soil,
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(B) Barnyardgrass weekly emergence at two sites in Arkansas in 2008 (adapted from
Bagavathiannan et al. 2011). *Percentage of total seasonal emergence.

and soil compacted by tamping and surface watering in a
greenhouse produced a higher germination rate (Rahn et al. 1968).
Robert et al. (1983) showed thermal adaptation and acclimation of
barnyardgrass at the enzyme level, especially in populations
collected from warmer locations. A recent report from Europe
indicates that adaptation to local environmental conditions leads
to interpopulation differences in base temperature, which affects
the emergence process in barnyardgrass (Royo-Esnal et al. 2022).
Barnyardgrass seeds were found to germinate in a wide soil pH
range of 4.7 to 8.3 (Maun and Barrett 1986). Laboratory studies on
junglerice in the Philippines determined that temperature, light,
salt, osmotic stress, soil pH, seed burial depth, and rice residue
influenced its germination and emergence (Chauhan and
Johnson 2009).

In a study on naturally occurring seedbanks in Arkansas,
barnyardgrass exhibited an extended period of emergence, with
emergence varying widely in the initiation time and the duration
across sites and years (Bagavathiannan et al. 2011). Such variation
was attributed to corresponding rainfall events; however, the
vertical distribution of seed in the soil profile was not considered,
which is one of the key components to be considered for emergence
modeling (Grundy et al. 2003). The two contrasting emergence
patterns along with relative crop planting time in Arkansas are
shown in Figure 4 A and B. Nonetheless, seedling emergence
patterns may also be strongly affected by differences in seed
dormancy and burial depth and may vary among populations
(reviewed in Grundy 2003). Accurate prediction of barnyardgrass
emergence, however, will require experiments that adequately
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control the sources of such variations (Bagavathiannan et al. 2011).
In California, late watergrass populations emerge in a biphasic
pattern, and the ability to model the second phase of the biphasic
emergence curve is necessary (Brim-DeForest et al. 2022).

Echinochloa - A Persistent Issue in US Rice

Considering that all the economically relevant Echinochloa in U.S.
rice production are introduced species and have persisted through
the most advanced weed management tools at our disposal,
revisiting the historical trajectory of their agroecology is important.
Broadly, water management and the use of herbicides that shaped
the agroecosystem can be attributed as the determinants driving
their population dynamics over the course of the century-long
history of U.S. rice production (Figure 5).

In the USDA Farmer’s Bulletin (#688), published within 3 yr of
commencement of rice culture in California, CE Chambliss (1915)
wrote “In three seasons, this weed has become a menace to the rice
crop of Sacramento Valley, and unless serious action is taken for its
control or eradication its presence may seriously affect the normal
development of the rice industry of the state. This may be
effectively done through county or community organizations with
police power.” In the same bulletin Chambliss mentioned that
some farmers spent more than 25% of the total cost of rice
production just to manually control the weed. However, according
to the reports from the 1930s and 1950s (Jones 1938, 1952),
Echinochloa was not among the top five weeds in the early years of
commercial rice cultivation in the mid-South. The water-seeding
and continuously flooded rice culture that was developed in 1920s
was the savior of the young California rice industry that was
threatened by barnyardgrass. This method, in which water is
maintained on the fields to a depth of 8 to 20 cm for the duration of
rice growth, helped to reduce infestations of barnyardgrass in rice
fields (Jones 1923, 1933).

Because rice grew and yielded well in a water-seeding culture,
this method became popular in California in the 1920s (Jones
1933) and later spread to the southern rice-growing area to control
Echinochloa species (Smith and Fox 1973). Right before the
introduction of propanil, the widespread use of 2,4-D to control
dicotyledonous weeds in the 1950s favored Echinochloa (Holm
etal. 1977) in U.S. rice fields, by creating an opportunity for, and an
aggressive population shift to, grassy weeds; like the proliferation
of Setaria species in U.S. corn and soybean fields (Oliver and
Schreiber 1971; Warwick 1990). California rice remained
predominantly water-seeded; however, mid-South rice producers
shifted to dry-seeding after propanil became available to control a
broad spectrum of weeds.

