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Abstract

Several publications and web-based tools are available in weed science literature to help weed
scientists to carry out basic analysis of dose-response studies. Given the nature of the
complicated relationship between the explanatory variable (dose as x-axis) evaluated against
response variables of interest (y-axis), using regression curves should be the preferred method
for handling data analysis. The objective of this manuscript is to provide user-friendly
instructions for conducting and analyzing several types of dose-response studies that were
lacking in current weed science literature. A better understanding of less commonly used
concepts of hormesis and toxicological safety thresholds (no-observable-adverse-effect-level
[NOAEL] and lowest-observable-adverse-effect-level [LOAEL]) is needed to help address the
potential risks and benefits associated with herbicide use while minimizing environmental
impacts. Basic codes available in cost-free R software are provided for data analysis and to foster
collaboration among weed scientists.

Introduction

Sustainable agriculture aims to align food production with responsible environmental practices.
Integrated weed management stands out as a central strategy in the pursuit of sustainability
(Zimdahl 2018). As part of an integrated weed management system, herbicides play a crucial
role in providing essential solutions to address various weed control challenges. Nevertheless,
applying herbicides and pesticides in general always involves potential safety concerns that need
to be carefully considered and properly addressed.

One of the common safety concerns is the unintended off-target movement of herbicides,
known as drift. Notably, since the introduction of dicamba-tolerant cotton and soybeans in
2017, the incidence of dicamba off-target movement has surpassed any previous records in the
history of U.S. agriculture (Bish et al. 2021). For instance, during the initial growing season of
dicamba-tolerant cotton and soybean, state departments of agriculture conducted 2,708
nationwide investigations into alleged dicamba-induced crop injuries (Oseland et al. 2020).

Drift is not the sole pathway through which herbicides can reach unintended vegetation.
Herbicide residues may persist in application equipment, including hoses and tanks, posing an
ongoing risk of harming subsequently treated crops (Batts et al. 2022). Anticipated trends in
weed management suggest an increasing reliance on the development of crop varieties
engineered to tolerate a range of herbicides. While multiple herbicide–tolerant crops show
potential for improving weed control, the widespread use of these crops raises concerns about
herbicide drift and tank contamination.

On the other hand, the sublethal doses that are present in herbicide drift may not always have
adverse effects on the nontargeted plants. It is well known that many herbicides have beneficial
effects at low (sublethal) doses, yet they become detrimental at higher doses through a dose-
response phenomenon called hormesis (Cedergreen 2008a). Belz et al. (2018) expressed growing
concerns that the presence of variable hormesis responsiveness may lead to the selection of
herbicide-resistant weeds. Given that herbicide-resistant weed populations represent a
significant issue stemming from the widespread use of specific herbicides, there should be
an increased interest in studying the effects of sublethal herbicide doses on weeds. On the other
hand, Agathokleous and Calabrese (2019) argue for the use of hormesis in agriculture as ameans
to enhance crop productivity, thereby increasing global food supplies and fostering
socioeconomic development.

Therefore, it is useful to determine whether exposure to sublethal doses of certain herbicides
can induce hormesis in various plant species. It is also of interest to determine the toxicological
thresholds, such as the no observed adverse effect level (NOAEL) and the lowest observed
adverse effect level (LOAEL).

Despite various publications (Knezevic et al. 2007) and web-based tools available on the
subject, the existing weed science literature lacks comprehensive guidelines on how to conduct
and analyze dose-response studies, particularly those intended to assess hormesis and
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toxicological thresholds (NOAEL and LOAEL) of herbicides on
both crops and weeds of interest. Hence, the objectives of this
manuscript are to provide 1) general recommendation for studying
the above-listed concepts, and 2) step-by-step guidance and R
statistical software codes for data analysis within the DRC package
(Ritz et al. 2015).

Hormesis

Hormesis is a process in which exposure to a low dose of a chemical
or environmental factor that is damaging at higher doses induces
an adaptive beneficial effect on the cell or organism (Mattson
2008). The extensive literature documenting herbicide-induced
hormesis in plants provides convincing evidence for the
reproducibility of hormesis as a phenomenon (see, for example,
Belz and Duke 2014). Despite indications that hormesis could be
commercially leveraged to improve crop productivity, it has
received limited attention in weed science literature. Nevertheless,
faced with the looming gap between the demand for food and
limited production availability, there is a growing consensus that
the future focus in crop production is shifting from crop protection
to crop enhancement (Belz et al. 2011), which may draw more
attention toward the concept of hormesis.

The most commonly reported variable with herbicide-induced
hormetic stimulation is an increase in plant dryweight acrossmultiple
species, including oat (Avena sativa L.) (Wiedman and Appleby
1972), soybean [Glycine max (L.) Merr.], corn (Zea mays L.), and
eucalyptus (Eucalyptus grandis Hill ex Maiden) (Velini et al. 2008).
Another common observation includes an increase in plant height or
root length in various species such as rough dog‘s-tail (Cynosurus
echinatus L.), prickly lettuce (Lactuca seriola L.), rough mannagrass
(Glyceria maxima (Hartm.) Holmb.), cotton (Gossypium hirsutum
L.), and barley (Hordeum vulgare L.), among others (Belz and Duke
2014). Only a few studies have reported the hormetic effects of
herbicides on harvestable yield under field conditions, including
increased grain yield from barley and sugar yield from sugarcane
(Saccharum officinarum L.) (Pincelli-Souza et al. 2020).

Hormesis is usually not recorded in studies with herbicides,
primarily due to the infrequent use of doses that induce hormesis,
because those doses typically fall significantly below the
recommended levels for effective weed management (Belz and
Duke 2014). Yet, it is notable that dose-response studies with
herbicides are increasingly gaining popularity, especially after the
rise of dicamba drift in 2017. A substantial proportion of these
studies use the classical ANOVA approach in data analysis.
However, this is not the optimal method for analyzing such data
because ANOVA pertains to categorical factors (Tabachnick and
Fidell, 2007), whereas regression focuses on quantitative explana-
tory variables. Therefore, given the quantitative nature of the dose
as an explanatory variable, regression is the most appropriate
choice for this type of study, which is further detailed in this
manuscript.

Concept of NOAEL and LOAEL Toxicological (Safety)
Thresholds

NOAEL represents the dose of a herbicide that does not result in
any observable adverse effects on the plant. Conversely, LOAEL is
the dose at which detrimental effects become measurable (Greim
and Snyder 2018), serving as a potential “safety” threshold for
assessing the herbicide’s impact on the plant. From a practical
standpoint, a threshold is a dose of a specific herbicide that triggers

a measurable response in the plant species of interest. Considering
the inherent variation with field experimentation, weather, and
field conditions, a certain level of flexibility must be exercised, such
as 1%, 2.5%, and 5% thresholds. For example, a 1% threshold
represents a herbicide dose that causes a 1% reduction in response
(e.g., dry matter, yield, or other observed variable), compared with
a nontreated check (Milosevic et al. 2023). The same analogy
applies to 2.5% and 5% thresholds.

