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We perform large-eddy simulations of turbulent flow in a channel constricted by
streamwise periodically distributed hill-shaped protrusions. Two Reynolds number cases,
i.e. Reh = 10 595 (Fröhlich et al., J. Fluid Mech., vol. 526, 2005, pp. 19–66) and Reh =
33 000 (Kähler et al., J. Fluid Mech., vol. 796, 2016, pp. 257–284), are repeated and
utilized to verify and validate our numerical results, including the pressure and skin
friction coefficients on bottom and top walls of the channel, mean velocity profiles and
Reynolds stresses. All comparisons show reasonable agreement, providing a measure of
validity that enables us to further probe simulation results at higher Reynolds number
(Reh = 105) into aspects of flow physics that are not available from experiments. Effects
of variation of Reynolds number are studied, with emphasis on the mean skin friction
coefficients, separation bubble size and pressure fluctuations that are related to separation
and reattachment. In addition, the main large-scale features of the separation behind the
hill, including the scaling of the mean velocity profiles, are discussed. Furthermore, the
instantaneous near-wall flow field is analysed in terms of skin friction portraits, and we
confirm the existence of the local very small separation bubble on the hill crest as observed
in experimental and numerical investigations. The flow field at the top wall, which is
generally not given sufficient attention, is evaluated with the empirical friction law and
universal logarithmic law as in planar channel flows. It is found that these empirical laws
compare well with the large-eddy simulation results, although the hill constrictions behave
as a perturbation source and the developed shear layer has some effects on the flow field
near the top wall.

Key words: boundary layer separation, turbulence simulation, turbulent boundary layers

1. Introduction

Flows over curved surfaces, involving unsteady separation and reattachment in space
and time, occur in numerous engineering applications, such as engine nacelles, curved
ducts, bluff bodies and so on. For such complex flows, it is quite challenging to accurately
predict the separation and reattachment behaviour at affordable computational cost
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(Larsson et al. 2016; Bose & Park 2018). In particular, the separation location fluctuates
spatially and temporally, and strongly affects the downstream flow structures including the
subsequent reattachment process.

Flow over a periodic arrangement of smoothly contoured two-dimensional hills
(ERCOFTAC test case 81) has in recent years become one of the most widely used
test cases to investigate the physics of turbulent separated flows over curved surfaces,
as well for validation of computational fluid dynamics codes and turbulence models
(Rodi, Bonnin & Buchal 1995). The configuration of periodic channel flow was originally
proposed by Almeida, Durao & Heitor (1993), and then modified by Mellen, Fröhlich
& Rodi (2000) to be more suitable for numerical simulations. The history of this case
is found in the review paper by Breuer et al. (2009). The periodic hills geometry has
been investigated both numerically and experimentally over a wide range of Reynolds
numbers. Mellen et al. (2000) investigated the periodic hill flow at Reh = 7100 (based on
hill height h and bulk mean velocity through the hill crest Ub) using wall-modelled and
wall-resolved large-eddy simulations (WMLES and WRLES), and the impact of different
subgrid-scale (SGS) models and grid qualities was assessed. A similar investigation was
carried out by Temmerman et al. (2003) at Reh = 10 595 using WMLES, which combined
different SGS models and wall-law functions. It was demonstrated that the flow features
are surprisingly more sensitive to the wall model than the SGS model, and the classical
wall models developed for attached flows are not satisfactory for this flow. Fröhlich
et al. (2005) performed highly resolved (only the bottom wall) incompressible LES at
Reh = 10 595 using two different second-order finite-volume discretizations with two
different SGS models, i.e. the dynamic Smagorinsky model (Germano et al. 1991) and the
‘wall-adapted local eddy-viscosity’ model (Ducros, Nicoud & Poinsot 1998). A detailed
analysis of structural characteristics of this flow configuration has revealed a number
of interesting features. Breuer et al. (2009) presented a comprehensive review of direct
numerical simulations (DNS) and WRLES performed to date, comparing experimental
data with numerical results using DNS up to Reh = 5600 and WRLES up to Reh =
10 595. Rapp & Manhart (2011) experimentally investigated this flow at four Reynolds
numbers (5600 � Reh � 37 000) with two-dimensional particle image velocimetry and
one-dimensional laser Doppler anemometry measurements. The streamwise periodicity
of the flow and sidewall effects were evaluated, together with investigations of Reynolds
number effects. Kähler, Scharnowski & Cierpka (2016) repeated the experiment (Reh =
8000, 33 000) with high-resolution particle image velocimetry and particle tracking
velocimetry techniques. This high-resolution measurement makes possible a precise
analysis of the near-wall flow features. Recently, Krank, Kronbichler & Wall (2018)
presented DNS at Reh = 5600 and 10 595 using spectral incompressible discontinuous
Galerkin schemes. Although many DNS and LES have been performed for Reh � 10 595,
there has been somewhat limited research for larger Reynolds numbers due to extremely
high-resolution requirements in the near-wall region. To the best of our knowledge,
only two hybrid Reynolds-averaged Navier–Stokes (RANS)/LES have been performed at
Reh = 37 000 (Chaouat & Schiestel 2013; Mokhtarpoor, Heinz & Stoellinger 2016). For
wall-bounded turbulent flows, a tenable solution for investigating higher-Reynolds-number
cases is to employ the wall modelling approach since the mesh resolution requirement of
WMLES scales linearly with increasing Re (Choi & Moin 2012).

In the past four decades, several wall models have been proposed for canonical flows
in simple geometries (Schumann 1975; Grötzbach 1987; Piomelli et al. 1989; Marusic,
Kunkel & Porté-Agel 2001; Piomelli & Balaras 2002). The reader is referred to the
review paper by Bose & Park (2018) for recent developments of wall model techniques.
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However, there are a couple of primary challenges when it comes to flow over curved
surfaces. First, most wall models follow the equilibrium stress assumption and imply
a logarithmic-law profile in the near-wall region, which breaks down when turbulent
boundary layers are subjected to strong adverse pressure gradients leading to separation,
extra strain due to curvature, etc. (Diurno 2001; Bose & Park 2018). Meanwhile, some
enhanced wall-function models, which take into account the streamwise pressure gradient,
have been developed to simulate flow over periodic hills (Breuer, Kniazev & Abel 2007;
Manhart, Peller & Brun 2008; Duprat et al. 2011), but the free parameters in these models
restrict their application in general. Second, most wall modelling strategies including
detached eddy simulations (DES) fall into the hybrid RANS/LES methodology in complex
geometries, which solves the RANS equations in the inner layer and provides wall shear
stress boundary conditions for the outer LES region (Cabot & Moin 1999; Piomelli &
Balaras 2002; Kawai & Asada 2013; Park & Moin 2016). This hybrid method is not only
sensitive to the choice of the RANS model and its associated model coefficients, but
also causes the so-called ‘scale disparity’ problem on the nominal interfaces between the
RANS and LES regions (Germano 2004; Piomelli 2008). Alternatively, Chung & Pullin
(2009) proposed the virtual wall model, which dynamically couples the outer resolved
region with the inner wall region, and offers a slip velocity boundary condition for the
filtered velocity field on the ‘virtual’ wall. This wall model has been successfully deployed
in canonical flows without separation (Inoue & Pullin 2011; Saito, Pullin & Inoue 2012),
and then extended by Cheng, Pullin & Samtaney (2015) to simulate flat-plate turbulent
boundary layer flows with separation and reattachment. Recently, this virtual wall model
was extended to generalized curvilinear coordinates by Gao et al. (2019) and utilized in
WMLES for flow past airfoils. The same framework is adopted and tested in the present
simulations.

Turbulent boundary layer flow over a curved surface, involving separation and
reattachment, generates larger pressure fluctuations than that in the equilibrium boundary
layer. Wall-pressure fluctuations play a key role in a variety of engineering applications,
such as flow-induced panel flutter and structural vibration, aircraft cabin noise and
hydroacoustics of underwater vehicles (Blake 1970). Many investigations of wall-pressure
fluctuations beneath a turbulent boundary layer have been performed in the past several
decades, including zero pressure gradient turbulent boundary layer (Bradshaw 1967;
Willmarth 1975; Farabee & Casarella 1991); flat-plate turbulent boundary layers with
adverse pressure gradient (Mabey 1972; Simpson, Ghodbane & McGrath 1987; Na &
Moin 1998a,b; Abe 2017); and turbulent flows over a backward- or forward-facing step
(Farabee & Casarella 1986; Ji & Wang 2012; Awasthi et al. 2014; Doolan & Moreau
2016). Presently, for turbulent flow in a channel with streamwise periodic constrictions, we
analyse the pressure fluctuations by relating these to the mean pressure in the separation
bubble and the development of the mixing layer.

In the present investigation, we emphasize three main objectives. First, the extended
virtual wall model developed by Gao et al. (2019) is applied in a periodic channel flow
(both bottom and top walls). All the WMLES results are validated with experimental data
wherever available. Some WRLES results are also utilized for verifications, especially the
pressure and skin friction coefficients which are not reported in the experiments but are
important in separation and reattachment. Based on these verifications and validations,
the effects of Reynolds number on the skin friction coefficient, separation bubble size
and pressure fluctuations are analysed. Second, the details of unsteady separation in this
flow have not been reported in the past. Recent work by Cheng, Pullin & Samtaney
(2017, 2018) in WRLES of flow past a smooth and grooved cylinder at subcritical and
supercritical Reynolds numbers emphasized the role of unsteady separation and the
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dynamics of separation bubbles in the phenomenon of the drag crisis. They attributed the
drag crisis, mainly due to a large change in form drag, to the topology change induced by
the movement of the location of curvature-controlled large-scale separation. In the present
study, the periodic hill channel may be considered as a combination of flat and curved
surfaces, and this geometric complexity would result in rich flow physics associated with
separation and reattachment. The last main objective comes from the fact that almost all
of the previous investigations paid little attention to the flat top wall of the channel. The
empirical friction law and universal logarithmic law, which are well captured in plane
channel flows, are also evaluated from the top wall of the channel.

The paper is organized as follows. In § 2, we describe the physical set-up, followed
by a discussion of the governing equations, and briefly discuss wall and SGS models
employed (details are relegated to appendices). In § 3, the WMLES results are validated
and verified with experimental and WRLES results. After that, in §§ 4 and 5, we
provide new insights based on LES results up to Reh = 105. The flow near the bottom
wall is analysed in § 4, emphasizing on the separation/reattachment behaviour. Here
we investigate scaling relations for the skin friction coefficient and velocity profiles in
separation zones. Instantaneous skin friction lines at three Reh are compared, with focus
on the existence of a small separation bubble near the top of the hill. Further in § 5, the flow
at the top wall is characterized using the empirical friction law and universal logarithmic
law which are proposed for planar channel flow. Finally, the conclusions are drawn in § 6.

2. Physical and numerical set-up, equations and models

In this section, the flow configuration is described, and following that we present the
essential set of equations including the boundary conditions at the virtual wall required to
perform WMLES in a wall-bounded domain. The detailed derivations for the wall model
in the generalized curvilinear coordinates were given by Gao et al. (2019). We include the
details of the wall model, the SGS model and the numerical methods in appendices for the
sake of completeness.