Since then, it was apparent that Echinochloa species, particu-
larly barnyardgrass, became the keystone species in the mid-South
(Smith 1970). A well-developed seed dormancy, as noted earliest
by Rahn et al. (1968) and Holm et al. (1977), as well as the slower
rate of dormancy decay in barnyardgrass, according to Cohen’s
prediction (Cohen 1966) are the traits to be selected in habitats
where the risk of failure is high from propanil use (Barrett and
Wilson 1981). In contrast, the relatively rapid decay of dormancy
and the synchronous germination in early watergrass and late
watergrass are traits that Cohen (1966) and Harper (1977) both
predicted to be selected in a homogeneous environment where the
probability of successful reproduction is high (Barrett and Seaman
1980). The water-seeded monoculture Californian rice agro-
ecosystem is an excellent example of a homogeneous environment.
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Figure 5. Historical trajectory of Echinochloa establishment in U.S. rice crops with milestones in its management. Following multiple introductions, the population dynamics of
Echinochloa in U.S. rice have been primarily driven by water management and the use of herbicides. Water-seeding rice culture was developed in the 1920s to reduce infestations of
barnyardgrass in rice fields. The widespread use of 2,4-D to control broadleaf weeds in the 1950s favored Echinochloa. Producers in the mid-South shifted to dry-seeding rice after
propanil became available in the early 1960s, when barnyardgrass became the keystone rice weed. The long-established water-seeded monoculture of California rice was selected
for large-seeded, water-tolerant late watergrass. For the past 50 yr, these species have prevailed in their respective regions with the evolution of resistance to almost all major
herbicides that were deployed through the decades, leading to the increased abundance of Echinochloa in U.S. rice. Recent reports indicate an increase in barnyardgrass in
California and junglerice in mid-South rice in the last two decades. MHR, multiple herbicide resistance.

The predictability of the rice field ecosystem from year to year
enabled these water-tolerant species to build up rapidly and
favored their spread throughout the rice-growing areas of
California, where they persisted in most rice fields despite attempts
at control by herbicides (Barrett and Seaman 1980). Additionally,
the large seeds of late watergrass probably enhanced their
competitive ability and favored coexistence with rice; they may
have originally been selected as an adaptation that enabled
seedlings to grow and emerge in a natural habitat with deep water
(Barrett 1983). Since late watergrass can establish successfully in
deep water, it replaced barnyardgrass as California’s most
economically important weed of rice (Barrett 1983; Barrett and
Seaman 1980). However, as noted by Smith and Fox (1973),
barnyardgrass persisted in shallow-water areas and field borders
thereafter. For the past 50 yr, species of Echinochloa, particularly
early watergrass and late watergrass in California and barnyard-
grass in the mid-South, have prevailed. With the evolution, spread,
and prevalence of resistance to almost all the major herbicides
deployed, simultaneously or in sequence, as discussed in the later
section, it can be assumed that the abundance of Echinochloa in
U.S. rice fields has increased compared to that of the era prior to
the 1990s.
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Outstanding Question: Are Barnyardgrass in California and
Junglerice in the Mid-South on the Rise?

Several anomalous reports in recent years (Lui et al. 2021, 2022;
Rouse et al. 2018; Tahir and Roma-Burgos 2021; Wu et al. 2022)
raise the question of whether junglerice has become more
established than was previously believed in mid-South rice fields,
even to the extent that it has indeed surpassed barnyardgrass. The
greater representation of junglerice than barnyardgrass in the
samples analyzed does not necessarily indicate the greater relative
abundance of junglerice. Nonetheless, it is well recognized that in
glyphosate-based cropping systems weed spectrums will adapt or
vary in response to changes in production methods or new
technologies, especially in crop fields where yearly monoculture is
frequently the goal (Reddy and Norsworthy 2010; Webster and
Coble 1997; Webster and Sosnoskie 2010), favoring the perpetua-
tion of one or several weed species, including those that have
evolved the ability to escape herbicide applications (Norsworthy
et al. 2013). This observation in mid-South rice may be attributed
to the higher prevalence of herbicide resistance in junglerice, as
reported by Rouse et al. (2018) in Arkansas and by Lui et al. (2021)
in Texas. It may also reflect its proliferation in the continuous dry
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seeding and delayed flooding rice culture, as well as the rice-
soybean production system practiced in the region, or a
combination of all these factors. Unlike barnyardgrass, junglerice
is intolerant of anaerobiosis, and hence cannot germinate in the
absence of oxygen (Mujer et al. 1993; Rumpho and Kennedy 1983).