Furthermore, considering natural variability in agriculture
research and experimental error, we suggest that the 1% or 2.5%
threshold levels should be denoted as the range for reporting
NOAEL. Meanwhile, the 5% threshold should be denoted as
LOAEL, which should be in line with traditional statistical
significance at 95% (α= 0.05), robust detection of treatment effects
despite field experimentation variability, and practical acceptance
by crop producers and practitioners. The establishment of NOAEL
as a 1% to 2.5% threshold range attributes the observed reduction
to random error, rather than treatment effect. This aligns with the
NOAEL definition outlined by Alexeeff at al. (2002) as the dose at
which no statistically or biologically significant adverse effects
occur. Conversely, setting LOAEL at 5% accounts for a significant
increase in adversities, which would be indicative of treatment-
induced effects amid experimental variabilities and errors, as
proposed in our methodology. LOAEL values can be calculated for
each plant response of interest (e.g., dry matter reduction, yield
reduction, height reduction, or visual injury). To obtain results of
NOAEL, if an experiment features multiple calculated values (for
several responses), the lowest dose should be considered.
Determining these thresholds can also be beneficial for safety
assessments, risk management, legal and regulatory compliance,
and the protection of both the environment and public health.

Dose-Response and Associated Curves

In the field of weed science, dose usually refers to the amount of
herbicide required to achieve a desirable effect on a specific plant
species (Knezevic et al. 2007). Consequently, the connection
between herbicide dose and plant response holds significant
importance for comprehending herbicide efficacy. Furthermore,
understanding this relationship is critically necessary for the
proper design and interpretation of the dose-response studies.

Typically, the shape of a dose-response curve is sigmoidal
(Figure 1A), with upper and lower limits, or asymptotes. The upper
limit is established based on the response observed in nontreated
plants (control) or those exposed to an extremely low herbicide
dose. Conversely, the lower limit is determined by the response
levels observed when plants are subjected to a high herbicide
dosage (Knezevic et al. 2007). It is important to note that limits can
be altered, depending on the curve direction (ascending or
descending). For a sigmoidal (symmetric) curve, the dose
corresponding to the midpoint of plant response observed between
the upper and lower limits is usually referred to as the effective dose
50, or ED50; that is, the dose required to result in a 50% reduction in
observed response (Knezevic et al. 2007). An effective dose (ED)
may have any value between 1% and 99%, depending on the
desired effect (EDx). The ED1, ED2.5, and ED5 represent the
effective doses associated with achieving 1%, 2.5%, and 5% of
change in the desired plant response, establishing a direct
connection between the concepts of toxicological thresholds and
the parameters of the effective dose.

Although multiple models exist for describing sigmoidal dose-
response curves (Figure 1A), the log-logistic model with three
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(LL.3) or four (LL.4) parameters is the one most commonly used
(Knezevic et al. 2007; Van der Vilet and Ritz 2013). The LL.4
function is shown in Equation 1:

f x b; c; d; eð Þ½ � ¼ cþ d � c
1þ exp log xð Þ � log eð Þ½ �f g [1]

where e represents the ED50, d signifies the upper horizontal
asymptote (limit), and the lower horizontal asymptote (limit) is
denoted with c. Parameter b indicates the relative slope around e.
When the lower limit is 0, the resulting model is LL.3, shown in
Equation 2:

f x b; d; eð Þ½ � ¼ d
1þ exp b log xð Þ � log eð Þ½ �f g [2]

Both LL.3 and LL.4 are used to characterize the response in which
hormesis does not occur. However, if an initial growth is observed,
data can be described with several models, most commonly by the
Brain-Cousens model with four (BC.4) and five (BC.5) parameters
(Equation 3):

f x b; c; d; e; fð Þ½ � ¼ cþ d � cþ fx
1þ exp b log xð Þ � log eð Þ½ �f g [3]

where, similarly to LL models, parameters c and d represent the
lower and upper horizontal asymptotes (limits), respectively.
Parameters b and e lack specific interpretation. However,
parameter f holds significance because it represents the magnitude
or size of the hormetic effect. Larger values of the f parameter
indicate a more pronounced or substantial hormesis effect. Fixing
the lower horizontal asymptote (limit) at 0 yields a BC.4 equation.
Another model commonly used to evaluate and quantify the
hormesis is the Cedergreen-Ritz-Streibig (CRS) model with five or
six parameters, a modification of the log-logistic curve to account
for hormesis (CRS.5, CRS.6), given by Equation 4 (Cedergreen
et al. 2005) (Figure 1B) for some fixed, positive value of α:

f x b; c; d; e; fð Þ½ � ¼ cþ d � cþ f exp � 1
xα

� �

1þ exp b log xð Þ � log eð Þ½ �f g [4]

Parameters c and d are still interpreted as lower and upper limits,
the steepness of the curve following the maximal hormetic effect is
denoted by the size of b. Parameter e provides a lower bound of the
ED50 level. The upper limit of the hormesis effect is determined by
d þ f. Within DRC package are three variations of this model:

CRS.5a, CRS.5b, and CRS.5c, for α being equal to 1, 0.5, and 0.25,
respectively. For CRS.6, the last parameter is a freely varying α.
Note that not all features, such as EDx calculation, are available for
the model with the freely varying α (Cedergreen et al. 2005).

These CRS models describe the J-shaped (Figure 1B) hormesis
data, while the U-shaped (Figure 1C)model is given by Equation 5:

f x b; c; d; e; fð Þ½ � ¼ cd � d � cþ f exp � 1
xα

� �

1þ exp b log xð Þ � log eð Þ½ �f g [5]

The statistical test for hormesis in each of the models presented
above is given by the test of f ≠ 0, with the additional requirement
of f being positive to indicate the presence of hormesis. While each
of the models has its own set of advantages and disadvantages,
these specific pros and cons are beyond the scope of this
manuscript.

Optimal Dose Selection

Determining an appropriate number of doses in dose-response
studies is a critical part of the planning process. From a statistical
standpoint, the common rule of thumb is that the number of doses
must be at least one or two doses (e.g., data points) higher than the
number of parameters of the intended equation (model) used to
describe (graph) the relationships between the dose and plant’s
response (Knezevic et al. 2007). For example, at least seven doses
should be used when fitting an equation with six parameters (e.g.,
Equation 5). If time, space, and funding allow, the ideal scenario
should have 10 doses (including a nontreated check), which would
be handy for robust analysis. While selecting doses, it is beneficial
to have about three data points for the lower and upper ends of the
sigmoidal curve and perhaps four data points for the slope region
of the curve. However, this might be hard to achieve from a
practical standpoint, especially when testing multiple application
timings with various crop or weed growth stages, which can limit
(or reduce) the overall number of treatments. Nevertheless, it is
essential to maintain a balance, ensuring that the number of doses
is not fewer than seven. This would allow a description of the
response using the regression model with up to six parameters,
without the risk of overfitting the curves and inflating the
estimated parameters, thus maintaining the integrity of the
analysis. It is important to note that a higher number of data
points typically yields amore precise estimation of parameters, and
reduces standard errors of model parameters and standard errors
of estimated ED values.