2.1. Flow configuration
We perform LES of turbulent flow past periodically constructed hills on the bottom wall
in a channel with a flat wall on the top. The physical geometry and simulation domain are
illustrated in figure 1. The shape of the hill is defined in the form of a polynomial, taken
from the experimental study by Almeida et al. (1993). This is also a standard test case for
an ERCOFTAC/IAHR workshop, and has been widely used to validate various numerical
schemes and physical models. It should be noted that geometry G1 (figure 1a) was adopted
in WRLES by Fröhlich et al. (2005) for Reh = 10 595 and geometry G2 (figure 1b) was
the region of focus in the experimental investigations of Kähler et al. (2016). These two
geometries are essentially identical since the hills are constructed periodically in the x
direction. For the sake of simplicity of verifications and validations, G1 is adopted in the
case of Reh = 10 595, while G2 is used for the cases of Reh = 33 000 and Reh = 105.

2.2. Governing equations
To compute the flow in this set-up, assuming constant (unity) density, we solve the filtered
incompressible Navier–Stokes equations on a body-fitted curvilinear grid. In generalized
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FIGURE 1. Sketch of the hill geometry adopted in the present paper. (a) Geometry G1:
simulation geometry adopted in the present WMLES and WRLES of Fröhlich et al. (2005)
for Reh = 10 595; (b) geometry G2: simulation geometry adopted in the present WMLES and
WRLES and experimental domain of Kähler et al. (2016) for Reh = 33 000.

curvilinear coordinates, the equations of motion are

∂Um

∂ξm
= 0, (2.1)

∂
(√

gui
)

∂t
+ ∂Fm

i

∂ξm
= 0, (2.2)

where (ξ 1, ξ 2, ξ 3) = (ξ, η, ζ ) denote the generalized curvilinear coordinates; Um (the
volume flux normal to the surface of constant ξm) and Fm

i are given by

Um = √
g
∂ξm

∂xj
uj,

Fm
i = Umui + √

g
∂ξm

∂xi
p − νGmn ∂ui

∂ξ n
,

√
g = J−1 = det

[
∂xi

∂ξ j

]
, Gmn = √

g
∂ξm

∂xr

∂ξ n

∂xr
,

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(2.3)

where (x1, x2, x3) = (x, y, z) are the Cartesian coordinates with corresponding velocity
components (u1, u2, u3) = (u, v, w), p is the pressure, ν is the kinematic viscosity, J−1

is the Jacobian of the transformation and Gmn is the mesh skewness tensor. It should be
noted that the ζ direction is congruent with the z direction since the spanwise geometry
is uniform in the present research. Applying a nominal filter to the incompressible
Navier–Stokes equations, the filtered LES equations are written below in terms of the
resolved velocity field:

Ũm = √
g
∂ξm

∂xj
ũj, (2.4)

F̃m
i = Ũmũi + √

g
∂ξm

∂xi
p̃ − νGmn ∂ ũi

∂ξ n
+ √

g
∂ξm

∂xj
T ij, (2.5)

where tildes denote filtered quantities and T ij = ũiuj − ũiũj is the SGS stress tensor.
The stretched spiral vortex model is adopted to compute T ij, details of which are in
appendix A.
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FIGURE 2. Sketch of the near-wall velocity components. The dashed line above the solid wall
denotes the virtual wall, and the blue point denotes the centre of the first grid cell off the solid
wall.

2.3. Boundary conditions
For the simulations, periodic boundary conditions are prescribed in the spanwise and
streamwise directions. The spanwise extent (Lz) is of importance in order to obtain reliable
and physically reasonable results. To ensure this criterion, the two-point correlations in
the spanwise direction have to decay to sufficiently small values in the half-width of
the domain size chosen. Based on the investigations by Mellen et al. (2000), a spanwise
extension of the computational domain of Lz = 4.5h is used in all computations presented.
This spanwise domain extent was also used in the investigation by Fröhlich et al. (2005)
and many other DNS/LES studies (Breuer et al. 2009; Krank et al. 2018). It represents a
well-balanced compromise between spanwise extent and spanwise resolution.

For boundary conditions on the solid walls (both bottom and top walls), the no-slip
boundary condition is specified at the actual wall in WRLES, and a Dirichlet boundary
condition for the velocity, derived from the wall model, is specified at the virtual wall in
WMLES. Similar to the turbulent plane channel flow case, the non-periodic behaviour of
the pressure field is accounted for by inclusion of a mean pressure gradient as a source term
in the streamwise momentum equation. Two alternatives are possible: either the pressure
gradient is fixed which results in a fluctuating mass flux or the mass flux is held constant
which requires adjustment of the mean pressure gradient in time. Since a fixed Reynolds
number can only be guaranteed by a fixed mass flux, the second option is chosen using the
method proposed by Benocci & Pinelli (1990).

2.4. Wall model
The virtual wall model in generalized curvilinear coordinates developed by Gao et al.
(2019), coupled with the stretched vortex SGS model, has been strongly verified and
validated in various airfoil flows. We briefly describe the essential idea of the wall
model with details relegated to appendix B. It should be noted that, consistent with
other approaches involving body-fitted mesh computations, the computational mesh is
constrained to be locally orthogonal to the solid walls for wall-normal averaging, and the
wall-normal coordinate is denoted as yn . As shown in figure 2, the distance h′ is typically
chosen as the distance of the first grid point from the solid wall and h0 is the height of the
virtual wall that is further discussed below.

We define the magnitude of the resultant velocity q̃ and velocity angle θ on the
wall-parallel plane as

q̃ =
√

ũ2
s + w̃2, θ = arccos (ũs/q̃) , (2.6a,b)
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where ũs is the streamwise velocity parallel to the solid wall (as shown in figure 2), given
by

ũs = ũ cos θw + ṽ sin θw, (2.7)

where θw denotes the local angle between the solid wall and the x coordinate.
The wall-normal gradient of q̃, i.e. η0(ξ, ζ, t), and the associated friction velocity uτ are

defined as

η0 ≡ ∂ q̃
∂yn

∣∣∣∣
w

, uτ = √
νη0. (2.8a,b)

Based on the near-wall filtering and wall-normal averaging approach, the following
ordinary differential equation (ODE) for η0 can then be derived (see appendix B for
details):

∂η0

∂t
= C1η0 − C2η

2
0, (2.9)

where

C1 = 2
q̃|h′

(
Fξ + Fζ + M + νG22

√
gh′

∂ q̃
∂yn

∣∣∣∣
h′

)
, C2 = 2νG22

√
gh′q̃|h′

. (2.10a,b)

Detailed expressions for Fξ , Fζ and M are given by (B 10), (B 12) and (B 14), respectively;
an approximate analytical solution to (2.9) is given in appendix B.

Once η0(ξ, ζ, t) is known, the velocity angle θ(ξ, z, t) is estimated as arccos(ũs|h′/q̃|h′)

from the first grid cell of the resolved LES field, an approximation justified based on
the work of Cheng et al. (2015) (turbulent boundary layer flow with separation and
reattachment) and Gao et al. (2019) (separated flow past airfoils). The local wall shear
stress components may then be computed as

τw,s = μη0 cos θ, τw,z = μη0 sin θ. (2.11a,b)

Here μ = ρν is the dynamic viscosity and τw ≡ (τw,s, τw,z) is the LES representation of
the surface stress vector. Above, we make the approximation that the velocity angle θ is
constant within the first grid cell, 0 � yn � h. Cheng et al. (2015) proposed an algebraic
model for θ in turbulent boundary layer simulations and concluded that there is little
difference between the constant velocity angle model and the algebraic model. In the
present paper, the constant velocity angle model is adopted for simplicity.

Finally, we present a slip velocity q̃|h0 on the virtual wall as

q̃|h0
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎧⎪⎨⎪⎩ uτ

(
1

K1
log

(
h+

0

h+
ν

)
+ h+

ν

)
, h+

0 > h+
ν ,

uτ h+
0 , h+

0 < h+
ν ,

τw,s > 0,

uτ h+
0 , τw,s � 0,

(2.12)

where h+
0 = uτ h0/ν and h+

ν is the intercept between the linear and logarithmic components
in the law of the wall. Experimental research shows that the outer edge of the viscous
sublayer is located at h+

ν ≈ 11, which is approximately equivalent to the offset (= 5.0)
in the classical logarithmic law. This empirical value is adopted by Chung & Pullin
(2009) and Inoue & Pullin (2011), and also by Cheng et al. (2015) and Gao et al. (2019)
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Case Method Reh Nξ × Nη × Nz Δη+
(b,t) Δξ+/Δη+

(b,t) Δz+/Δη+
(b,t) ta/tr

M1 WMLES 10 595 128 × 64 × 64 (19.3, 13.4) (5.1, 3.5) (4.7, 3.5) 60
M2 WMLES 33 000 384 × 128 × 128 (16.1, 15.2) (5.1, 2.6) (7.0, 3.9) 46
R2 WRLES 33 000 1280 × 256 × 256 (0.97, 0.85) (25.5, 14.1) (58.6, 35.2) 30
M3 WMLES 105 960 × 256 × 256 (18.0, 15.9) (4.1, 2.3) (7.0, 4.4) 40

TABLE 1. Summary of the performed numerical cases. The ‘+’ superscript indicates the
expression of the mesh quantities using wall units and the subscripts ‘b’ and ‘t’ denote the bottom
and top walls, respectively. Time tr = 9h/Ub is the typical flow-through time and ta is the total
simulation time.

in modelling the boundary layer flows with separation and reattachment. In the present
case, h+

ν = 11 is used as an empirical parameter in the wall model. Both h+
0 and h+

ν

are fixed in all the simulations presented, the same values being used in our previous
work, and hence these parameters may not be considered as ‘tunable’ parameters. In the
attached region (τw,s > 0), the linear–logarithmic relation is essentially the same as that
of Chung & Pullin (2009), which is derived from the stretched-vortex SGS model (see
appendix A) and the Kármán-like constant K1 is dynamically computed. In the separated
region (τw,s � 0), the log-like relation is no longer valid and Cheng et al. (2015) proposed
a linear relationship which appears to work reasonably well in regions of flow separation.
Here, we follow the linear law of Cheng et al. (2015).

Based on the above formulation, the wall model can be summarized as follows. In the
near-wall region, (2.9) is solved for η0, in which the coefficients on the right-hand side are
approximated with the resolved LES field at the first grid cell, i.e. h′ = h0 + Δyn/2 (the
choice of h0 is given in appendix B). Equation (2.12) is then used to compute the resultant
velocity q̃|h0 on the virtual wall with the streamwise and spanwise velocity components
given by

ũs|h0 = q̃|h0 cos θ, w̃|h0 = q̃|h0 sin θ. (2.13a,b)

The contribution of the wall-normal velocity component ũn|h0 to ũ and ṽ is assumed to
be small comparing with ũs|h0 , and we use ũn|h0 = 0. Finally, the slip velocity boundary
condition on the virtual wall yn = h0 is

ũ|h0 = q̃|h0 cos θ cos θw, ṽ|h0 = q̃|h0 cos θ sin θw, (2.14a,b)

with the spanwise velocity component w̃|h0 given by (2.13b).