Counterintuitively, a majority of Echinochloa seed samples
submitted to the University of California-Davis Weed Science
Program for resistance screening from 2015 to 2020 were identified
as barnyardgrass. It is widely accepted that late watergrass is the
most prevalent species in water-seeded California rice crops and
that barnyardgrass is not a relevant weed in many fields (Marchesi
2009). In flooded rice fields in Japan, Yamasue (2001) observed
that the dominant species of Echinochloa weeds is changing from
late watergrass to barnyardgrass because of the shift from manual
to herbicidal weed management. Ironically, early watergrass and
late watergrass have greater concentrations of antioxidants in their
leaves, which may be attributed to greater tolerance to herbicides
compared to barnyardgrass (Damalas et al. 2008). Thus, it may not
be the relative sensitivity to herbicide among the species, but
rather, due to compromised deep water in rice fields. Soon after the
introduction of propanil, Oelke (1966) reported that a deep flood
inhibits growth of young rice seedlings, reduces tillering, and
lowers grain yield, whereas Smith et al. (1977) reported that a
shallow flood of 2.5 cm to 10 cm, combined with the use of effective
herbicides, resulted in weed species control and increases in rice
yields compared with a deep flood culture. In the last two decades,
most rice fields in California have been treated postemergence with
herbicides, including propanil, and in almost all cases, the water
depth is lowered so as to expose weed foliage to the herbicide. It is
likely that such practices have favored relatively flood-intolerant
species such as barnyardgrass. These observations also provoke us
to question the extent of hybridization among Echinochloa forms
as we discussed in the previous section. This necessitates more
efforts to differentiate between established and emerging biotypes
of Echinochloa in the California rice agroecosystem. Furthermore,
there have been reports of Echinochloa in some rice fields that have
yet to be properly identified (WB Brim-DeForest, personal
communication). Additionally, a recent study showed genomic
evidence of admixtures in some Echinochloa samples, leading to
unresolved taxonomic classification for those samples (Wu
et al. 2022).

Insights From Recent Genomic Studies

Three recent genomic studies have shed light on how Echinochloa
have evolved as a weed, made adaptations, and interacted with rice.
Pertinent information from these studies to a varying extent has been
mentioned throughout this article. Guo et al. (2017) for the first time
generated a draft genome of barnyardgrass and provided novel
insights into the adaptive molecular mechanisms for its survival and
invasiveness in rice fields. The study specifically revealed biosynthetic
gene clusters responsible for allelopathic compounds and phytoalexin
(DIMBOA and momilactones) in the barnyardgrass genome and
decoded evolutionary trajectory of coevolution with rice. Ye et al.
(2020) improved the genome assembly quality by generating PacBio
long reads representing ~86x coverage of the genome with contig and
scaffold N50 sizes of 1.57 Mb and 4.09 Mb, respectively. One of the
significant discoveries of the genome research was that Echinochloa
may have lowered disease resistance in favor of aggressive growth and
development. The other study by Wu et al. (2022) unprecedently
distinguished a global collection of Echinochloa species and varieties
(a total of 596 samples) by integrating morphological characteristics
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with multiple pieces of genomic evidence. As highlighted by Wu et al.
(2022), genomic resources made accessible will accelerate research in
Echinochloa evolutionary biology, evolution of resistance to herbi-
cides, interaction between the crop and the weed, and the
development of novel weed control strategies. These two studies
discovered that this hexaploid genome, yet compact (~1.4 Gb),
contains an incredibly large repertoire of genes for enzymes involved
in xenobiotic detoxification, including ABC transporters, CYPs, and
glutathione S-transferases (GSTs). These genes in barnyardgrass
outnumber those typically found in other grass species. These are the
major genetic components that are known to contribute to increased
capacity to detoxify herbicides (Yu and Powles 2014); hence, the
widespread occurrence of herbicide resistance in barnyardgrass is not
surprising.

Of particular interest from the study by Wu et al. (2022) is that
the Echinochloa samples collected from U.S. rice fields were more
diverse than Echinochloa from other countries, albeit the U.S.
samples were collected from a narrow geographic area. The study
did not represent any samples from California. Of the 39 samples
from the United States, more than one-third were E. crus-galli var.
praticola and none of them were barnyardgrass. Such a large
representation of a less-known Echinochloa is likely due to the site
of collection being far from rice fields. Of the six samples collected
from Arkansas, which appeared to be from the same rice field
based on GPS coordinates, all were junglerice. Further research
with a wide pool of Echinochloa samples from U.S. rice fields is
necessary to address this apparent shortcoming. Genomic
proximity, tiller angle, and dominant types of three varieties of
E. crus-galli are shown in Figure 6 (adapted from Wu et al. 2022).
Although the varieties show little differentiation at the genomic
level, their plant architecture is quite different. The seed size of E.
crus-galli var. praticola is on the lower side of barnyardgrass and it
has a very prostrate morphology (Wu et al. 2022).