Considering the relative nature of plant response to a specific
dose, the set of tested doses should be carefully selected and
perhaps targeted toward the specific zone of the curve. To achieve
this, a thorough review of the existing literaturemust be conducted,
or perhaps one could rely on the previous experience of the
researcher. When no published information exists, nor prior
knowledge is available, conducting one or more preliminary
screening trials can be a valuable strategy to determine how the
organism responds to the initial set of doses.

The distribution of doses should also align with the specific
objectives of the study. For example, when investigating a potential
hormetic effect, it is advisable to include several doses that are
lower or around the NOAEL and coupled with a few doses on the
higher end of the spectrum. This would likely cover a suitable range
for detecting any hormetic responses that may occur at lower

Figure 1. Typical dose-response curves. A: Sigmoidal ascending (solid line) and
sigmoidal descending (dashed line) curve, described by Equations 1 and 2 (LL model
family). B: J-shaped (solid line) and inverted J-shaped (dashed line) curve, described by
Equations 3 and 4 (BC and CRS model family). C: U-shaped (solid line) and inverted
U-shaped (dashed line) curve, described by Equation 5 (UCRS model family). Both
J- and U-shaped curves suggest hormesis response, while a sigmoidal curve does not.
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doses, while the few higher doses would induce the inhibitory
phase of hormesis.

On the other hand, if the primary objective is to describe the
NOAEL and LOAEL, at least two doses lower than the expected
NOAEL should be coupled with a few mid-range doses and one
dose at the higher end, for a total of seven doses. This distribution
enables a more precise determination of the dose-response curve,
slope (b), and the ED50, but it also enhances the accuracy in
predicting the NOAEL and LOAEL values.

Furthermore, the set of doses should be arranged in even step-
wise increments (Knezevic et al. 2007). For instance, if seven
herbicide doses are used, they should be structured as 0, 50, 100,
150, 200, 250 and 300 g ae ha−1, while in preliminary types of
studies, a set of doses may consist of doubled increments (e.g., 0, 5,
10, 20, 40, 80, and 100 g ae ha−1). Ideally, doses should be
administered in the following pattern: 0, 1×, 2×, 4×, 8×, 16×, 32×,
64×, and 128×, with x being the lowest tested dose. This uniform
progression simplifies the interpretation of the dose-response
curve and ensures that each dose level contributes evenly to the
overall understanding of the response pattern, making the analysis
more robust and precise.

Data Variables and Collection Timing

In dose-response studies aimed at investigating plant tolerance or
hormesis effects, it is essential to report several key variables
(responses) and the timing of data collection.

Data Variables

Dry matter (DM) and relative biomass serve as robust biological
indicators for assessing plant growth (Knezevic et al. 1998). DM
can be reported as an absolute value or expressed relative to a
nontreated control (a percent of the nontreated check). Plant
height is also one of the common variables through which
hormesis occurrence has been documented. Additional parameters
can include growth and leaf stages, leaf area index (LAI), and
harvest index, which may help explain how the stressors affect
plant development. Moreover, LAI and DM data can be further
used to calculate the net assimilation rate (NAR), as a useful
measure of a plant’s photosynthetic efficiency (Sudhakar et al.
2016). The NAR can be calculated with Equation 6:

NAR g=m2=dayð Þ ¼ W2 �W1

t2 � t1
� ln A2ð Þ � ln A1ð Þ

A2 � A1
[6]

where W1 and W2 are DM at times t1 and t2, while the ln(A1) and
ln(A2) are the natural logarithms of leaf area at times t1 and t2. As
indicated, to calculate NAR, two destructive harvests are required.

In studies that focus on a crop species, data related to yield and
its components hold significant importance, particularly when
studying crops grown for grain (corn, wheat, rice, soybean). For
crops grown for biomass production, such as silage corn and
leguminous plants including alfalfa, the DM measure assumes the
role of yield. When the subject of investigation is a weed, DM and
seed production can serve as an equivalent measure of yield.

Finally, percent visual injury is one of the most common data
variable collected by weed scientists. Typicality, visual injury
ratings are assigned using a scale from 0 to 100, where 0 signifies no
injury and 100 indicates plant death, providing a basis to quickly
quantify the extent of damage herbicide inflicted on the plant.
However, visual injury ratings may be a biased assessment because

they can vary greatly among researchers. On the other hand, visual
injuries are usually the most visible plant response to herbicides,
which is very important when estimating NOAEL values.

Timing of Data Collection

The timing of data collection is a critical aspect of any experiment
and typically aligns with the specific hypotheses and objectives of
the study. For instance, in herbicide evaluation trials conducted
within a single growing season, visual ratings of percent weed
control are routinely gathered at intervals of 1, 2, 4, 8, and 12 wk
after treatment (WAT) (Knezevic et al. 2007). However, when the
occurrence of herbicide hormesis in plants is reported, it is
typically observed at single time points (Cedergreen 2008b) or
within a short time window (e.g., 2 to 4 wk) after stimulus exposure
(herbicide application). Therefore, it is important that plant
response data should be collected weekly for at least 4 WAT. This
will allow curve fitting and curve comparisons for each weekly
response and perhaps calculate growth rates (Equation 6) for that
specific growth period.

R Software and Data Analysis

R is a free and open-source software widely used for statistical
computing, available for download from the CRAN website (R
Core Team 2023). It provides a versatile platform for tasks such as
data analysis, statistical modeling, and visualization. To work with
R effectively, many analysts use RStudio, an integrated editor
(development environment) that streamlines the entire data
analysis process, available on the POSIT website (Posit Team
2023). RStudio serves as a user-friendly space where data
manipulation, visualization, and statistical operations come
together, making it an essential tool for data analysis professionals.
Many useful packages can be used within RStudio, however, in this
manuscript the focus will be on the DRC (dose-response curve)
package (Ritz et al. 2015).

Data Organization and Input

Before loading data into RStudio, it is essential to ensure that the
dataset is structured in a tidy manner, following the principles
outlined byWickham (2014). Tidy data entails organizing the data
so that each variable is represented as a separate column, each
observation corresponds to a distinct row, and each cell is a single
value, which typically occurs within an Excel spreadsheet (Table 1).

In Table 1, the variables “Herbicide,” “Stage,” “Dose,” and
“Yield” are clearly separated into distinct columns. Each row
represents a specific observation, providing information about a
single treatment as a unique combination of herbicide, growth
stage, and dose, and observed yield as a response. Additionally,

Table 1. Example of data organization in Excel.csv.a

Herbicide Replicate Plot Stage Dose Yield

Herb1 1 101 V2 0 100
Herb1 2 204 V2 0 85
Herb1 3 307 V2 0 90
Herb1 4 403 V2 0 95
Herb1 1 102 V2 50 150
Herb1 2 205 V2 50 135
Herb1 3 306 V2 50 140
Herb1 4 401 V2 50 130

aAbbreviation: .csv, comma-delimited file format.
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Table 2. R codes, outputs, and comments for Case Study 1a.a

R program and output Comments

Line Step 1. Reading a data file into R

01 library(drc) Loading and activating the DRC package in R.