2.5. Summary of numerical cases
Three cases, as summarized in table 1, are considered. The energy-conservative
fourth-order finite-difference scheme is used for spatial discretizations, and the discretized
governing equations are solved using a semi-implicit fractional step method (see
appendix C for details). For Reh = 10 595, only WMLES is performed and compared with
both WRLES from Fröhlich et al. (2005) and experimental data from Rapp & Manhart
(2011). To check the effects of mesh resolution on the WMLES, a mesh convergence
study of this case is presented in appendix D. For Reh = 33 000, neither the pressure
nor skin friction coefficients were measured in the experimental investigation of Kähler
et al. (2016); thus we perform both WRLES and WMLES. Accurate predictions of
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FIGURE 3. Dimensionless wall-normal grid spacings in wall units Δη+
(b,t): (a) bottom wall

and (b) top wall. , WMLES for Reh = 10 595; , WRLES for Reh = 33 000; ,
WMLES for Reh = 33 000; , WMLES for Reh = 105. Note that the right-hand y axis is
for WRLES.

the separation and reattachment depend on the skin friction coefficient, which is also
challenging in terms of wall modelling especially for flow over complex geometries.
The WRLES results are utilized to verify the WMLES results for some quantities that
were not reported in the experiment for Reh = 33 000. Furthermore, the WRLES (R2)
case not only resolves the flow at the lower wall but also resolves the upper wall by a
DNS-like representation. We briefly remark that the computational expense of WMLES is
approximately 12 times that of WMLES per time interval with the same CPU cores. The
grid spacings in the wall-normal direction (i.e. η direction) on both the bottom and top
walls are illustrated in figure 3, and the mesh size ratios are also given in table 1. Note
that we employ a higher resolution in the spanwise direction than the streamwise direction
for case M1. For cases M2 and M3 the resolution in terms of (Δξ+/Δη+

b , Δz+/Δη+
b )

is (5.1, 7.0) for M2 and (4.1, 7.0) for M3, respectively. We believe that the disparity in
resolution between the spanwise and streamwise directions is not severe within the context
of WMLES.

3. Numerical results for statistically averaged quantities

In this section, we present several time- and spanwise-averaged quantities that are used
to verify and validate the present WMLES/WRLES code: these are the skin friction
coefficient, Cf ; the pressure coefficient, Cp; the normalized velocity profiles in x and
y directions, ū/Ub and v̄/Ub; and the normalized Reynolds stresses profiles, u′u′/U2

b ,
v′v′/U2

b and u′v′/U2
b . The Reynolds stress containing SGS corrections to the resolved flow

is calculated as u′
iu

′
j = ũ′

iũ
′
j + T ij (Inoue & Pullin 2011). The skin friction coefficient and

pressure coefficient are computed as

Cf = τ̄w,s

0.5ρU2
b
, Cp = p̄ − pr

0.5ρU2
b
, (3.1a,b)

where τ̄w,s is the local streamwise (parallel to the actual wall) mean wall shear stress,
p̄ is the local pressure and pr is a reference wall pressure taken at the centre of
the hill crest. In WMLES, τ̄w,s is computed from the wall model; in WRLES, the
third-order accuracy one-sided velocity-derivative method (Cheng et al. 2017) is used
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FIGURE 4. (a) Pressure coefficient Cp and (b) skin friction coefficient Cf along the bottom and
top walls for Reh = 10 595. The solid and dash-dotted curves are the corresponding results at
the bottom and top walls from the present WMLES. In (a), the circles and squares denote Cp on
the bottom and top walls from WRLES by Fröhlich et al. (2005); in (b), the circles denote Cf on
the bottom wall from WRLES by Fröhlich et al. (2005). The bold grey line denotes the geometry
of the channel with streamwise periodic hills. A horizontal dashed line Cf = 0 in (b) is shown
for reference: zero crossing of this line indicates separation/reattachment.

for the wall-normal differentiation. It should be noted that all the flow configurations are
rescaled to geometry G1 (see figure 1a) for simplicity of investigation, and this compatible
coordinate system will be used in the later sections if not mentioned specifically.

3.1. Reynolds number Reh = 10 595
The skin friction coefficient Cf and pressure coefficient Cp for Reh = 10 595 on both the
bottom and top walls are shown in figure 4. We compare our results with the highly
resolved LES results from Fröhlich et al. (2005) for verification (note that Fröhlich et al.
(2005) did not report Cf at the top wall). The present WMLES shows good agreement
with the reference LES data, although slightly smaller Cf on the leeward side of the hill
within the separation zone, i.e. x/h ≈ 1.0–2.0. The Cf plot shows the primary separation
point at approximately x/h = 0.22, with reattachment at x/h = 4.59. This compares well
with the experimental results of Rapp & Manhart (2011), who reported the reattachment
point at x/h = 4.21. The predicted values also compare well with the WRLES (Fröhlich
et al. 2005) values of x/h = 0.20 and x/h = 4.56 (see figure 4b), respectively, for the
separation and reattachment points. Two very small recirculation regions, one on the hill
top, x/h ≈ 0, and the other in the post-reattachment zone on the windward side of hill,
x/h ≈ 7.0–7.4, for Reh > 200 are reported by Breuer et al. (2009), and also confirmed for
Reh = 10 595 by WRLES (Mellen et al. 2000; Fröhlich et al. 2005) and DNS (Diosady &
Murman 2014; Krank et al. 2018). However, the experimental results at Reh = 8000 and
33 000 from Kähler et al. (2016) do not confirm the existence of the local separation bubble
in these regions, and this was attributed to an insufficient duration of time for averaging.
These very small separation regions are also absent in the present WMLES, and are further
discussed in § 4.5.

Figure 5 shows the normalized mean velocity profiles (ū/Ub and v̄/Ub) in x
and y directions along vertical lines at ten different locations, i.e. x/h = 0.05, 0.5,
1, 2, 3, 4, 5, 6, 7, 8. Comparisons with experimental data from Rapp & Manhart (2011)
show excellent agreement. For profiles in the separation zone, i.e. x/h = 0.5, 1, 2, 3, 4,
negative back flow is noted near the bottom wall (see figure 5a), and the peak value of
the back-flow velocity occurs at x/h = 2, close to the centre of the main separation zone.
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FIGURE 5. Normalized mean velocity profiles in the x direction (a) and y direction (b)
for Reh = 10 595. From left to right, the mean velocity profiles are located at x/h =
0.05, 0.5, 1, 2, 3, 4, 5, 6, 7, 8. For the sake of clarity these profiles are shifted by 2 and 0.5
for ū/Ub and v̄/Ub, respectively. ◦, Experiment by Rapp & Manhart (2011); , present
WMLES.

The steep velocity gradient near the top wall is also captured by the present wall model,
which is absent in WRLES by Fröhlich et al. (2005) due to low mesh resolution near
the top wall in their simulation. Since the total mass flux through the channel was fixed,
the poor prediction of ū/Ub near the top wall has a certain influence on the overall flow
development (Breuer et al. 2009). The peak value of v̄/Ub is observed at x/h = 8 (see
figure 5b) due to strong acceleration on the windward side of the hill (see also figure 4a
for the pressure distributions).

Figure 6 shows the normalized Reynolds stresses profiles (u′u′/U2
b , v′v′/U2

b and
u′v′/U2

b) at the same locations where profiles of mean velocity were presented above.
Both v′v′/U2

b and u′v′/U2
b agree quite well with the experimental and WRLES results.

However, deviations are visible for u′u′/U2
b in the range x/h = 4–6. Considering only

the post-reattachment region at x/h = 5, the measured peak values of u′u′/U2
b are at

most 8 % higher than in the present WMLES. Nevertheless, the locations of the peak
values compare well with both experimental and WRLES results. In the separation zone,
x/h = 0.5–3, these comparisons are very satisfactory. In the vicinity of the top wall, the
steep variations of u′u′/U2

b are captured by the present WMLES but absent in WRLES of
Fröhlich et al. (2005). The maximum v′v′/U2

b and u′v′/U2
b occurs in the separation zone,

inside the constant Cp region (see figure 4a), in which flow deceleration and acceleration
occur alternately.
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FIGURE 6. Normalized Reynolds stress profiles: (a) u′u′/U2
b , (b) v′v′/U2

b and (c) −u′v′/U2
b

for Reh = 10 595. From left to right, the Reynolds stress profiles are located at x/h =
0.05, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, shifted by 0.1 along the abscissa. ◦, Experiment by Rapp &
Manhart (2011); , present WMLES; , WRLES from Fröhlich et al. (2005).

3.2. Reynolds number Reh = 33 000
The skin friction coefficient Cf and pressure coefficient Cp for Reh = 33 000 on both the
bottom and top walls are shown in figure 7. The present WRLES (case R2) is used to verify
the performance of the wall model. Similar to that for Reh = 10 595, a nearly constant
pressure plateau is observed in the Cp distribution from the separation point to the centre
of the separation zone (x/h ≈ 2). The skin friction coefficient Cf in the present WMLES
is slightly smaller than that from WRLES in the separation zone (x/h ≈ 1.5–2.5). Overall,
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FIGURE 7. (a) Pressure coefficient Cp and (b) skin friction coefficient Cf along the bottom and
top walls for Reh = 33 000. ◦, Cp and Cf on the bottom wall from the present WRLES; �, Cp
and Cf on the top wall from the present WRLES; , Cp and Cf on the bottom wall from the
present WMLES; , Cp and Cf on the top wall from the present WMLES. The bold grey
line denotes the geometry of the channel with streamwise periodic hills. A horizontal dashed line
Cf = 0 in (b) is shown for reference: zero crossing of this line indicates separation/reattachment.

the present WMLES results agree well with the WRLES results. The separation and
reattachment points from the present WMLES Cf plot occur at approximately x/h = 0.27
and x/h = 3.94, respectively. These predictions are comparable to the corresponding
values of x/h = 0.27 and x/h = 3.96 from the present WRLES (see figure 7b). These
also match well with the experimental results of Kähler et al. (2016), who reported the
separation point at x/h = 0.34 ± 0.05 and the reattachment point at x/h = 3.80 ± 0.05.
Compared with the Reh = 10 595 case, the peak value of Cf in both attached and separated
zones decreases, confirming the observations by Breuer et al. (2009). Furthermore, the
undulations in Cf at the beginning of the main separation bubble seem to be related to
geometry and not much affected by Reynolds number effects. The very small separation
zone at the hill top is detected in the region from x/h = 8.932 to 9.985 in the present
WRLES, but absent in the WMLES, as was also the case for Reh = 10 595. The very
small separation bubble at the foot of thewindward side of the hill does not occur in either
simulation from an inspection of the Cf plot.