Herbicide Resistance in Echinochloa: An Increasingly
Serious Issue

For the past three decades, the U.S. rice industry has been
experiencing the predicament of an emerging number of
herbicide-resistant Echinochloa species, even for those herbicides
that have never been used or are rarely used. Several reports of
increased abundance of barnyardgrass populations in response to
triazine and thiocarbamate herbicides started to appear in the
1970s and 1980s (reviewed in Maun and Barrett 1986). That it
could evolve resistance to herbicides was realized as early as the
1980s (Maun and Barrett 1986; Mitich 1990), and since then this
fact has been implicated in its remarkable persistence in modern
rice cropping systems. Most cases of herbicide resistance in
Echinochloa in U.S. rice crops have been documented in the
International Herbicide Resistant Weed Database (Heap 2023).
The first cases of herbicide resistance in two Echinochloa
species, early watergrass and late watergrass, came from water-
seeded Californian rice in 2000 (Fischer et al. 2000a). For reference,
herbicide use history from 1990 through 2018 in California rice
crops is shown in Figure 7 (California Department of Pesticide
Regulation 2022). Despite the fact that molinate was the only major
grass herbicide used in California, those populations of late
watergrass were reported to have resistance to multiple herbicides
from different chemical classes and modes of action (MOAs)
including molinate, thiobencarb (thiocarbamates), cyhalofop-
butyl, fenoxaprop-ethyl (aryloxyphenoxy propionate), bispyri-
bac-sodium (pyrimidinyl benzoate), penoxsulam
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(trizolopyrimidine sulfonamide), and clomazone (isoxazolidi-
none) (Fischer et al. 2000a, 2000b; Osuna et al. 2002; Ruiz-
Santella et al. 2006; Yasuor et al. 2008, 2009). Besides
thiocarbamates, all other herbicides were under development at
that time. None of the populations were resistant to the less-used
herbicide propanil, although they were found to be less sensitive
compared to susceptible populations (Fischer et al. 2000b; Yasuor
et al. 2012). Quite surprisingly, the same populations were later
found to be resistant to another herbicide that had also never been
used, quinclorac (Yasuor et al. 2012). A single, introduced
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rice herbicides (introduced before 2000), and (B) second-generation rice herbicides
(introduced after 2000).

multiple-resistant biotype (“the founder effect,” as termed by
Gressel and Segel 1990) dispersed throughout California under
continued use of molinate and/or thiobencarb (Tsuji et al. 2003).
Recent results from herbicide resistance testing on grower-
submitted samples from California rice fields from 2015 to 2020
indicated the presence of multiple resistance in the vast majority of
the Echinochloa samples and the occurrence of multiple resistance
up to five MOAs (Becerra-Alvarez et al. 2022).

Earlier work suggested that the resistance had primarily endowed
by enhanced CYP degradation in late watergrass (Osuna et al. 2002;
Yun et al. 2005; Yasuor et al. 2009), with some role of GST in
conjugating herbicides (Bakkali et al. 2007). More recently, Fang
(2019) and Twakami et al. (2014, 2019) further uncovered the role of
two cytochrome P450 enzyme (CYP) genes, CYP8IAI2 and
CYP81A21, in imparting resistance to these herbicides from a wide
range of classes. Recent studies on the resistant late watergrass by
Dimaano et al. (2022) demonstrated that resistance to thiobencarb is
independent from these CYP genes. In California rice, flooded
conditions in the late watergrass populations induces metabolic
adaptations (Boddy et al. 2012) that might lead to the selection of the
CYP genes that enable survival after an application of thiobencarb.
Additionally, the herbicide bensulfuron-methyl (sulfonylurea) was
widely used for controlling broadleaf and sedges in California rice in
the 1980s and 1990s; however, it also partially controlled Echinochloa,
indicating a sublethal selection from this herbicide (Fischer et al.
2000b). Most herbicide resistance mechanism studies in California
Echinochloa have been conducted primarily on early watergrass and
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late watergrass. Hybridization among Echinochloa species has been
suggested or experimentally shown, including recent genomic
investigations  that show some degree of gene flow
(Bagavathiannan and Norsworthy 2014; Marchesi 2009; Wu et al.
2022; Yabuno 1981).

Herbicide resistance by Echinochloa species in Arkansas has
been well documented via routine screening or surveys; for
example, by Riar et al. (2013b), Norsworthy et al. (2013), Rouse
etal. (2018), and Butts et al. (2022), and the early cases of resistance
were reviewed by Talbert and Burgos (2007). Resistance to the
extensively used acylanilide herbicide propanil in U.S. rice
production (Hoagland et al. 2004) was reported in Echinochloa
populations from several mid-southern regions in the early 1990s
(Baltazer and Smith 1994; Carey et al. 1995a, 1995b). Since its
commercialization in the 1960s, propanil had remained the
primary herbicide for controlling Echinochloa in mid-southern
rice for more than three decades (Carey et al. 1995b). Introduced in
1992, quinclorac controlled propanil-resistant barnyardgrass
effectively when mixed with propanil (Baltazar and Smith 1994;
Talbert and Burgos 2007); however, several biotypes with multiple
resistances to propanil and quinclorac had evolved by the early
2000s (Malik et al. 2010), portending evolution of resistance to the
next tool, clomazone (Norsworthy et al. 2007b), essentially
threating the economic viability of rice production in the U.S.
mid-South (Malik et al. 2010). Thereafter, clomazone was widely
used to control propanil- and quinclorac-resistant barnyardgrass
(Norsworthy 2007a), and still today remains the major herbicide in
mid-southern rice because resistance to this herbicide is not
widespread (Norsworthy et al. 2014; USDA-NAAS 2022).
Following the commercialization of imidazolinone-resistant rice,
imazethapyr was another option for controlling barnyardgrass
(Norsworthy et al. 2007a). However, the instances of overuse of the
herbicide, especially without crop rotation and the use of multiple
effective herbicide modes of action, led to selection for the
acetolactate synthase-resistant barnyardgrass (Norsworthy et al.
2013; Riar et al. 2013a, 2013b) in a short time. Once used in nearly
half of the rice fields, imazethapyr use has decreased drastically in
recent years (USDA-NAAS 2014, 2022).