02 dataname = read.csv("filename.csv")

Read a CSV file named ‘filename.csv’ into R and store it in 

a data frame. The assigned name for the resulting data 

frame is ‘dataname’, which can be replaced with a 

preferred object name. Make sure that the ‘filename.csv’ 

is in the working directory of R project, otherwise the full 

path to the file should be specified. ‘Filename’ is the name 

of the Excel .csv file in which the data is stored. 

03

head(dataname)

This code line displays the initial six lines of the dataset, as 

a valuable verification step to ensure accurate data 

reading.

Dose Plant relative.dm

1 0.0 CONAR 100.00

2 0.0 CONAR 100.00

3 0.0 CONAR 100.00

4 224.7 CONAR 91.24

5 224.7 CONAR 315.19

6 224.7 CONAR 80.58

04

tail(dataname)

This code line displays the last six lines of the dataset, as a 

valuable verification step to ensure accurate data reading.

Dose Plant relative.dm

67 2310.0 MEUOF 36.36

68 2310.0 MEUOF 37.50

69 2310.0 MEUOF 23.5

70 2887.5 MEUOF 27.27

71 2887.5 MEUOF 25.00

72 2887.5 MEUOF 24.15

Step 2. Fitting the dose-response curvesb

05
wh.bc4 <- drm(relative.dm~Dose, subset=Plant=="AMATU",  fct=BC.4 (fixed 

=c(NA,NA,NA,NA)), data= dataname)

This line is used to fit a four-parameter Brain-Cousens 

hormesis model to the dataset. The object with a user-  

assigned name of ‘wh.bc4’ will contain all information 

pertaining to the model generated by the drm function. The

 response variable is relative.dm (y-axis), while Dose is the 

explanatory variable (x-axis). The subset condition ‘subset 

= Plant == "AMATU"’ ensures that the model is 

specifically fitted for the "AMATU" data. The function 

‘fct = BC.4(fixed = c(NA, NA, NA, NA))’ specifies the 

use of a four-parameter Brain-Cousens model, and the 

data = dataname argument identifies the name of the 

dataset. 

Executing this code will not produce any output. Instead, all 

information regarding the model fit is stored within the 

object (‘wh.bc4’ in this case) for subsequent analysis or 

visualization.

06 modelFit(wh.bc4)
The modelFit function performs a lack-of-fit test, comparing 

the chosen dose-response model to a more general 

ANOVA model using an approximate F-test.

07 summary(wh.bc4) The summary function provides parameter estimates with 

corresponding standard errors and P-values.

08
wh.ll4 <- drm(relative.dm~Dose, subset=Plant=="AMATU",  fct=LL.4 (fixed 

=c(NA,NA,NA,NA)), data=dataname)

Same comment as in Line 05. Note that in this this case, ‘fct 
= LL.4’ is essentially fitting log-logistic model with four 

parameters, instead of ‘fct = BC.4’ in Line 05, which 

fitted the Brain-Cousens model with four parameters. 

09 modelFit(wh.ll4) Same comment as in Line 06.

10 summary(wh.ll4) Same comment as in Line 07.

11

x11(width=6, height=5)
par(mar = c(4.5, 6, 2, 2), mgp = c(4, 0.75, 0))
plot(wh.ll4, col = "black", lty = 1, pch = 21, type = "average", cex.axis = 1.6, cex.lab 

= 2.0, cex = 1.4, xlab = "", ylab = "",  xlim = c(0, 10000), ylim = c(0, 150), xtsty = 
"standard", main = "", lwd = 3)

plot(wh.bc4, add=T, col = "black", lty = 2, pch = 21, type = "average", cex.axis = 1.8, 
cex.lab = 2.1, cex = 1.4, xlab = "", ylab = "", xlim = c(0, 10000), ylim = c(0, 150), 
xtsty = "standard", main = "", lwd = 3)

title(xlab = expression(paste("Glyphosate dose (g ae ha "^"-1",")")), ylab = 
expression(paste("Relative dry matter (%)")), cex.axis = 1.6, cex.lab = 2.0, cex = 
1.4, line = 3.4)

legend("topright", legend = c("LL.4 model", "BC.4 model"),text.col = "black", lty = 
c(1,2), lwd = 3, col = "black",inset = -0.02, cex = 1.6, bty = "n")

The x11(width =6, height=5) initiates a graphics device with 

a specified width and height (in inches). The par argument 

sets the margins and general parameters for the subsequent 

plots. Following this, the plot function is employed to 

create the first plot (plotting object wh.ll4), specifying 

parameters such as color (col = "black"), line type (lty = 1 

– solid line), plot symbol (pch = 21), and type of plot 

(type = "average" – mean response values). The axes 

labels, limits, and formatting details are adjusted 

accordingly.

A second plot (plotting object wh.bc4) is added to the 

existing plot using ‘add=T argument’. The parameters for 

this plot are similar to the first one, with variations in line 

type (lty = 2 – dashed line).

Finally, the legend function is used to include a legend in the 

top-right corner of the plot. The legend text is set as "LL.4 

model" and "BC.4 model" with formatting parameters 

controlling its appearance.

Visit http://www.R-project.org, for additional information 

on how to do produce graphs within the R environment. 
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each cell within the table contains a single, discrete value, ensuring
that the data are structured to facilitate efficient data analysis and
interpretation. In an ideal experimental setup, it is recommended
to have enough replicates to enhance the robustness and reliability
of the analysis. Aiming for six to eight replicates is advantageous
for achieving optimal statistical power and accuracy. However,
recognizing practical constraints, a minimum of four replicates is
recommended to ensure reasonable confidence in the observed
trends and outcomes. Replicates, represented by the “Replicate”
column in the dataset, contribute to the overall reliability of the
study by accounting for variability and providing a basis for more
comprehensive statistical analyses. The inclusion of “Plot”
information further aids in distinguishing and tracking individual
experimental units, contributing to the overall clarity and
organization of the dataset.

Although data can be stored in various file formats, the
preferred format is comma-delimited (.csv). There are several ways
to load the data in RStudio. In this manuscript, we will focus on one
specific method.

Case 1. Hormesis

When investigating potential herbicide hormesis effects, it is
essential to obtain both visual (graphic) and statistical evidence
(f parameter estimation) of the phenomenon. If the fit lacks one of
the two pieces of evidence, hormetic effect should not be claimed.

The dataset used in the following three examples was gathered
in field experiments concerning the effects of increasing doses of
glyphosate (0, 224.7, 449.4, 898.8, 1,347.5, 1,796.5, 2,310, and
2,887.5 g ae ha−1) on several weed species, including Amaranthus
tuberculatus (Moq.) (AMATU) (Case Study 1a with data set
AMATU), Convolvulus arvensis (L.) (CONAR) (Case Study 1b
with data set CONAR), and Melilotus officinalis (L.) (MEUOF)
(Case Study 1c with data set MEUOF) (Knezevic, unpublished
data). Each experiment used a randomized complete block design.
The observed response in each experiment was plant DM relative
to an untreated check (100%) determined at 28 d after treatment.
Specific details regarding the experimental site and procedures are
omitted because the focus of this paper is not to discuss the

12 ED(wh.ll4, c(50,90), type="relative")

The effective doses are calculated for the levels 50% and 

90% (specified by ‘c(50, 90)’) relative to the maximum 

response. The model is specified by the first argument 

(‘wh.ll4’). 