Figure 8 shows the normalized mean velocity profiles in x and y directions along
vertical lines at 17 different locations, i.e. x/h ∈ [0, 9], with a constant gap distance of
0.5. Comparisons with experimental data from Kähler et al. (2016) show good agreement,
although the v̄/Ub profile at y/h ≈ 1.0 (in the separated shear layer) is slightly smaller
than the measured values after the separation point (see figure 8b). Overall, the shape of
the mean velocity profiles is similar to that for Reh = 10 595 at the same locations, which
may be construed as agreement with the Re-independent behaviour suggested by Kähler
et al. (2016). For profiles in the separation zone, i.e. x/h = 0.5–3.5, a negative back-flow
velocity is clearly observed near the bottom wall (see figure 8a), and the peak value of the
back-flow velocity occurs at x/h = 2.0, close to the centre of the main separation zone.
The steep velocity gradient near the top wall is also captured by the present wall model
(see also figure 8a). The peak value of v̄/Ub is visible at x/h = 8.5 (see figure 8b) due to
strong acceleration on the windward side of the hill, similar to the case for Reh = 10 595.
The magnitude of this extremum is larger than that in the Reh = 10 595 case, and the
vertical location is shifted towards the bottom wall. This is in accordance with the trend
described by Breuer et al. (2009) and Kähler et al. (2016). The downward flow (v̄/Ub < 0)
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FIGURE 8. Normalized mean velocity profiles in the x direction (a) and y direction (b) for
Reh = 33 000. From left to right, the mean velocity profiles are located at x/h ∈ [0, 9] with gap
distance of 0.5, shifted by 2 and 0.5 for ū/Ub and v̄/Ub, respectively. ◦, Experiment by Kähler
et al. (2016); , present WMLES; , present WRLES.

enhances the momentum transfer from the upper half of the channel to the separation zone,
which is fed by the outer high-momentum fluid, and thus promotes earlier reattachment
compared with the Reh = 10 595 case.

Figure 9 shows the normalized Reynolds stress profiles at the same monitoring
locations. For flow outside the developing shear layer, i.e. y/h < 0.5 and y/h > 1.5, both
WMLES and WRLES results compare well with the experimental data from Kähler et al.
(2016), but WRLES overpredicts the u′u′/U2

b profiles in the vicinity of the bottom wall,
especially in the post-separation zone (see figure 9a). The overshoot of the Reynolds
stresses after the hill top (x/h > 0) is also captured well by the simulations. In the
separated shear layer region, both WMLES and WRLES overpredict the three Reynolds
stress components, but WRLES matches better with the peak values of these profiles. Bose
& Park (2018) argued that the proper resolution of the separated shear layer is critical
in WMLES, and Kähler et al. (2016) also reported that the unresolved mixing process
in the simulations and insufficient averaging time (time for ensemble averaging in the
LES and DNS should be 12–48 times longer) could also affect the flow statistics. The
contribution of the SGS stress to the total Reynolds stress is shown in appendix E, and
we found that the fraction of the SGS stress is larger for Reh = 33 000 than Reh = 10 595,
especially in the separated shear layer. Nevertheless, the reason behind these discrepancies
should be explored further. The peak from the experiment displays a narrower distribution
than the present LES. The maximum u′u′/U2

b occurs upstream of the primary separation
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FIGURE 9. Normalized Reynolds stress profiles: (a) u′u′/U2
b , (b) v′v′/U2

b and (c) −u′v′/U2
b for

Reh = 33 000. From left to right, the Reynolds stress profiles are located at x/h ∈ [0, 9] with gap
distance of 0.5, shifted by 0.1 along the abscissa. ◦, Experiment by Kähler et al. (2016); ,
present WMLES; , present WRLES.

point, similar to Reh = 10 595, because we expect larger fluctuations in the region where
the transition from attached to separated flow states occurs. The maximum v′v′/U2

b and
u′v′/U2

b is also located in the constant Cp region, similar to the Reh = 10 595 case. These
qualitative observations are also in accordance with the experimental research of Kähler
et al. (2016).
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FIGURE 10. (a) Skin friction coefficient Cf along the bottom and top walls for Reh = 105. The
solid and dash-dotted lines denote the WMLES results at the bottom and top walls. The bold grey
line denotes the geometry of the channel with streamwise periodic hills. A horizontal dashed
line Cf = 0 is shown for reference: zero crossing of this line indicates separation/reattachment.
(b) The peak value of Cf for Reh ranging from 700 to 105: ◦, DNS/WRLES from Breuer et al.
(2009); ×, WRLES from Fröhlich et al. (2005); �, the present WMLES results; , scaling
equation (4.1).

4. Reynolds number effects at the bottom wall: separation and reattachment

In the previous section, we noted that the our WMLES results are in reasonable
agreement with both experimental and WRLES results. Based on these verifications and
validations, we consider another case with Reh = 105 (numerical details in table 1), which
hitherto is the highest Reh case in periodic hill channel flows. We focus on the mean skin
friction coefficients indicative of separation and reattachment, separation bubble size and
pressure fluctuations that are related to the mean pressure and the developing mixing layer
after the crest of the hill.

4.1. Mean separation and reattachment: distribution of Cf

4.1.1. Skin friction coefficient Cf and its maximum value
The skin friction coefficient Cf for Reh = 105 on both the bottom and top walls is shown

in figure 10(a). The separation and reattachment points from the present WMLES Cf
plot occur at approximately x/h = 0.26 and x/h = 3.57, respectively. Two aspects of the
skin friction coefficient are assessed quantitatively: (1) the peak value of the skin friction
coefficient (Cf ,max ) on the bottom wall and (2) the location of the mean reattachment point
(xr/h).

The peak values of Cf for different Reh (700 � Reh � 105) are summarized in
figure 10(b). For 700 � Reh � 5600, the data are from DNS results of Breuer et al. (2009);
for Reh = 10 595, the data are from the WRLES results of Breuer et al. (2009) and Fröhlich
et al. (2005) and the present WMLES result. It is found that the power-law fit of the data
for 700 � Reh � 10 595 follows

Cf ,max = 2.8Re−1/2
h . (4.1)

The predicted values of Cf ,max from WMLES at Reh = 33 000 and 105 match well with
this power-law scaling equation (4.1), as shown in figure 10(b).
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FIGURE 11. Skin friction in the recirculation region as a function of wall-layer Reynolds
number: ◦, Reh = 10 595; �, Reh = 33 000; ×, Reh = 105; , (4.2); , (4.3).

4.1.2. Skin friction coefficient Cf inside the separation zone
In the separation zone, Adams, Johnston & Eaton (1984) proposed a ‘laminar-like’ skin

friction law of the form Cf ,UN ∝ Re−1
N . Here Cf ,UN is the local skin friction coefficient

normalized by 1
2ρU2

N , i.e. Cf ,UN = 2|τw,s|/ρU2
N , where UN is the magnitude of the

maximum back-flow velocity. Parameter ReN is the wall-layer Reynolds number based
on UN and N, where N is the distance of UN away from the wall. The values of UN and
N can be determined locally by a search in the wall-normal direction. Le, Moin & Kim
(1997) proposed another correlation form based on the DNS results of backward-facing
step flow at Reh = 5100:

Cf ,UN ≈ 4.5Re−0.92
N . (4.2)

This formula does not quite follow the ‘−1 slope’ of Adams et al. (1984). Numerical data
from the present simulations are shown in figure 11, based on which another correlation
shows better fit, i.e.

Cf ,UN ≈ 4.5Re−0.89
N . (4.3)

4.2. Separation bubble size
The locations of separation (xs/h) and reattachment (xr/h) at different Reh are summarized
in figure 12. Since numerical methods and physical models (SGS model and wall model)
affect the locations of separation and reattachment, results from previous numerical studies
are also included in the graph. It is seen that the locations of reattachment move towards
the upstream direction with increasing Reh due to stronger mixing (Breuer et al. 2009;
Kähler et al. 2016). The length of the separation bubble in numerical simulations (DNS
and LES) is larger than that in the experiment (see also table 2), and Kähler et al. (2016)
attributed this to an unresolved turbulent mixing process, i.e. the turbulence level in the
mixing layer is lower than in the experiment. Kähler et al. (2016) proposed a power scaling
law for the location of reattachment based on the experimental data, i.e.

xr/h = 0.49(Reh/10 000)−1.4 + 3.71. (4.4)
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FIGURE 12. Summary of (a) separation and (b) reattachment locations for different Reynolds
numbers with various approaches: ∇, WMLES from Mellen et al. (2000); ×, WMLES from
Temmerman et al. (2003); �, WRLES from Fröhlich et al. (2005); �, DNS from Peller &
Manhart (2006); 
, DES and LES from Šarić et al. (2007); +, WRLES from Hickel, Kempe
& Adams (2008); �, WRLES from Ziefle, Stolz & Kleiser (2008); 	, DNS and WRLES from
Breuer et al. (2009); 
, WMLES from Mokhtarpoor et al. (2016); ∗, DNS from Krank et al.
(2018); •, experiment results from Rapp & Manhart (2011); �, experiment results from Kähler
et al. (2016); ◦, WM/WRLES from the present research; , scaling equation (4.4) given by
Kähler et al. (2016).

Case Reh xc/h yc/h Lb/h Hb/h

M1 10 595 2.01 0.53 4.37 0.91
Fröhlich et al. (2005) 10 595 2.07 0.53 4.40 0.93

M2 33 000 1.87 0.48 3.67 0.83
R2 33 000 1.88 0.49 3.69 0.82

Kähler et al. (2016) 33 000 2.05 ± 0.1 0.48 ± 0.02 3.46 ± 0.1 0.82
M3 105 1.82 0.46 3.31 0.80

TABLE 2. Comparison of bubble size with experimental and LES results: centre coordinate of
the recirculation zone (xc, yc), length of the bubble (Lb) and height of the bubble (Hb).

The estimated reattachment for Reh = 105 occurs at xr/h = 3.73, which is 4.3 % larger
than the WMLES results (xr/h = 3.57) as shown in figure 10(b).

The quantitative comparisons (bubble centre location, xc/h, yc/h; height and length of
the bubble, Hb/h, Lb/h) that characterize the extent of the separation bubbles are listed in
table 2. Here it should be noted that the centre location is determined from the streamline
plot, i.e. the centre of the closed streamlines, Hb/h, is evaluated from the maximum height
of the curve enveloping the separation bubble, and Lb/h is determined from the separation
and reattachment points, i.e. Lb = xr − xs. Rapp & Manhart (2011) experimentally found
the height of the recirculation zone independent of the Reynolds number for Reh � 10 595.
From the present study, the height of the separation bubble decreases gradually with
increasing Reh for Reh � 10 595. The length of the separation bubble for Reh � 10 595 also
decreases with increasing Reh but is stronger than the variation of Hb (see table 2). Similar
behaviour of the bubble length with increasing Reynolds number has also been observed
in the experimental research of the backward-facing step flow by Armaly et al. (1983) and
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also DNS of flow over a bump by Mollicone et al. (2017). Overall, the present numerical
results compare well with the experimental results of Kähler et al. (2016) and WRLES of
Fröhlich et al. (2005), although the bubble length is 6.6 % larger than the experimental
data for Reh = 33 000.