Herbicide resistance in Arkansas rice fields has continuously
increased in frequency and complexity with additional resistance
to aryloxyphenoxy propionate herbicides (cyhalofop-butyl, qui-
zalofop-ethyl) among Echinochloa populations, including jungler-
ice (Rouse et al. 2018, Figure 8). The evolution is apparently a
consequence of sequential selection with different major herbicide
MOAs, starting with propanil followed by quinclorac and others
(Rouse et al. 2018), unlike in California rice where simultaneous
resistance to multiple MOAs occurred. Recently, resistance to the
newly registered rice herbicide, florpyrauxifen-benzyl, has been
reported in barnyardgrass (Hwang et al. 2022). The mechanism is
nontarget site-based and involves hydrolysis of a methoxy group
followed by glucose conjugation (Hwang et al. 2022; Takano et al.
2023), and it is believed to have evolved under the selection of an
older rice herbicide, penoxsulam (Takano et al. 2023). Earlier, a
similar case was reported in a population of barnyardgrass from
China that had been under penoxsulam selection for several years
(Fang et al. 2019).

Research Efforts in the Nonchemical Weed Management
Space

In a recent survey on weed management concerns in Arkansas rice,
effective, nonchemical weed management strategies were rated as
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Figure 8. Resistance profile of Echinochloa species submitted for resistance testing in

Arkansas (2010 to 2016) to four commonly used rice herbicides (adapted from Rouse
et al. 2018).

only moderately important as current research or an educational
effort, even though 78% of the respondents reported high concern
with herbicide-resistant weeds (Butts et al. 2022). This finding
indicates an inadequate appreciation of the fundamental impor-
tance of nonchemical approaches for sustainable weed manage-
ment and indeed suggests that the views of rice producers on weed
control need to change considering the expanding herbicide
resistance profile in Echinochloa species. It is a fact that the
commercialization of highly effective herbicides has de-escalated
the scope, opportunities, and advancement of nonchemical
approaches to weed management. Nonetheless, research in the
1970s and 1980s reported successful management of barnyardgrass
under certain crop production practices, particularly with the use
of tillage and crop rotation (reviewed in Maun and Barrett 1986).
Although the greater need for integrated weed management
(IWM) has been realized by some researchers (Hill et al. 1994),
widespread recognition of herbicide resistance as an inevitable
consequence has emerged only in the past two decades, and
significant research and extension efforts are being placed on
nonchemical methods of weed control as a fundamental element of
an IWM strategy. Specifically for rice, the use of harvest weed seed
control (HWSC) methods and cover crops in the mid-South and
alternate dry and wet seeding in California are being considered as
potential IWM components of sustainable management of
Echinochloa.

Harvest Weed Seed Control

The HWSC method effectively expands the number of nonchem-
ical strategies for weed management, but it has been underused
until recently. Originating in Australia (Walsh et al. 2013) and
deemed an effective tool for managing multiple herbicide-resistant
Italian ryegrass in cereal crops (Walsh et al. 2017), HWSC
strategies are currently being evaluated for use in U.S. field crops
(Norsworthy et al. 2020). As a potent weed seed recruitment
preventer (Walsh et al. 2017), this technique is seen as a vital
component of sustainable weed management because it directly
targets the weed soil seedbank (Norsworthy et al. 2012, 2020). In
order for Echinochloa to continue interfering with rice, its
seedbank must replenish. In a survey on the adoption of best
management practices for herbicide-resistant weeds in the mid-
southern United States, prevention of crop weed seed production
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was perceived as one of the most important practices in rice (Riar
et al. 2013b). HWSC techniques have the potential to efficiently
disrupt the seedbank replenishment process. Previous research on
barnyardgrass has shown that each plant retains approximately
43% of the total seed produced at the time of soybean maturity
(Schwartz-Lazaro et al. 2017), but information on seed retention of
Echinochloa species in rice is lacking. Seed shattering is well known
in Echinochloa species, yet some benefit to using the HWSC
method for barnyardgrass can be expected. Variations in seed
shattering/retention may exist among different forms of barnyard-
grass, and it should be considered in future research. In the context
of rice-soybean cropping systems of the U.S. mid-South and a
significant proportion under furrow-irrigated rice, another
problematic weed, Palmer amaranth (Amaranthus palmeri S.
Watson), is likely to drive HWSC adoption as encouraging results
are being reported regarding its effectiveness on this weed
(Norsworthy et al. 2020; Schwartz-Lazaro et al. 2017).