Output from Step 2

06

Lack-of-fit test
Lack-of-fit test (BC.4 model) yields a P-value of 

0.7860, which is not significant at 5%, indicating 

that the nonlinear model provides an acceptable 

description of data.

ModelDf RSS DF F-value P-value

ANOVA 16 901.06

DRC model 20 997.58 4 0.4285 0.7860

07

Model fitted: Brain-Cousens (hormesis) with lower limit fixed at 0 (4 parms) Output of summary function: parameter estimates 

in the four-parameter Brain-Cousens model. 

Parameters b and e do not have a direct 

interpretation, whereas d is the upper horizontal 

asymptote (upper limit). The parameter of high 

interest is f, which determines the size of 

hormesis effect. As shown, the P-value of the f
estimate is highly insignificant, indicating the 

lack of evidence that it is different from zero.

Provided are also standard errors of the parameters 

and an approximate t-test with associated P-value 

that is testing the hypothesis that the parameters 

are equal to zero.

Parameter estimates:

Estimate SE t-value P-value

b:(Intercept) 1.62359 0.26696 6.0817 6.058e-06***

d:(Intercept) 100.01411 4.07809 24.5248 2.2e-16***

e:(Intercept) 52.85457 215.77728 0.2449 0.8090

f:(Intercept) 2.20602 16.92466 0.1303 0.8976

09

Lack-of-fit test
Lack-of-fit test (LL.4 model) yields a P-value of 

0.6911, which is not significant at 5%, indicating 

that the nonlinear model provides an acceptable 

description of data.

ModelDf RSS DF F-value P-value

ANOVA 16 901.06

DRC model 20 1028.50 4 0.5658 0.6911

10

Model fitted: Log-logistic (ED50 as parameter) (4 parms)
Output of summary function: parameter estimates 

in the four-parameter log-logistic model. 

d is the upper asymptote (upper 

limit), and e is ED50 (inflection point). 

Provided are also standard errors of the parameters 

and an approximate t-test with associated P-

value that is testing the hypothesis that the 

parameters are equal to zero.

Parameter estimates:

Estimate SE t-value P-value

b:(Intercept) 1.17088 0.45407 2.5787 0.01794*

c:(Intercept) 5.98446 7.71843 0.7753 0.44721

d:(Intercept) 100.10651 4.13177 24.2285 2.459e-16***

e:(Intercept) 210.70442 35.25308 5.9769 7.621e-06***

12 Estimated effective doses

Estimate SE
Output from ED: The ED50 and ED90 values and 

the corresponding estimated standard errors. e: 1:50 210.704 35.253

e: 1:90 1378.201 223.965

Abbreviations: .csv, comma-delimited file format; df, degree of freedom; ED50, ED90, the dose required to result in a 50% (or 90%) reduction in observed 

response; SE, standard error.
bThe drm function is the key function in DRC for fitting dose response curves.

a

(lower asymptote),

Parameter b is the slope, c is the lower limit 
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biological interpretation of the results. Therefore, the following are
the three examples of likely resulting scenarios involving
determination of hormesis (case studies 1a, 1b, and 1c).

Case Study 1a. No Hormesis and No Increase in Response
We used the AMATU dataset to illustrate a scenario in which a no-
hormesis and no visual increase in response was observed.

The initial step in the procedure involves loading the DRC

package by using the library function (Table 2, Step 1, Line 01).
Line 02 assigns the object name of our choice to the data file. In this
step, it is essential that the .csv file is located in the R project
directory, otherwise an error message will occur. Line 03, function
head, shows the first six rows of the imported dataset. Conversely,
function tail (Table 2, Line 04) is used to display the last six rows of
the dataset, which helps confirm that the data were correctly read
into the working environment.

Once the data are loaded successfully, the next step involves
curve fitting using the drm function (Table 2, Line 05). The fct
argument within the drm function specifies the model of our
choice to be fitted to the data. When hormesis is anticipated, either
through preanalysis or examination of a scatterplot, it is advisable
to initiate the fitting process with the BC.4 model. If in the latter
steps BC.4 turns out to be a poor choice, it can be changed in the
above-mentioned fct argument. Executing Line 05 will not produce
a specific output. Line 06 invokes the lack-of-fit test. In the
particular example of fitting the BC.4 model to our AMATU data,
the lack-of-fit test resulted in a highly insignificant P-value (0.7860;
i.e., no significant lack of fit), indicating that the data have been
appropriately described by the selected model. Therefore, proceed
by obtaining parameter estimates using the summary function
(Table 2, Line 07). After obtaining parameter estimates and
corresponding P-values, hormesis parameter f is estimated to be
2.2, with a highly insignificant P-value (0.8976) (Table 2). Despite
the lack-of-fit test of the BC.4 hormesis model being highly
insignificant, that is not enough proof of a hormesis effect, because
the test and an indicator is the estimation of the f parameter (2.2,
P= 0.8976) (Table 2).

Consequently, the next step is describing the data by the LL.4
model, again using the drm function (Table 2, Line 08). Note that the
fct argument is now changed from BC.4 to LL.4. Once again, the lack-
of-fit test is being performed (Table 2, Line 09), yielding a highly
insignificant P-value (0.6911; Table 2), suggesting that there is no
significant lack of fit, thus the chosenmodel fits the data well. Proceed
by obtaining the parameter estimates by running the summary
function (Table 2, Line 10). Finally, the visualization of bothmodels is
produced by the plot function (Table 2, Line 11; Figure 2).
Additionally, a relative effective dose for a chosen level (1 to 99)
can be obtained by invoking the ED function (Table 2, Line 12).

Based on statistical evidence, including the f parameter
estimate, corresponding P-value, and a visual inspection of the
plotted models, one can conclude that none of the tested
glyphosate doses resulted in an increase in AMATU response.
Therefore, hormesis did not occur.

Case Study 1b. No Hormesis, No Statistical Significance Despite
Visual Evidence of Increase in Response
To illustrate a scenario in which a visual increase in response is
observed without statistical hormesis conformation, the CONAR
was used. Step 1 is the same as it was in Case Study 1a. In Step 2
(curve fitting), BC.4 is used similarly with the drm function
(Table 3, Line 01). Like in the previous example, the lack-of-fit test
is performed (P= 0.9782; Table 3, Line 02) followed by obtaining

parameter estimates (Table 3, Line 03). As shown in the output
Table 3, the f estimate is equal to 0.49334, with its P-value
(0.4163334) indicating the lack of statistical evidence of f being
significantly different than zero, suggesting no hormesis.

The next step involves further testing of some alternative
hormesis models such as BC.5 or CRS.4 (or others). For example,
the CRS.4b model was fitted (Table 3, Line 04), whose lack-of-fit
test (Table 3, Line 05) showed an insignificant P-value (0.9726;
Table 3), whereas the f parameter estimate (Table 3, Line 06)
yielded a P-value of 0.207168 (Table 3), again suggesting the lack of
statistical evidence for hormesis.