4.3. Scaling of streamwise velocity profiles in the separation zone
According to the analysis of separated recirculating flow by Simpson (1983) and Devenport
& Sutton (1991), it is suggested that the characteristic scales for velocity and length
within the recirculation region are, respectively, the magnitude of the maximum back-flow
velocity UN and its distance away from the wall N. The Simpson equation (Simpson 1983),
covering the region 0 < yn/N < 1, gives

ūs

UN
= A

( yn

N
− ln

∣∣∣ yn

N

∣∣∣− 1
)

− 1, (4.5)

where A is an empirical constant, ūs is the mean streamwise velocity (parallel to the bottom
wall) along the wall-normal direction and yn is the wall-normal coordinate. Simpson
(1983) suggested A = 0.3 based on the experimental research of a separating turbulent
boundary layer with reattachment, while Dianat & Castro (1989) found better correlations
with A = 0.235 in another adverse pressure gradient turbulent boundary layer experiment.
Furthermore, Devenport & Sutton (1991) adopted A ranging from 0.242 to 0.426 to scale
the back-flow velocity profiles in a pipe with sudden expansion.

To compare with the above scaling formula, isolines of mean back-flow velocity in the
recirculation region from both WMLES and WRLES are shown in figure 13. The size of
the recirculation region decreases with increasing Reh. The maximum back-flow velocities
from the present WMLES compare well with those from WRLES. The streamwise mean
velocity profiles along wall-normal lines at four locations (see figure 13) are extracted and
plotted in figure 14, with x/h = 1.0 (P1), x/h = 1.5 (P2), x/h = 2.0 (P3) and x/h = 2.5
(P4). Qualitatively, the shapes of the scaled velocity profiles in the recirculation region are
well described by (4.5). It is found that a unique value of A could not fit all the velocity
profiles well at different locations, although Reh = 105 shows better collapse with A = 0.3
than the other two cases. For Reh = 10 595 and 33 000, A = 0.3 suggested by Simpson
(1983) compares favourably with the scaled velocity profiles just at x/h = 1.5 (P2), a
profile for which there are sufficient mesh points for yn < N. On the other hand, for P3
and P4, the mesh points from the wall to the maximum back-flow velocity are fewer, and
this may lead to an unfavourable comparison. The largest deviation with A = 0.3 occurs at
x/h = 1.0, which is just downstream of the separation point and closer to the zero-velocity
points. This is also reported in DNS of backward-facing step flow by Le et al. (1997). The
largest best-fit value of A (0.6 for M1; 0.45 and 0.4 for M2 and R2; 0.35 for M3) occurs
at x/h = 1.0 (P1), while the smallest best-fit value of A occurs at x/h = 1.5 (0.3 for M1;
0.25 for M2, R2 and M3).

4.4. Pressure fluctuations
Figure 15 shows the root mean square (r.m.s.) value of pressure fluctuations in the
entire channel (contour plot) and near-wall domain (wall pressure fluctuations on the
bottom wall, i.e. pw,rms). In the region around the separation point, the maximum
pressure fluctuations occur very close to the wall. Inside the separation bubble, the
pressure fluctuations are significantly enhanced away from the wall, and the maximum
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FIGURE 13. Isolines of mean back-flow velocity in the recirculation region: (a) Reh = 10 595
(WMLES), (b) Reh = 33 000 (WMLES), (c) Reh = 33 000 (WRLES) and (d) Reh = 105

(WMLES). Velocity profiles probed at P1–P4 (wall-normal dashed lines) are extracted for
scaling in figure 14.

pressure fluctuations occur in the separated shear layer and turn around the bubbles
(see figure 15a–c). This was also observed by Na & Moin (1998b) in DNS of flat-plate
turbulent boundary layer flows with separation and reattachment, and they attributed
this to the movement of those vortical structures from upstream of separation. After the
reattachment, the flow starts to redevelop and the location of maximum r.m.s. pressure
fluctuations moves towards the wall, and the magnitude is much smaller than that in the
separated shear layer. It should be noted that the area of high-intensity pressure fluctuations
(prms/ρU2

b � 0.06) is decreased with increasing Reh, which shows a similar trend to the
separation bubble size (see also table 2). This is likely due to the dominant interaction
between turbulence and mean shear in this region, which is an ‘effective’ source for
pressure fluctuations (Willmarth 1975; Simpson 1996; Hu, Reiche & Ewert 2017).

To further assess the effects of Reynolds number on the wall pressure fluctuations,
some scaling relations are utilized to understand the pressure-producing mechanisms.
The wall pressure fluctuations normalized by the reference dynamic pressure ρU2

b and
local maximum Reynolds stress ρu′v′

max and ρv′v′
max are shown in figures 15(d)–15( f ),

respectively. There is less variation of wall pressure fluctuations when normalized by
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FIGURE 14. Scaling of the mean streamwise velocity profiles in the back-flow region for
(a) Reh = 10 595 (WMLES), (b) Reh = 33 000 (WMLES), (c) Reh = 33 000 (WRLES) and
(d) Reh = 105 (WMLES): ◦, x/h = 1.0 (P1); �, x/h = 1.5 (P2); 	, x/h = 2.0 (P3); 
, x/h =
2.5 (P4), where P1–P4 are wall-normal lines as illustrated in figure 13. Scaled velocity profiles
from (4.5) given by Simpson (1983): , A = 0.3; , A = 0.6 in (a), A = 0.45 in (b),
A = 0.4 in (c) and A = 0.35 in (d); , A = 0.45 in (a), A = 0.25 in (b–d).

ρu′
iu

′
jmax

than by ρU2
b . Many experimental and numerical investigations have shown that

the local maximum Reynolds shear stress is a better scale for normalizing wall pressure
fluctuations in separated turbulent boundary layers (Simpson et al. 1987; Ji & Wang 2012;
Abe 2017).

Figure 15(d) shows the the r.m.s. value of wall pressure fluctuations normalized by
the reference dynamic pressure pw,rms/ρU2

b . Two local peaks could be noted: one at
the separation point (pw,rms/ρU2

b = 0.06 ∼ 0.07) and the other close to the reattachment
(pw,rms/ρU2

b = 0.05 ∼ 0.06), i.e. 0.7 � (x − xs)/Lb � 0.8. The magnitudes of these peak
values increase gradually with Reh. In the region of incipient detachment, the wall pressure
fluctuations decrease rapidly due to the existence of the constant-pressure region in the
bubble (see figures 4a and 7a). Downstream of the wall pressure fluctuation peak near
the reattachment, the r.m.s. pressure decreases up to approximately half reattachment
lengths. Mabey (1972) summarized pressure fluctuations of step-induced separation and
reattaching flows and found that the peak value of the wall pressure fluctuations occurs
near the reattachment, i.e. pw,rms/ρU2

b ≈ 0.06 for the backward-facing step flow. Kiya &
Sasaki (1983) also reported a local peak value of pw,rms/ρU2

b ≈ 0.06 near the reattachment
for separated flow along the side of a blunt flat plate. This value is close to our results,
which is insensitive to fairly wide changes in Reynolds number and different types of
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FIGURE 15. Contours of prms/ρU2
b superimposed on time- and spanwise-averaged streamlines:

(a) Reh = 10 595, (b) Reh = 33 000 and (c) Reh = 105. Distributions of the normalized wall
pressure fluctuations: (d) pw,rms/ρU2

b , (e) pw,rms/ − ρu′v′max and ( f ) pw,rms/ρv′v′max . ,
Reh = 10 595; , Reh = 33 000; , Reh = 105.

separation bubbles. Na & Moin (1998a) proposed that these peaks are partly due to the
wandering of the reattachment location (further discussion of the near-wall streamlines is
presented in § 4.5) and the wide variation of turbulence structures impinging on the wall
at reattachment.

Figures 15(e) and 15( f ) show the the r.m.s. values of wall pressure fluctuations
normalized by the local maximum Reynolds stress pw,rms/ρu′v′

max and pw,rms/ρv′v′
max ,

respectively. Good collapse, which seems to be independent of Reh, is obtained from
the separation point until some distance beyond the reattachment, i.e. 0 � (x − xs)/Lb �
1.5. In experimental and numerical investigations of flat-plate turbulent boundary layer
flows involving separation and reattachment, Simpson et al. (1987) and Na & Moin
(1998b), respectively, found that the wall pressure fluctuations normalized by ρu′v′

max

lead to near plateau, i.e. pw,rms/ − ρu′v′
max = 2.5–3, in the separated region, while

reducing to be about 1.8 in the near-reattachment region. Ji & Wang (2012) pointed
out that ρv′v′

max is a better scale in the reattached region (slightly less than Lb) rather
than ρu′v′

max in both forward- and backward-facing step flows. Moreover, they found
that pw,rms/ρv′v′

max ≈ 1.35 near the reattachment and farther downstream, when the
step height is sufficiently large to generate a strong separated shear layer. Abe (2017)
performed DNS of flat-plate turbulent boundary layer flows with large adverse and
favourable pressure gradients, and found that pw,rms/ρv′v′

max ≈ 1.2 near the reattachment
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independently of the Reynolds number and pressure gradient. In the present simulations,
we find that both pw,rms/ − ρu′v′

max and pw,rms/ρv′v′
max approach unambiguously some

constant value in the vicinity of the reattachment (0.9 � (x − xs)/Lb � 1.5), i.e. pw,rms/ −
ρu′v′

max ≈ 1.7 and pw,rms/ρv′v′
max ≈ 1.1 independently of Reh (see figure 15e,f ). The

reason for this difference is possibly associated with the convective nature of a hill-induced
separation bubble near the reattachment where the interactions of the separated shear layer
and turbulence, rather than the strong pressure gradient, play a dominant role in the wall
pressure fluctuations.

4.5. Instantaneous skin friction fields: on instantaneous bubbles
The mean streamwise skin friction coefficients along the bottom wall provide useful
information for interpreting this flow involving separation and reattachment behaviour.
However, the instantaneous near-wall flow structure is more complex, and should be
analysed more carefully.