Unlike in the mid-South, the HWSC method has not yet gained
much interest in Californian rice. Earlier studies in California
reported that late watergrass flowered simultaneously with rice, but
most seeds were shed during the period of rice harvest (Barrett
1983; Barrett and Seaman 1980; Boddy et al. 2012), and compared
with susceptible plants, those that were resistant to multiple
herbicides tended to mature even earlier and shattered greater
proportions of their seed before rice harvest (Boddy et al. 2012;
Tsuji et al. 2003). Yabuno (1966) and Yamasue (2001) noted
similar observations for this type of Echinochloa in Japan. In a wild
form of E. oryzicola from China, Hirosue et al. (2000) reported that
the spikelet shattering percentage was 99.8% 80 d after heading.
Regarding barnyardgrass, several phenological and morphological
forms were reported in the 1920s, with varying seed shattering
characteristics (Jones 1923; Kennedy 1923), and even more forms
are apparent now. Seed shattering from barnyardgrass plants that
germinated in mid-May begin to appear by late July or early August
(Norris 1992a), whereas rice harvest in California does not begin
until October or November. However, barnyardgrass that has once
gone through the domestication process has a relatively less seed
shattering attribute (Wu et al. 2022) and could be a good target for
the HWSC method. Contrary to the results reported by Wu et al.
(2022), Costea and Tardif (2002) reported that spikelets persist in
the panicle longer in late watergrass than in early watergrass. Even
though the effectiveness of HWSC on a broad range of Echinochloa
species remains a question, research and analysis need to be
initiated to evaluate whether this strategy can yet be a significant
component of sustainable management of Echinochloa in
California rice.

Cover Crops

Cover crops historically have been adopted on a limited acreage to
protect highly erodible lands. However, they are becoming
increasingly popular due to the various benefits they offer for
soil health, crop productivity, and weed management, as well as the
incentives provided by government programs. Cover crops are one
of the cultural tools that aid in herbicide resistance management,
and their effectiveness in suppressing the initial flush of weeds with
various crops has been demonstrated by a recent meta-analysis
(Osipitan et al. 2019). Weeds that thrive in current agroecosystems
are generally susceptible to the negative effects of shade (Fenner
1978). These weeds are at one extreme of the adaptive continuum
in which their inherent physiological trade-offs prevent them from
fully adapting to low light (Givnish 1988). Cover crops create a type
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of agriculture that is diametrically opposed to conventional
systems; one that disfavors weeds that have adapted to emerge and
prosper in disturbed habitats over time. Given this, it is worthwhile
to develop cover crop techniques that can successfully smother
Echinochloa in rice and effectively reduce their short- and long-
term population dynamics. Even though cover crops might not be
immediately compatible with all rice cropping systems in the
United States, they can be successfully integrated into dry-seeded
rice culture, which is common in mid-southern states. Although
cover crop adoption is still limited by several factors such as cost,
availability, knowledge, and management challenges, as the
benefits of cover crops converge, conjoined with greater efforts
to promote grower awareness and support, it is highly promising
that the adoption of cover crops will be elevated.

Alternating Dry and Wet Seeding

Water-seeding (wet seeding) has been the predominant method of
rice cultivation in California since the 1920s (Hill et al. 1994) and
has been used to suppress competitive Echinochloa species (Adair
and Engler 1955), but this has led to the establishment of water-
tolerant introduced Echinochloa species (Hill et al. 1994). As
herbicide resistance by Echinochloa species emerged as a major
economic issue in California rice production (Fischer et al. 2000a;
Hill et al. 1994; Peterson et al. 2018), some growers began to modify
the dominant water-seeded system they had practiced (Hill et al.
1994). For example, rice seedbeds are prepared as usual and flushed
with water to promote weed germination, and then broad-
spectrum herbicides are used as a burndown treatment (Hill et al.
2006). Currently, drill-seeding (dry seeding) is practiced on a
limited number of fields in California. The use of alternate dry and
wet seeding has the potential to disrupt the ecological cycle and, as
a result, restrict the proliferation of Echinochloa species in the rice
cropping system since these species have a niche that is ecologically
distinct in terms of moisture regimes. Because frequent drought
has increased concerns about water management in California rice,
there may be an increase in the number of farmers who practice dry
seeding instead of the traditional continuously flooded system
(Brim-DeForest et al. 2022). Studies on the impact of dry seeding
on weed dynamics, its ecological fitness, or its role in managing
herbicide resistance have received some attention in recent years
(Brim-Deforest et al. 2017b, 2022; Ceseski et al. 2022; Pittelkow
et al. 2012). Brim-DeForest et al. (2017a) evaluated weed
community dynamics under various water management regimes
in California rice and found a greater abundance of Echinochloa
species occurred in a dry-seeded alternate wet and dry water
management regime compared to continuously flooded condi-
tions. However, the study did not consider the relative composition
of seedbanks of water-tolerant and water-intolerant Echinochloa
species or varieties.