While both fitted hormesis models demonstrate highly
insignificant P-values for the lack-of-fit test, confirming hormesis
cannot be conclusively established. Despite the data being well
described by one of the hormesis models and an apparent increase
in response (Figure 3), this alone does not offer sufficient evidence
to support the claim because the statistical test for hormesis
requires f> 0. This example emphasizes the inherent challenges in
interpreting hormesis, where a visual indication of increased
response may not align with statistical confirmation.
Consequently, it underscores the significance of considering both
visual and statistical evidence in the analytical process of hormesis
evaluation. It also serves as a reminder that modeling tools are only
instruments in the hands of researchers, while the ultimate
decision should be made through a comprehensive evaluation by
weighing statistical metrics, graphical insights, and overarching
research objectives.

Case Study 1c. Hormesis Confirmed with Both Statistical and
Visual Evidence
To demonstrate a scenario in which both a visual increase in
response is observed along with statistical evidence, we will use the
MEUOF dataset. Step 1 is the same as in the previous two
examples. Assuming no prior knowledge of the data, the LL.4
model is initially fitted (Table 4, Line 01), followed by themodelFit
test (Table 4, Line 02). In this instance, a significant lack of fit is
identified (P= 0.0465), indicating that the LL.4 model does not
adequately describe the data, which is plotted for reference and
visuals (Table 4, Line 10). The combination of statistical and visual
evidence (Figure 4) makes it evident that the LL.4 model is not the
suitable choice for this specific data.

The hormesis model of choice (BC.5) is fitted next (Table 4,
Line 03). ThemodelFit test (Table 4, Line 04) suggests that there is

Figure 2. Dose-response curves of log-logistic (solid line) and Brain-Cousens (dashed
line) models displayed together with the same AMATU [Amaranthus tuberculatus
(Moq.)] dataset. The Brain-Cousens curve shows initial increase in response with no
data points in region to support it. Log-logistic model displays an adequate fit to the
data. Commands and equation parameters can be found in Table 2.
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Table 3. R codes, outputs, and comments for Case Study 1b.a

R program and output Comments

Line Step 2. Fitting the dose-response curvesb

01
fb.bc4 <- drm(relative.dm~Dose, subset=Plant=="CONAR",  fct=BC.4 (fixed 

=c(NA,NA,NA,NA)), data=dataname)

This line is used to fit a four-parameter Brain-Cousens hormesis model to

dataset. The object with the user-assigned name of ‘fb.bc4’ will 

contain all information pertaining to the model generated by the drm
function. The response variable is relative.dm (y-axis), while Dose is 

explanatory variable (x-axis). The subset condition ‘subset = Plant 

== "CONAR"’ ensures that the model is specifically fitted for the 

"CONAR" data. The function ‘fct = BC.4(fixed = c(NA, NA, NA, 

NA))’ specifies the use of a four-parameter Brain-Cousens model, 

and the data = dataname argument identifies the name of the dataset. 

Executing this code will not produce any output. Instead, all information 

regarding the model fit is stored within the object (‘fb.bc4’ in this 

case) for subsequent analysis or visualization.

02 modelFit(fb.bc4)
The modelFit function performs a lack-of-fit test, comparing the chosen 

dose-response model to a more general ANOVA model using an 

approximate F-test.

03 summary(fb.bc4) The summary function provides parameter estimates with corresponding 

standard errors and P-values.

04
fb.CRS4 <- drm(relative.dm ~ Dose, subset = Plant == "CONAR", fct = 
CRS.4b(), data = dataname)

Same comment as in Line 01. Note that in this this case, ‘fct = CRS.4b’ 
is essentially fitting The Cedergreen-Ritz-Streibig hormesis model 

with alpha = 0.5 (b extension). 

05 modelFit(fb.CRS4) Same comment as in Line 02.

06 summary (fb.CRS4) Same comment as in Line 03.

07

x11(width=6, height=5)
par(mar = c(4.5, 6, 2, 2), mgp = c(4, 0.75, 0))
plot(fb.bc4, col = "black", lty = 1, pch = 21, type = "average",cex.axis = 1.6, 

cex.lab = 2.0, cex = 1.4,xlab = "", ylab = "",xlim = c(0, 10000), ylim = 
c(0, 300), xtsty = "standard", main = "",lwd = 3)

plot(fb.CRS4, add=T, col = "black", lty = 2, pch = 21, type = 
"average",cex.axis = 1.6, cex.lab = 2.0, cex = 1.4,xlab = "", ylab = 
"",xlim = c(0, 10000), ylim = c(0, 300), xtsty = "standard", main = "",lwd 
= 3)

title(xlab = expression(paste("Glyphosate dose (g ae ha "^"-1",")")),ylab = 
expression(paste("Relative dry matter (%)")),cex.axis = 1.6, cex.lab = 2.0, 
cex = 1.4, line = 3.4)

The x11(6,5) initiates a graphics device with a specified width and 

height. The par function sets the margins and general parameters for 

the subsequent plots. Following this, the plot function is employed to 

create the first plot (plotting object fb.bc4), specifying parameters 

such as color (col = "black"), line type (lty = 1 – solid line), plot 

symbol (pch = 21), and type of plot (type = "average" – mean 

response values). The axes labels, limits, and formatting details are 

adjusted accordingly.

A second plot (plotting object fb.CRS4) is added to the existing plot 

using add=T argument. The parameters for this plot are similar to the 

first one, with variations in line type (lty = 2 – dashed line).

Finally, the legend function is used to include a legend in the top-right 

corner of the plot. The legend text is set as "BC.4 model" and 

legend("topright", legend = c("BC.4 model", "CRS.4b model"),text.col = 
"black", lty = c(1,2), lwd = 3, col = "black",inset = -0.02, cex = 1.6, bty = 
"n")

"CRS.4b model" with formatting parameters controlling its 

appearance.

Visit http://www.R-project.org, for additional information on how to do 

produce graphs within R environment.

Output from Step 2

02

Lack-of-fit test Lack-of-fit test (BC.4 model) yields a P-

value of 0.9782, which is not 

significant at 5%, indicating that the 

nonlinear model provides an 

acceptable description of data.

ModelDf RSS Df F-value P-value

ANOVA 16 49577

DRC model 20 50909 4 0.1075 0.9782

03

Model fitted: Brain-Cousens (hormesis) with lower limit fixed at 0 (4 parms) Output of summary function: parameter 

estimates in the four-parameter Brain-

Cousens model. Parameters b and e do 

not have a direct interpretation, while 

d is the upper horizontal asymptote 

(upper limit). The parameter of high 

interest is f, which determines the size 

of the hormesis effect. As shown, the 

P-value of the f estimate is not highly 

significant (0.4163), indicating the 

lack of evidence that it is different 

from zero, thus no hormesis occurred.

Provided are also standard errors of the 

parameters and an approximate t-test 

with associated P-value that tests the 

hypothesis that the parameters are 

equal to zero.