Figure 16 depicts the instantaneous near-wall flow field (spanwise-averaged skin
friction, Cf ; skin friction vector field, Cf = (Cf , Cf ,z) (Cf and Cf ,z denote the streamwise
and spanwise skin friction coefficients, respectively), also referred to as skin friction
lines; and probability density function (PDF) of the velocity angle, θ ) at t = 456.6h/Ub
and t = 522.9h/Ub for Reh = 10 595. These two time instants are chosen to correspond
to a flow state where separation occurs near the hill crest or not. The instantaneous
spanwise-averaged Cf is fluctuating in both attached and separated zones at most locations
except x/h = 8.2–8.4, which is different from the smooth time- and spanwise-averaged
Cf profile. At t = 456.6h/Ub, the first separation occurs at x/h ≈ 0.2 (see Cf vector
field in figure 16a), also visible in the PDF(θ ) with some portion of reverse flow
(θ � π/2). However, the first separation point detected from the spanwise-averaged Cf
plot is slightly larger than that. The flow in the mean attached zone also experiences
separation, x/h = 6.0–7.6 and x/h > 8.9 from the plots of Cf and PDF(θ ). The
spanwise-averaged Cf fluctuates around Cf = 0 from x/h = 6.6 to x/h = 7.5, which
implies separation and attachment in this region in spite of narrower separation zone
due to the spanwise-averaging approach. The mean separation zone on the windward
side of the hill, x/h ≈ 7.0–7.4, as reported for other DNS and LES (Mellen et al. 2000;
Fröhlich et al. 2005; Breuer et al. 2009; Diosady & Murman 2014; Krank et al. 2018), is
visible in the instantaneous field. This also confirms the high level of spanwise velocity
fluctuations in the post-reattachment zone as reported by Breuer et al. (2009), which results
in the ‘splatting’ of large-scale eddies originating from the shear layer and convecting
towards the windward slope. They also reported a very small counterclockwise rotating
structure with positive wall shear stress for Reh � 1400 in the region x/h ≈ 0.6–0.8 at the
leeward side of the hill, and this could also be observed in the present instantaneous field
although the size is much smaller. Meanwhile, the reported very small separation zone
on the hill crest is also found in figure 16(b). At t = 522.9h/Ub, the spanwise-averaged
Cf is fluctuating around Cf = 0 from x/h = 3.6 to x/h = 6.9, followed by a very small
separation zone at x/h ≈ 7.0–7.5. In the acceleration zone, x/h = 8.0–8.9, the skin
friction lines are more uniform than in other regions even with wall curvature. For flow
close to the mean locations of separation (x/h = 0.22) and reattachment (x/h = 4.59),
the flow varies strongly with velocity angle covering the range from 0 to π, which implies
that the classic wall model assuming logarithmic law may not be suitable for such type of
flow.
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FIGURE 16. The near-wall flow field on the bottom wall from WMLES for Reh = 10 595:
(a) t = 456.6h/Ub and (b) t = 522.9h/Ub. The top, middle and bottom part of each panel show,
respectively, the spanwise-averaged skin friction Cf (the dashed line denotes Cf = 0), the skin
friction lines and the PDF of the velocity angle θ along the x direction.
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FIGURE 17. The near-wall flow field on the bottom wall from WRLES for Reh = 33 000:
(a) t = 186.7h/Ub and (b) t = 267.9h/Ub. The top, middle and bottom part of each panel show,
respectively, the spanwise-averaged skin friction Cf (the dashed line denotes Cf = 0), the skin
friction lines and the PDF of the velocity angle θ along the x direction.
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FIGURE 18. The near-wall flow field on the bottom wall from WMLES for Reh = 105:
(a) t = 307.4h/Ub and (b) t = 326.9h/Ub. The top, middle and bottom part of each panel show,
respectively, the spanwise-averaged skin friction Cf (the dashed line denotes Cf = 0), the skin
friction lines and the PDF of the velocity angle θ along the x direction.
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Figure 17 shows the instantaneous near-wall flow field at t = 186.7h/Ub and t =
267.9h/Ub for Reh = 33 000 (WRLES). Similar to the Reh = 10 595 case, the spatially
fluctuating behaviour of the spanwise-averaged Cf with higher intensity is observed. The
very small separation bubble at the hill top detected from the present WRLES is visible
in figure 17(a), x/h ≈ −0.15 to 0.15. At t = 186.7h/Ub, the very small counterclockwise
rotating structure with positive wall shear stress ranges from x/h ≈ 0.15 to x/h ≈ 0.22,
with larger size than that for Reh = 10 595. Excluding this very small structure, flow
separation occurs from the hill top to x/h ≈ 5.3. At t = 267.9h/Ub, the very small
separation bubble on the windward side of the hill is observed, ranging from x/h ≈ 6.8
to x/h ≈ 7.0, from the spanwise-averaged Cf in figure 17(b). This is also visible in the
plots of Cf and PDF(θ ), but covering a slightly larger range. In the acceleration zone,
x/h ≈ 7.8–8.8, the skin friction lines are more uniform than in other regions. For flow
close to the mean locations of separation (x/h = 0.27) and reattachment (x/h = 3.96),
the variations of flow directions are much stronger than in other regions, similar to that
observed for Reh = 10 595.

Figure 18 shows the instantaneous near-wall flow field at t = 307.4h/Ub and t =
326.9h/Ub for Reh = 105. It is also noted that the spanwise-averaged Cf fluctuates along
the bottom wall, even in the region close to the Cf peak. For this high-Reh case, a major
feature that is different from the previous two cases is the scale separation of the near-wall
flow. At both instants, small-scale reversal flows are more concentrated, leaving sufficient
space for detached flow development. In the post-reattachment region (x/h > 3.57), the
portion of reverse flow is smaller than for the other two cases, as shown in figure 18(a,b).
Thus, the separation/reattachment point in the spanwise-averaged Cf plot is more clear.
This is not observed in lower-Reh cases, where most of the downhill region is at the
vicinity of separation. Small-scale reverse-flow structures on the top and windward side
of the hill are also observed from the skin friction portraits and PDF(θ ), missing in
the spanwise-averaged Cf plot, but the portion of reverse flow is much smaller than for
Reh = 10 595 and 33 000.

5. Flow at the top wall: comparisons with plane channel flows

In this section, we discuss the similarities and differences between the plane channel
flow and the flow field in the vicinity of the flat top wall. The mean flow field in this
region is averaged in the streamwise direction since it is gradually varying along the top
wall.

5.1. Skin friction Cf

The first quantity of interest is the skin friction Cf on the wall top, which may be described
by some empirical friction law. Two types of formulas are adopted for comparisons: the
logarithmic skin friction law (Durand 1935),√

2

Cf
= 1

K1
log

(
Rem

√
Cf

)
+ C, (5.1)

where K1 = 0.40 and C = −0.03 as suggested by Schultz & Flack (2013), and the power
law given by Dean (1978),

Cf = 0.073Re−0.25
m , (5.2)
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FIGURE 19. Variation of skin friction coefficient with Rem: 	, DNS from Moser, Kim &
Mansour (1999); 
, DNS from Del Álamo et al. (2004); ◦, experimental data from Schultz &
Flack (2013); �, DNS from Lee & Moser (2015); ∇, LES from Giovanetti, Hwang & Choi (2016);
•, results from the present simulations; , logarithmic skin friction law (5.1); , power
skin friction law (5.2).

where Rem is based on the channel depth (d) and bulk mean velocity (Ub), i.e. Rem =
Ubd/ν. In plane channel flows, the channel depth is twice the channel half-height.
However, in the present case, the channel is partly occupied by a submerged hill, and
d = H − h = 2.035h is adopted here. Figure 19 shows the LES-predicted Cf , together
with other experimental and numerical results (DNS and LES) for plane channel flows.
The power law (5.2) matches slightly better, with maximum relative error of 5.4 % at
Reh = 10 595, while logarithmic law (5.1) produces maximum relative error of 9.4 %.
For Reh = 33 000, both formulas are in good agreement with the predicted Cf . The
Reh = 105 case shows better agreement with the logarithmic law, in accordance with other
investigations at higher Rem. The deviations from the logarithmic law may be attributed
to the separated shear layer after the hill crest, which exerts a drag effect on the top wall.
Nevertheless, the skin friction on the top wall seems to follow the relationship with Rem as
in plane channel flows.

5.2. Mean velocities and turbulent intensities
The streamwise mean velocity in a plane channel follows a logarithmic profile with
distance from the wall, y:

ū+ = 1
K1

log( y+) + B, (5.3)

where ū+ = u/uτ , y+ = yuτ /ν and B is a parameter that depends on the roughness
of the wall. Townsend (1976) proposed the attached-eddy hypothesis, which leads to a
logarithmic profile for the streamwise turbulence intensity:

u′u′+ = B1 − A1 log( y/δ), (5.4)

where u′u′+ = u′u′/u2
τ and δ is the boundary layer thickness (or pipe radius, or channel

half-height); here δ = d/2 is chosen to be compatible with the skin friction analysis. One
of the difficulties in clearly demarcating the logarithmic region is that the streamwise mean
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FIGURE 20. Scaling of the streamwise-averaged (a) mean velocity profile and (b) turbulence
intensity profile from the top wall for Reh = 10 595: ◦, present WMLES; , DNS from
Moser et al. (1999), at Reτ = 590; , DNS from Del Álamo et al. (2004), at Reτ = 950.
The solid diagonal line in (a) denotes the generalized logarithmic profile defined in (5.3) with
K1 = 0.384, B = 4.6 from Inoue & Pullin (2011), and the solid diagonal line in (b) denotes
the distribution given in (5.4) with A1 = 1.74, B1 = 0.82. The dashed vertical lines indicate the
bounded region 2.6Re1/2

τ � y+ � 0.15Reτ .

velocity profile deviates slowly from (5.3), as argued by Marusic et al. (2013). There are a
variety of estimates for the bounds of the logarithmic region (Wei et al. 2005; Eyink 2008;
Klewicki, Fife & Wei 2009; Marusic et al. 2013), and most of them relate the bound to the
boundary layer thickness or Reτ (= uτ δ/ν). We choose an estimate of the lower bound as
y+ = 2.6Re1/2

τ , suggested by Klewicki et al. (2009), and the upper bound at y+ = 0.15Reτ ,
which is adopted by Marusic et al. (2013) in analysis of wall turbulence.

Figures 20 (Reh = 10 595, Reτ = 597), 21 (Reh = 33 000, Reτ = 1540) and 22 (Reh =
105, Reτ = 4000) show the scaling of the mean velocity and turbulence intensity profiles
from the top wall, together with the DNS datasets from plane channel flows for
comparisons. For an interval of y+, the match between the profiles of both the mean flow
and turbulence intensities and the logarithmic scaling (5.3) and (5.4) is good for both
Reynolds numbers. As mentioned above, the bound of the logarithmic region for the mean
flow is difficult to discern; however, the streamwise turbulence intensity deivates more
abruptly than the mean flow outside the estimated logarithmic region (2.6Re1/2

τ � y+ �
0.15Reτ ). It is evident that the bound estimate of the logarithmic region is slightly smaller
than actual bounds (see also figures 20–22), especially for Reh = 10 595. One possible
reason is that the estimates based on high-Reynolds-number flows (Reτ > 20 000) may
not be good enough for the present cases.