Echinochloa in Furrow-Irrigated Rice

Furrow-irrigated rice has rapidly supplanted a significant acreage
of conventional rice in recent years in Arkansas (Hardke et al.
2022) and Missouri, driven by its potential benefits in terms of
simplifying crop rotations, decreasing expenses, providing more
options in crop management, and conserving water. This system
creates more temporal and spatial variability in moisture within
the field compared to conventional practices. Furrow irrigation is
expected to modulate several key factors in Echinochloa such as
emergence, interference with rice and other weeds, response to
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management interventions, and seedbank renewal. This type of
irrigation is generally practiced when crops are planted in rotation,
such as with soybean. To better comprehend how this production
system influences Echinochloa population dynamics, a relatively
longer-term study is required, and the ongoing research efforts
should also take junglerice as a potential invader of furrow-
irrigated fields into consideration.

Future Directions for Research and its Management

In protecting yield loss from weeds, particularly from Echinochloa
species, exciting and depressing moments have both occurred over
the course of commercial rice production in the United States.
While deep water-seeding saved the growing rice industry in the
early 20th century, the discovery of chemicals that selectively killed
Echinochloa and other weeds in U.S. rice fields has played a vital
role in realizing the monumental gain in rice productivity made
possible by improved production practices and the use of advanced
genotypes in the last six decades. The U.S. rice industry
experienced a “golden period” of weed control in the 1980s when
just two herbicides, often only one of which was active against
Echinochloa, would keep all the weeds in rice fields at bay. In just
six decades of chemical weed management, rice growers today have
options for more than a half dozen different MOAs to choose from
to target Echinochloa (Barber et al. 2022). However, as indicated by
the recent herbicide screening assays, many populations of
Echinochloa possess resistance to multiple MOAs of herbicides.
The selection of multiple herbicide resistance in Echinochloa
species has promoted the development or usage of already available
herbicides, but they afford only a partial answer to the weed
problem. It might seem intuitive that many herbicides are available
or becoming available to target Echinochloa, yet herbicides overlap
in their target sites, the mechanism that determines their fate
within the plant system, and the way that cellular machinery
protects against suffering damage from them. Hence, the selection
of mechanisms, especially those that confer the ability to
metabolize a broad range of chemical classes, has the potential
to render multiple herbicides ineffective. Because the number of
herbicide options for Echinochloa control is limited, rice
production in the U.S. is becoming more vulnerable to losses
from these weeds. The need for an IWM strategy to address
Echinochloa issues in US rice is evident. For a more Echinochloa-
resistant agroecosystem that dilutes selection from chemical
intervention measures, dynamic integration of nonchemical
components is important and an apparent future direction.
Research efforts into nonchemical practices must gain momentum
in the United States as well as globally, especially in light of
Echinochloa resistance to herbicides, even those recently intro-
duced. As we enter new endeavors for Echinochloa management, a
greater understanding is needed of the adaptive features of the seed
biology of such ecologically differentiated Echinochloa types/
varieties in varying agroecosystems. Effective management of
Echinochloa should rely on knowledge of its population dynamics,
including its reproductive potential as affected by chemical and
nonchemical intervention efforts. Such knowledge will be useful
for manipulating several crop production practices as valuable
tools in IWM practices.