Parameter estimates:

Estimate SE t-value P-value

b:(Intercept) 1.72289 0.42741 4.0310 0.0006544***

d:(Intercept) 100.32358 29.14311 3.4424 0.0025762**

e:(Intercept) 434.57333 415.58856 1.0457 0.3081824

f:(Intercept) 0.49334 0.59438 0.8300 0.4163334

05

Lack-of-fit test Lack-of-fit test (CRS.4b model) yields a 

P-value of 0.9762, which is not 

significant at 5%, indicating that the 

nonlinear model provides an 

acceptable description of data.

ModelDf RSS Df F-value P-value

ANOVA 16 49577

DRC model 20 51087 4 0.1218 0.9726

06

Model fitted: Cedergreen-Ritz-Streibig with lower limit 0 (alpha=.5) (4 parms) Output of summary function: parameter 

estimates in the four-parameter 

Cedergreen-Ritz-Streibig model. 

Parameter d is the upper limit, b and e
have no direct interpolation, while f
determines the size of hormesis effect. 

The corresponding P-value for the f
estimate is 0.207168, which is not 

Estimate SE t-value P-value

b:(Intercept) 1.3781 1.0157 1.3567 0.189991

d:(Intercept) 99.9409 29.1789 3.4251 0.002681**

e:(Intercept) 1547.2521 849.2629 1.8219 0.083464

f:(Intercept) 81.1751 62.2686 1.3036 0.207168

significant, indicating the lack of 

statistical evidence that it is different 

from zero.

Provided are also standard errors of the 

parameters and a t-test with associated 

P-value that tests the hypothesis that 

the parameters are equal to zero.
aAbbreviation: SE, standard error.
bThe drm function is the key function in DRC for fitting dose response curves.

the

Parameter estimates:
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no significant lack of fit (P = 0.8190; Table 4), indicating that the
data is well described by the BC.5 model. Parameter estimates
obtained (Table 4, Line 05) using the summary function, showed
an estimate of the f parameter (0.48473) with a significant P-value
(0.010647).

Furthermore, it is also useful to conduct another measure of
comparison between the two models (LL.4 and BC.5) discussed
above, which should be based on the Akaike information criterion
(AIC) test (Table 4, Lines 06 and 07). The AIC values for the LL.4
model and BC.5 model were 259.279 and 248.9205 (Table 4),
respectively. A lower AIC value suggests a better balance between
model complexity and fit to the data. In this case, the BC.5 model
exhibits a substantially lower AIC by more than 10, providing
robust evidence to discard the LL.4 model in favor of the BC.5
model (Burnham and Anderson 2004), signifying its capacity to
describe the observed data patterns better.

Finally, to further confirm these findings, the anova function
for final model comparisons (within the DRC package) (Table 4,
Line 08) can be used. This function evaluates whether a more
complex model (BC.5) would provide a significantly better fit than
the simpler model (LL.4). In essence, it tests the null hypothesis
that the larger (more complex) model is not significantly better in
describing data than the simpler one. The results strongly support
the rejection of this null hypothesis, indicating that the inclusion of
the hormesis parameter (f) contributes significantly to improving
the model fit (P= 0.002; Table 4). Additionally, the mselect
function (Table 4, Line 09) helps in model selection by evaluating
several model fit criteria: maximum log likelihood value; AIC;
estimated residual variance; and the P-value derived from a lack-
of-fit test. As shown in the output (Table 4, Line 09) the BC.5
model exhibits the best performance across these metrics, boasting
the highest log likelihood, lowest AIC value, lowest residual
variance, and a nonsignificant lack-of-fit test P-value among the
considered models. Therefore, based on these criteria, the BC.5
model emerges as themost suitable choice for the data. This further
confirms our choice of the BC.5 model as the most suitable option
for the dataset. However, although themselect function is valuable,
we do not advise relying solely on its output when modeling
potential hormesis data. Modeling necessitates a comprehensive
approach that goes beyond numerical metrics alone. It should

incorporate the evaluation of different metrics, statistical tests, and
visual inspection of plots. This holistic approach ensures a
thorough understanding of the underlying patterns in the data and
helps in making informed decisions regarding model selection and
interpretation. The fitted model is visualized by employing the plot
function (Table 4, Line 10). This confirms the occurrence of
hormesis.

Therefore, based on the multiple levels of statistical analysis
described above (Table 4) and visual examination of the fitted
curve (Figure 4), glyphosate-induced hormesis is confirmed in
MEUOF, which was expressed as an increase in relative DM.
Finally, a similar procedure can be used for determining hormesis
in other plant species, including crops of interest, with DM or crop
yield as the response variable.

Case Study 2. Estimating Toxicological (Safety) Thresholds

The estimation of safety thresholds (NOAEL and LOAEL) in
herbicide applications is a critical aspect of agricultural research,
ensuring responsible and effective weedmanagement. As indicated
earlier, the NOAEL was arbitrarily assigned within the range of
ED1 to ED2.5, accounting for general variability and potential
errors. On the other hand, LOAEL is denoted as ED5, considering
traditional statistical significance (α= 0.05) and a practical
acceptance level (e.g., for yield loss).

Case Study 2a. Estimating NOAEL
A NOAEL estimate is typically derived from the most sensitive
response in plants, usually a visual estimate of injury. Choosing the
most sensitive response (e.g., visual injury) ensures detection of
adverse effects at the lowest possible dose, maintaining a
conservative and protective approach in safety threshold
determination.

Sample data were used to illustrate the safety threshold doses of
dicamba drift on Roundup Ready soybean (Bayer Crop Science, St.
Louis, MO). Ten doses were tested, including 0, 0.0112, 0.014,
0.019, 0.028, 0.056, 0.112, 0.56, 5.6 and 56 g ae ha−1. Crop visual
injury, as the most sensitive response, was assessed at 21 d after
treatment (Knezevic unpublished data). For readability, doses are
expressed in milligrams.

The procedure of loading in the data (Step 1) is the same as in
other case studies. Subsequently, the LL.4 model is fitted (Table 5,
Line 01), followed by the modelFit test (Table 5, Line 02).
Parameter estimates are obtained by employing the summary
function (Table 5, Line 03). The fitted model is plotted for
inspection (Figure 5; Table 5, Line 04). Finally, estimates of the
threshold doses, with corresponding 95% confidence intervals
(CIs), are obtained using the ED function (Table 5, Line 05). Notice
that the argument type is set to “relative” (Table 5, Line 05), which
forces the ED to be calculated as a percent change in response (1%,
2.5%, and 5% in this case) between the estimated lower and upper
limit (0 and 87, obtained from by applying the summary function).
Estimated ED1 is 0.32 (95% CI: 0.19 to 0.44) mg ae ha−1, whereas
ED2.5 is 1.48 (95% CI: 0.90 to 2.05) mg ae ha−1. Therefore, it can be
concluded with 95% confidence that the dicamba dose ranging
from 0.19 and 2.05 mg ae ha−1 will cause no observable adverse
effects to soybeans (at 21 d after treatment). It is common for the
estimated upper limit of a curve not to reach 100%, which
represents the maximal possible response. Therefore, deriving the
ED values with the argument type set to “absolute” is often
beneficial. This approach estimates the ED values as a percent
change in response between 0 and 100, regardless of the estimated

Figure 3. Dose-response curves of Brain-Cousens (BC, solid line) and Cedergreen-
Ritz-Streibig (CRS, dashed line) models displayed together on a CONAR [Convolvulus
arvensis (L.)] dataset. The CRS curve overestimates the upper limit (untreated check
response). The BC curve displays an adequate fit to the data. Commands and equation
parameters can be found in Table 3.
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Table 4. R codes, outputs, and comments for Case Study 1c.a

R program and output Comments

Line Step 2. Fitting the dose-response curvesb

01
cl.ll4 <- drm(relative.dm ~ Dose, subset = Plant == "MEUOF", fct = LL.4 

(fixed = c(NA,NA,NA,NA)), data = dataname)

This line is used to fit a four-parameter log-logistic model to a dataset.

object with the user-assigned name of ‘cl.ll4’ will contain all 

information pertaining to the model generated by the drm function. 