The Reh = 10 595 case is closer to plane channel flow at Reτ = 590 (Moser et al. 1999)
as inferred from Cf plot in figure 19. The mean velocity profiles are in good agreement
with this plane channel flow and (5.3) for y+ � 180; however, the streamwise turbulence
intensities are more close to Reτ = 950 (Del Álamo et al. 2004), and curve fitting using
(5.4) gives A1 = 1.74, larger than the Townsend–Perry constant A1 = 1.26 (Marusic et al.
2013) for Reτ > 20 000. For Reh = 33 000, it is close to Reτ = 1000 (Lee & Moser 2015).
The mean velocity profiles compare well with plane channel flows for y+ � 400, while the
streamwise turbulence intensity is even larger than Reτ = 2000 (Lee & Moser 2015), and
A1 = 0.88 smaller than the recommended value. For Reh = 105, it is close to Reτ = 4000
(Bernardini et al. 2014), but the streamwise turbulence intensity is larger, similar to Reh =
33 000. The mean velocity profiles compare well with plane channel flows (y+ � 650)
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FIGURE 21. Scaling of the streamwise-averaged (a) mean velocity profile and (b) turbulence
intensity profile from the top wall for Reh = 33 000: �, present WMLES; ◦, present WRLES.
The dot-dashed lines denote DNS from Lee & Moser (2015) at Reτ = 1000 ( ) and Reτ =
2000 ( ). The solid diagonal line in (a) denotes the generalized logarithmic profile defined
in (5.3) with K1 = 0.384, B = 4.6 from Inoue & Pullin (2011), and the solid diagonal line in
(b) denotes the distribution given in (5.4) with A1 = 0.88, B1 = 4.56. The dashed vertical lines
indicate the bounded region 2.6Re1/2

τ � y+ � 0.15Reτ .
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FIGURE 22. Scaling of the streamwise-averaged (a) mean velocity profile and (b) turbulence
intensity profile from the top wall for Reh = 105: ◦, present WMLES; , DNS from
Bernardini, Pirozzoli & Orlandi (2014), at Reτ = 4000; , DNS from Lee & Moser (2015),
at Reτ = 5200. The solid diagonal line in (a) denotes the generalized logarithmic profile defined
in (5.3) with K1 = 0.384, B = 4.6 from Inoue & Pullin (2011), and the solid diagonal line in
(b) denotes the distribution given in (5.4) with A1 = 1.26, B1 = 3.02. The dashed vertical lines
indicate the bounded region 2.6Re1/2

τ � y+ � 0.15Reτ .

with the peak location of the streamwise turbulence intensity slightly off from the plane
channel flow. Moreover, the streamwise turbulence intensity is even larger than Reτ =
5200 (Lee & Moser 2015), and the Townsend–Perry constant A1 = 1.26 fits well the LES
data. These results would imply that A1 is not a universal constant at insufficiently high
Reynolds number. The hill in the channel acts as a perturbation source, which strongly
enhances the turbulence intensity, and the flow far away from the top wall is also affected
by the developed shear layer. These would also change the eddy structures and thus the
associated parameters in the eddy intensity functions (Marusic & Monty 2019). These
would also explain why the mean flow and streamwise turbulence intensity far away from
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the top wall deviate sharply from plane channel flows. Overall, the flow in the region close
to the top wall behaves similarly to plane channel flows, following the classic logarithmic
scaling (5.3) and (5.4). However, the hill in the channel perturbs the entire flow field, and
the separated shear layer transfers these effects to the upper flow region.

6. Conclusion

We have presented results from LES of turbulent flow in a channel constricted by
streamwise periodically distributed hills at Reh = 10 595, 33 000 and 105. To overcome
the high computational cost of resolving the small-scale turbulent scales in the near-wall
region (both top and bottom walls), we couple the generalized virtual wall model
(near-wall region) and the stretched spiral vortex model (outer LES resolved region) to
formulate the WMLES framework. The numerical methodology is based on fourth-order
spatial differencing, with a multigrid Poisson solver for the pressure utilizing Gauss–Seidel
line smoothers.

The WMLES results for Reh = 10 595 and 33 000 are verified and validated against both
WRLES and experimental data, including the pressure and skin friction coefficients, mean
velocity and Reynolds stress profiles. We note that capturing separation and reattachment
in complex flows still remains a challenge for the turbulence simulation community. In
our WMLES, the locations of separation and reattachment are in good agreement with
experiments. Furthermore, comparisons of the mean velocity profiles with experiments
show good agreement, while profiles of Reynolds stress components are in reasonable
agreement with experiments. For Reh = 105, the largest Reh case to the best of our
knowledge, the locations of reattachment compare well with the scaling law given by
Kähler et al. (2016), and the peak values of the skin friction coefficient are in good
agreement with the best-fit scaling law based on the DNS/LES results from Reh = 700
to 10 595.

Based on these verifications and validations, we also investigated the effects of Reynolds
number inside the recirculation zone. We find that the normalized skin friction coefficient
follows ‘laminar-like’ behaviour, which is similar to the correlation in backward-facing
step flows. The centre coordinate and length of the separation bubble behind the hill
decrease with Reh, while the dependence of the bubble height on the Reynolds number
is not that strong. Meanwhile, the mean velocity profiles inside the recirculation zone are
compared with the Simpson equation, and we find that a unique empirical constant A does
not fit all the velocity profiles at different locations, especially near the separation point.
Furthermore, the r.m.s. value of pressure fluctuations is examined in the entire channel
and the maximum pressure fluctuations occur in the separated shear layer. The wall
pressure fluctuations normalized by the reference dynamic pressure, ρU2

b , indicate local
peaks near the separation and reattachment point, i.e. pw,rms/ρU2

b ≈ 0.06, although with
slight increase with Reh. The wall pressure fluctuations show less of a variation around
the recirculation zone when scaled by the local maximum Reynolds stress −ρu′v′

max

and ρv′v′
max . This normalization produces some constant value in the vicinity of the

reattachment, i.e. pw,rms/ − ρu′v′
max ≈ 1.7 and pw,rms/ρv′v′

max ≈ 1.1, independently of
Reh.

We examined the details of unsteady behaviour of separation and reattachment by
examining the surface streamlines. An often-ignored feature in flows over periodic
constrictions is the flow field near the top wall. We have compared the flow field at the
top wall with planar channel flows. The skin friction at the top wall is in agreement with
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previously proposed empirical relations. Also, the mean velocity profiles and turbulent
intensities are compared with planar channel flows, showing the existence of a logarithmic
layer. The periodic hills act as perturbations to planar channel flows and the shear layer
from the crest of the hill has an effect in terms of drag on the top wall.
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Appendix A. Stretched vortex SGS model

The stretched vortex SGS model has been previously widely deployed in LES of
wall-bounded turbulent flows by Pullin and co-workers. Here, for the sake of completeness,
we present the essential features of this structure-based SGS model, which assumes
that the turbulent fine scales are composed of tube-like structures with spiral vortices
(Lundgren 1982). In each computational cell, the ensemble dynamics is dominated by
a stretched vortex with orientation eν , taken from a delta-function probability density
function (Misra & Pullin 1997). Consequently, the SGS stress tensor T ij is modelled as
(Chung & Pullin 2009)

T ij = (δij − ev
i ev

j )K, K =
∫ ∞

kc

E(k) dk, (A 1a,b)

where K is the SGS kinetic energy, kc = π/Δc is the cut-off wavenumber (Δc =
(ΔxΔyΔz)

1/3) and E(k) is the SGS energy spectrum given by Lundgren (1982). The
integration of the energy spectrum gives

K = 1
2K′

0Γ
[−1/3, κ2

c

]
, K′

0 = K0ε
2/3λ2/3

v , λv = (2ν/3|ã|)1/2, κc = kcλv, (A 2)

where Γ is the incomplete gamma function, ã = ev
i ev

j S̃ij is the stretching felt along the
subgrid vortex axis imposed by the resolved scales and S̃ij is the resolved SGS strain tensor.
The composite parameter K′

0 is obtained dynamically by structure–function matching at
the grid-scale cut-off (Voelkl, Pullin & Chan 2000), i.e. K′

0 = 〈F2〉/〈Q(κc, d)〉, where 〈.〉
denotes a local-averaging operator computed from the neighbouring 26 points, F2 is the
second-order velocity structure function from the resolved LES field and the calculation
of Q(κc, d) is similar to that in Voelkl et al. (2000) and Chung & Pullin (2009) with
κc = r/Δc and r the distance from the neighbouring point to the vortex axis.

Appendix B. Wall modelling in complex geometry

Starting with the Navier–Stokes equations in the generalized curvilinear coordinates
((2.2) and (2.3)), we apply near-wall filtering along with the assumption of inner scaling
to derive an ODE governing the local wall-normal velocity gradient, and a slip Dirichlet
boundary condition for velocity at a virtual wall.
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B.1. Derivation of the wall shear stress
Following Chung & Pullin (2009), we define two near-wall filters in the near-wall region:

φ̃(ξ, η, ζ, t) =
∫ ∫

φ(ξ, η, ζ, t)G(ξ − ξ ′,Δf )G(ζ − ζ ′,Δf ) dξ ′ dζ ′, (B 1)

〈φ〉 = 1
h′

∫ h′

0
φ̃(ξ, η, ζ, t) dyn, (B 2)

where (B 1) and (B 2) define the wall-parallel filter and the wall-normal averaging filter,
respectively. Applying the wall-parallel filter (B 1) to the momentum equations (2.2), we
obtain

∂ ũ
∂t

= − 1√
g

∂

∂ξm

(
Ũmu + √

g
∂ξm

∂x
p̃ − νGmn ∂ ũ

∂ξ n

)
, (B 3a)

∂ṽ

∂t
= − 1√

g
∂

∂ξm

(
Ũmv + √

g
∂ξm

∂y
p̃ − νGmn ∂ṽ

∂ξ n

)
, (B 3b)

∂w̃
∂t

= − 1√
g

∂

∂ξm

(
Ũmw + √

g
∂ξm

∂z
p̃ − νGmn ∂w̃

∂ξ n

)
, (B 3c)

where (u, v, w) = (u1, u2, u3) denote the velocity components in Cartesian coordinates.
We assume q̃, defined in (2.6a), follows inner scaling, i.e.

q̃(ξ, η, ζ, t) = uτ (ξ, ζ, t)F( y+
n ), y+

n = uτ yn/ν, (B 4a,b)

where F( y+
n ) is an unknown function of the normal distance from the solid wall in wall

units. The following ODEs can then be derived:

∂uτ

∂η0
= ν

2uτ

= 1
2

√
ν

η0
,

∂y+
n

∂η0
= y+

n

2η0
. (B 5a,b)

Applying the wall-normal averaging filter (B 2) to the governing equation of q̃ results in

∂ 〈q〉
∂t

= q̃|h′

2η0

∂η0

∂t
, (B 6)

where q̃|h′ = uτ F(h+) is the resultant velocity at a distance h′ from the solid wall (see
figure 2). It should be noted that (B 6) is an exact consequence of (B 2) and (B 4a,b).
Moreover, an explicit form of F( y+

n ) is not required owing to cancellation.
From the definition of q̃, (2.6a,b), we have

∂ 〈q〉
∂t

= 1
h′

∫ h′

0

(
ũs

q̃
∂ ũs

∂t
+ w̃

q̃
∂w̃
∂t

)
dyn. (B 7)
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From the definition of ũs, (2.7) and combing (B 3a) and (B 3b), we can obtain the
streamwise momentum equation along the wall:

∂ ũs

∂t
= ∂ ũ

∂t
cos θw + ∂ṽ

∂t
sin θw

= −cos θw√
g

∂

∂ξm

(
Ũmu + √

g
∂ξm

∂x
p̃ − νGmn ∂ ũ

∂ξ n

)
− sin θw√

g
∂

∂ξm

(
Ũmv + √

g
∂ξm

∂y
p̃ − νGmn ∂ṽ

∂ξ n

)
. (B 8)

Then combining (B 3c), (B 7) and (B 8), we can obtain

∂ 〈q〉
∂t

= Fξ + Fη + Fζ , (B 9)

where

Fξ = − 1
h′

∫ h′

0

ũs

q̃
cos θw√

g
∂

∂ξ 1

(
Ũ1u + √

g
∂ξ 1

∂x
p̃ − νG1n ∂ ũ

∂ξ n

)
dyn

− 1
h′

∫ h′

0

ũs

q̃
sin θw√

g
∂

∂ξ 1

(
Ũ1v + √

g
∂ξ 1

∂y
p̃ − νG1n ∂ṽ

∂ξ n

)
dyn

− 1
h′

∫ h′

0

w̃
q̃

1√
g

∂

∂ξ 1

(
Ũ1w + √

g
∂ξ 1

∂z
p̃ − νG1n ∂w̃

∂ξ n

)
dyn, (B 10)