Our experience with introduced Echinochloa species clearly
indicates that spread and local adaptation are continuous, ongoing
processes. Fifty years ago, some water-tolerant Echinochloa species
were unknown in U.S. rice fields, and for the last four decades, they
have been serious concerns in Californian rice fields. Seemingly,
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some Echinochloa species have been highly adapted to exploit new
opportunities provided by changes in management practices in rice
fields. It is to be expected that their response to fundamental
selection forces such as changes in crop management practices and
the consequential evolution to herbicides will continue to
determine the future of the Echinochloa species in U.S. rice fields.
The features and adaptations that the surviving Echinochloa plants
pick up in this fight will continue to be the immediate issues that
U.S. rice producers will face. Therefore, Echinochloa management,
as with other weeds, involves the management of selection
pressures. The past and present of Echinochloa weeds in U.S. rice
crops emphasize the need for understanding its future behavior.
From a weed management and overall crop production perspec-
tive, the biggest needs for Echinochloa management are the
prediction of seed dormancy behavior and seedling emergence
pattern, identification, and development; and discovering the most
effective use of chemical and nonchemical interventions. Finally,
Echinochloa seeds must be prevented from returning to the soil. A
modeling study suggests that highly effective herbicide applica-
tions and any other efforts that minimize seedbank size are vital for
preventing herbicide resistance in barnyardgrass (Bagavathiannan
et al. 2014). As highlighted by Bagavathiannan and Norsworthy
(2012), such efforts should take late-season seed production into
account. It is also crucial that effective control interventions reflect
how they affect weed fecundity (Norsworthy et al. 2018).

Research on the diversity in Echinochloa species driven by
management practices in recent decades should continue. Properly
construed, the apparent increase in abundance of some species/
types acknowledges the need to distinguish and respond to them.
Studies on a wider selection of samples is needed so as to elucidate
the extent of the diversity in the Echinochloa species, which will
lead to the development of prudent management strategies. Using
genomics, researchers might study how genetic changes, particu-
larity those that associate with their persistence mechanisms in
agroecosystems, have occurred after the multiple introductions of
Echinochloa species into U.S. rice and how many resulted from
hybridizations among them. A comprehensive genome analysis of
Echinochloa that have adapted to U.S. rice fields would probably
enable the reconstruction of the evolutionary trajectory of
Echinochloa species/varieties, shed light on the developmental
origins of diversity in morphological and physiological traits since
introduction, and pinpoint the scope and significance of gene flow
in the diversification of adaptive mechanisms under various
cultural and herbicide interventional regimes.

Obvious historical factors that have determined the persistence
and abundance of Echinochloa species, varieties, or ecotypes in U.S.
rice crops are the seeding method, water management, land
preparation, type and use pattern of herbicides, and their
interactions. Those are the ecological or crop production factors
that matter most, as they can determine whether, when, and where
one or the other Echinochloa species fail or prosper; which
production systems are resistant or liable to infestation by a
particular species or variety; the impacts that they cause; and the
approaches through which they can be managed. Long-term
studies comparing the reproductive success of a wide pool of
Echinochloa species under varying production systems, taking
shifting production practices into account, would provide insight
for actions that need to be taken to sustainably manage
Echinochloa. Recognizing and implementing ecological and
evolutionary principles being the central priority, future research
and the efforts should, therefore, lead to its sustainable
management through 1) a better understanding of their biology
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and ecology pertinent to their persistence in the rice agro-
ecosystems of the respective regions; 2) reproductive and genetic
mechanisms that drive herbicide resistance evolution, especially
that of multiple herbicide resistance; and 3) innovations or new
approaches that expand the number of control strategies and
effectively disrupt the process of their adaptations, including
evolution of resistance to herbicides.

Summary

1. The discovery of chemicals that selectively killed Echinochloa
and other weeds in U.S. rice fields has played a vital role in
protecting yield from the monumentally improved produc-
tivity of rice in the past several decades. Yet Echinochloa
species have been a constant concern and immediate issue for
U.S. rice production.

2. The spread and regional adaptation of Echinochloa species in
U.S. rice fields have been a rapid, continuous, and ongoing
process. The trajectory of adaptations that the survivors will
pick up in the future rice agroecosystems needs to be curtailed
with a greater variety of selective forces.

3. The major adaptation—resistance to multiple MOAs—has
promoted the development of new or usage of already
available herbicides, affording only a partial answer to the
weed problem.

4. As new herbicides are not effectively expanding the diversity
of selective forces for Echinochloa control, rice production in
the United States is becoming more vulnerable to weed losses.
Henceforth, “dynamic” integration of nonchemical compo-
nents into the weed management to a potential level is
evidently important.

5. Echinochloa management should rely on knowledge of its
population dynamics, including its reproductive potential as
affected by chemical and nonchemical intervention efforts.

6. The changing relative abundance and increasing complexities
in forms in Echinochloa species in recent decades indicate an
urgent need to reduce the ambiguities regarding its extent.

7. A comprehensive analysis of genomes of Echinochloa species/
types that have adapted in U.S. rice fields could shed light on
the developmental origins of diversity in morphological and
physiological traits and pinpoint the scope and significance of
gene glow.

8. The seeding method, water management, land preparation,
weed control technology, and their interactions are the major
determinants of the persistence and abundance of
Echinochloa species in U.S. rice production. Future research
should lead to sustainable management of Echinochloa
through a better understanding of its adaptation and
persistence mechanisms, as well as identifying ways to
intensify chemical and nonchemical selective forces.
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