Fη = − 1
h′

∫ h′

0

ũs

q̃
cos θw√

g
∂

∂ξ 2

(
Ũ2u + √

g
∂ξ 2

∂x
p̃ − νG2n ∂ ũ

∂ξ n

)
dyn

− 1
h′

∫ h′

0

ũs

q̃
sin θw√

g
∂

∂ξ 2

(
Ũ2v + √

g
∂ξ 2

∂y
p̃ − νG2n ∂ṽ

∂ξ n

)
dyn

− 1
h′

∫ h′

0

w̃
q̃

1√
g

∂

∂ξ 2

(
Ũ2w + √

g
∂ξ 2

∂z
p̃ − νG2n ∂w̃

∂ξ n

)
dyn, (B 11)

Fζ = − 1
h′

∫ h′

0

ũs

q̃
cos θw√

g
∂

∂ξ 3

(
Ũ3u + √

g
∂ξ 3

∂x
p̃ − νG3n ∂ ũ

∂ξ n

)
dyn

− 1
h′

∫ h′

0

ũs

q̃
sin θw√

g
∂

∂ξ 3

(
Ũ3v + √

g
∂ξ 3

∂y
p̃ − νG3n ∂ṽ

∂ξ n

)
dyn

− 1
h′

∫ h′

0

w̃
q̃

1√
g

∂

∂ξ 3

(
Ũ3w + √

g
∂ξ 3

∂z
p̃ − νG3n ∂w̃

∂ξ n

)
dyn. (B 12)

For the purpose of modelling, we make the following two approximations within the first
grid cell 0 � η � h′:

(i) the velocity angle θ , i.e. ũs/q̃ and w̃/q̃, is constant;
(ii) the Jacobian of the transformation, i.e.

√
g, is constant.
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Then we can reduce Fη to be

Fη = M + νG22

√
gh′

∂ q̃
∂yn

∣∣∣∣
h′

− νG22

√
gh′ η0, (B 13)

where

M = − 1√
gh′

[
ũs

q̃

(
Ũ2u cos θw + Ũ2v sin θw

)
+ w̃

q̃
Ũ2w

]∣∣∣∣
h′

+ νG21

√
gh′

[
ũs

q̃

(
∂ ũ
∂ξ 1

cos θw + ∂ṽ

∂ξ 1
sin θw

)
+ w̃

q̃
∂w̃
∂ξ 1

]∣∣∣∣
h′

+ νG23

√
gh′

[
ũs

q̃

(
∂ ũ
∂ξ 3

cos θw + ∂ṽ

∂ξ 3
sin θw

)
+ w̃

q̃
∂w̃
∂ξ 3

]∣∣∣∣
h′

. (B 14)

If the first wall layer is forced to be orthogonal, then the terms with Gij(i /= j) can be
neglected. If the spanwise geometry is uniform, then the terms with ∂ξ i/∂z (i = 1, 2) can
be neglected.

Terms Fξ , Fζ and M feature in the right-hand side of (B 17) (see below) and are
unknown, which are estimated by resolved-scale quantities at the first grid point ( yn = h′)
above the solid wall. For example, the first term on the right-hand side of (B 10) is
approximated by LES resolved-scale values at yn = h′ as

− 1
h′

∫ h′

0

ũs

q̃
cos θw√

g
∂

∂ξ 1

(
Ũ1u + √

g
∂ξ 1

∂x
p̃ − νG11 ∂ ũ

∂ξ 1

)
dyn

≈ − ũs

q̃
cos θw√

g

∣∣∣∣
h′

∂

∂ξ 1

[
Ũ1u

∣∣∣
h′

+
(√

g
∂ξ 1

∂x
p̃
)∣∣∣∣

h′
−
(

νG11 ∂ ũ
∂ξ 1

)∣∣∣∣
h′

]
, (B 15)

where

Ũ1u
∣∣∣
h′

= √
g
∂ξ 1

∂x1
ũu
∣∣∣∣
h′

+ √
g
∂ξ 1

∂x2
ũv

∣∣∣∣
h′

+ √
g
∂ξ 1

∂x3
ũw
∣∣∣∣
h′

,

ũu|h′ ≈ ũũ|h′ + T xx |h′ , ũv|h′ ≈ ũṽ|h′ + T xy

∣∣
h′ , ũw|h′ ≈ ũw̃|h′ + T xz|h′ , (B 16)

where T xx , T xy and T xz are the SGS stress tensor components. The other terms in Fξ

(B 10), Fζ (B 12) and M (B 14) are approximated in a similar manner.
Equations (B 6) and (B 7) can be algebraically manipulated to derive an ODE for η0:

∂η0

∂t
= (C1 − C2η0) η0, (B 17)

where

C1 = 2
q̃|h′

(
Fξ + Fζ + M + νG22

√
gh′

∂ q̃
∂yn

∣∣∣∣
h′

)
, C2 = 2νG22

√
gh′q̃|h′

. (B 18a,b)

Rewriting the ODE we have

∂η0

η0
+ ∂η0

C1

C2
− η0

= C1∂t. (B 19)
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If C1/C2 is weakly dependent on t, (B 19) can be solved analytically:

η0(t) = C0C1eC1Δt

C2 + C0C2eC1Δt
, (B 20)

where

C0 = η0(t0)

C1

C2
− η0(t0)

, t = t0 + Δt, (B 21)

in which t0 is the current time and Δt is the time interval in the simulations.

B.2. Slip velocity boundary conditions
Once η0 is solved using (B 20), we complete the wall model with a slip velocity at a raised
virtual wall plane located at η = h0, which scales with the boundary layer thickness but
remains small, i.e. h0 � 0.1δ. Typically, h0 is chosen as a small fraction of the near-wall
cell size. In previous studies, both in channel flow by Chung & Pullin (2009) and in
turbulent boundary layer flows (zero and adverse pressure gradients) by Inoue & Pullin
(2011) and Cheng et al. (2015), h0 = 0.18Δη is recommended. Their verifications and
validations capture the near-wall flow physics well, and we follow this choice in the present
research. Finally, the resultant slip velocity q̃|h0 on the virtual wall can be modelled as in
(2.12).

Appendix C. Numerical method

The governing equations (2.4) and (2.5) are discretized as

δŨm

δξm
= 0,

√
g

ũn+1
i − ũn

i

Δt
= 3

2

(
Cn

i + Sn
i

)− 1
2

(
Cn−1

i + Sn−1
i

)+ Ri(p̃n+1) + Di(ũn+1),

(C 1)

where δ/δξm represents the energy-conservative fourth-order finite-difference operator
(Morinishi et al. 1998), Ci and Si represent the convective term and SGS term and Di and
Ri are discrete operators for the viscous term and the pressure gradient term, respectively.
These quantities are

Ci = − δ

δξm
(Ũmũi), Si = − δ

δξm

(√
g
δξm

δxj
T ij

)
,

Ri = − δ

δξm

(√
g
δξm

δxi

)
, Di = δ

δξm

(
νGmn δ

δξ n

)
, (C 2a,b)

where the convective term is computed in the skew-symmetric form to minimize the
aliasing error (Zang 1991; Morinishi et al. 1998). The fractional step method (Zang,
Street & Koseff 1994; Zhang et al. 2015) is used to solve the governing equations. This
method follows the predictor–corrector procedure, and the pressure Poisson equation
is solved using the multigrid method with line-relaxed Gauss–Seidel as a smoother.
The code is parallelized using standard MPI protocol. To achieve near-optimal load
balancing, the mesh is divided into blocks of equal size and each of them is assigned
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FIGURE 23. (a) Skin friction coefficient Cf along the bottom and (b) u′u′/U2
b near the centre of

the separation bubble (x/h = 2) for Reh = 10 595: , WRLES from Fröhlich et al. (2005);
, present WMLES with fine mesh; , present WMLES with coarse mesh (case M1).

In (a), the bold grey line denotes the geometry of the channel with streamwise periodic hills and
the horizontal dashed line is the Cf = 0 line plotted for reference.

to a unique processor. All the simulations are performed on the Shaheen-Cray XC40 at
KAUST. The DNS version of the code (without the SGS stress terms) with the same
method is described in Zhang et al. (2015) for flow past an airfoil. The WRLES and
WMLES versions of the same code were previously applied successfully in flow past
cylinders (Cheng et al. 2017, 2018) and different airfoil shapes at various angles of attack
and Reynolds numbers ranging from 104 to 2.1 × 106 (Gao et al. 2019), respectively.

Appendix D. The effect of mesh resolution

To evaluate the effects of mesh resolution on WMLES, we performed another WMLES
with a coarse mesh (Nξ × Nη × Nz = 96 × 48 × 48) at Reh = 10 595. The wall-normal
mesh size Δη is doubled (both on bottom and top walls), and correspondingly the height
of the virtual wall is doubled since we have fixed h0 = 0.18Δη. Bose & Park (2018)
summarized WMLES results in complex geometries, i.e. different airfoils and periodic
hill configurations, and found that the proper resolution of the separated shear layer is
important.

To show convergence, in figure 23 we plot both the time- and spanwise-averaged skin
friction coefficient on the bottom wall and u′u′/U2

b profile near the centre of the separation
zone (x/h = 2). It is evident from the Cf plot that the WMLES with the coarser mesh
results in reattachment at a smaller x/h location although the separation occurs at almost
the same location, and the peak value of Cf at x/h ≈ 8.6 is slightly larger than for the
WRLES and the WMLES with the finer mesh. The largest discrepancies occur inside
the separation zone. The same behaviour can be observed in the u′u′/U2

b profile (see
figure 23b), where we note that the WMLES with the coarser mesh produces the largest
values in the core region of the separation bubble and smallest values above the separation
bubble. Overall, these comparisons indicate that the present wall model can capture
the separation bubble well even with the coarse mesh, and mesh resolution should be
judiciously chosen to resolve the separated shear layer.
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FIGURE 24. The contribution of the SGS stress to the Reynolds stress T xx/u′u′ at (a) x/h = 2
and (b) x/h = 6 for three Reh cases: , Reh = 10 595; , Reh = 33 000; , Reh =
105.

Appendix E. The contribution of the SGS stress to the Reynolds stress

To evaluate the contribution of the SGS stress to the total Reynolds stress, in figure 24
we plot the fraction of the mean SGS stress components T xx that contributes to u′u′

(u′u′ = ũ′ũ′ + T xx ). Two locations are specified, x/h = 2 (separation zone) and x/h = 6
(attached zone). In the attached zone, T xx/u′u′ is smaller than that in the separation zone,
especially in the separated shear layer after the hill crest. Compared with the Reh = 10 595
case, the SGS stress contribution is larger in the other two higher-Reh cases. This may
also potentially explain why the the Reynolds stress comparisons for Reh = 33 000 with
experimental data are not as good as for Reh = 10 595. The resolution in the separated
shear layer is important for resolving the mixing process, i.e. sharp variation of the
Reynolds stress in the separation zone, as mentioned in § 3.2.
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