The response variable is relative.dm (y-axis), while Dose is the 

explanatory variable (x-axis). The subset condition ‘subset = Plant 

== "MEUOF"’ ensures that the model is specifically fitted for the " 

MEUOF " data. The function ‘fct = LL.4(fixed = c(NA, NA, NA, 

NA))’ specifies the use of a four-parameter log-logistic model, 

and the data = dataname argument identifies the name of the dataset.

Executing this code will not produce any output. Instead, all 

information regarding the model fit is stored within the object 

(‘cl.ll4’ in this case) for subsequent analysis or visualization.

02 modelFit(cl.ll4)
The modelFit function performs a lack-of-fit test, comparing the chosen 

dose-response model to a more general ANOVA model using an 

approximate F-test.

03
cl.BC5 <- drm(relative.dm ~ Dose, subset = Plant == "MEUOF", fct = BC.5 

(fixed = c(NA, NA, NA, NA, NA)), data = dataname)

Same comment as in Line 01. Note that in this this case, ‘fct = BC.5’ is
essentially fitting the Brain-Cousens hormesis model with five

parameters. 

04 modelFit (cl.BC5) Same comment as in Line 02.

05 summary (cl.BC5) The summary function provides parameter estimates with 

corresponding standard errors and P-values.

06 AIC(cl.ll4) The AIC values for two different models are calculated to assess the 

goodness of fit for each model (cl.ll4 and cl.BC5). Lower AIC values 

suggest that a model describes the data better.
07 AIC(cl.BC5)

08 anova(cl.ll4, cl.bc5)

The anova function within DRC is comparing two regression models 

(cl.ll4 and cl.bc5). It assesses the statistical significance of the 

differences in model fits, aiding in model selection and 

interpretation.

09

mselect(cl.ll4, list(LL.3(), LL.4(), BC.4(), BC.5(), CRS.4a(), CRS.5a(), 
CRS.6()))

The mselect() function performs the model selection based on various 

criteria: their maximum log likelihood value, AIC, estimated residual 

variance and the P-value derived from lack-of-fit test. The first 

argument is an object of DRC class, followed by the list of models to 

be compared. 

10

x11(width=6, height=5)
par(mar = c(4.5, 6, 2, 2), mgp = c(4, 0.75, 0))
plot(cl.ll4, col = "black", lty = 2, pch = 21, type = "average",cex.axis = 1.6, 

cex.lab = 2.0, cex = 1.4,xlab = "", ylab = "",xlim = c(0, 10000), ylim = 
c(0, 300), xtsty = "standard", main = "",lwd = 3)

plot(cl.BC5, add=T, col = "black", lty = 1, pch = 21, type = 
"average",cex.axis = 1.6, cex.lab = 2.0, cex = 1.4,xlab = "", ylab = "",xlim 
= c(0, 10000), ylim = c(0, 300), xtsty = "standard", main = "",lwd = 3)

title(xlab = expression(paste("Glyphosate dose (g ae ha "^"-1",")")),ylab = 
expression(paste("Relative dry matter (%)")),cex.axis = 1.6, cex.lab = 2.0, 
cex = 1.4, line = 3.4)

legend("topright", legend = c("BC.5 model","LL.4 model"),text.col = "black", 
lty = c(1,2), lwd = 3, col = "black",inset = -0.02, cex = 1.6, bty = "n")

The x11(6,5) initiates a graphics device with a specified width and 

height (in inches). The par function sets the margins and general 

parameters for the subsequent plots. Following this, the plot function 

is employed to create the first plot (plotting object cl.ll4), specifying 

parameters such as color (col = "black"), line type (lty = 2 – dashed 

line), plot symbol (pch = 21), and type of plot (type = "average" –

mean response values). The axes labels, limits, and formatting details 

are adjusted accordingly.

A second plot (plotting object cl.BC5) is added to the existing plot 

using add=T argument. The parameters for this plot are similar to the 

first one, with variations in line type (lty = 1 – solid line).

Finally, the legend function is used to include a legend in the top-right 

corner of the plot. The legend text is set as “LL.4 model" and "BC.5 

model" with formatting parameters controlling its appearance.

Visit http://www.R-project.org, for additional information on how to do 

produce graphs within R environment.

Output from Step 2

02

Lack-of-fit test Lack-of-fit test (LL.4 model) yields a P-value of 

0.0465, which is significant at 5%, indicating that 

the log-logistic model fitted in Line 01 does not 

provide an acceptable description of data.

ModelDf RSS Df F-value P-value

ANOVA 16 25737

DRC model 20 45561 4 3.0811 0.0465

04

Lack-of-fit test Lack-of-fit test (BC.5 model) yields a P-value of 

0.8190, which is not significant at 5%, indicating 

that the Brain-Cousens model fitted in Line 03

provides acceptable description of data.

ModelDf RSS Df F-value P-value

ANOVA 16 25737

DRC model 19 27224 3 0.3083 0.8190

05

Model fitted: Brain-Cousens (hormesis) (5 parms) Output of summary function: parameter estimates 

in the five-parameter Brain-Cousens model. 

Parameter d is the upper limit, c is the lower 

limit, b and e have no direct interpolation, and f
determines the size of hormesis effect. The 

corresponding P-value for the f estimate is 

0.010647, which is significant, indicating 

sufficient evidence that it is different from zero.

Provided are also standard errors of the parameters 

and an approximate t-test with an associated P-

value that tests the hypothesis that the parameters 

are equal to zero.

Parameter estimates:

Estimate SE t-value P-value

b:(Intercept) 4.20406 1.77789 2.3646 0.028846*

c:(Intercept) 32.41379 15.26363 2.1236 0.047058*

d:(Intercept) 99.79724 21.82526 4.5726 0.000208***

e:(Intercept) 465.52142 65.00170 7.1617 8.329e-0.7***

f:(Intercept) 0.48473 0.17114 2.8323 0.010647*

06
AIC(cl.ll4)

The AIC values obtained from fitting the LL.4 and 

BC.5 models are 259.279 and 248.9205.
[1] 259.279

07 AIC(cl.BC5)

The 

[1] 248.9205
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upper and lower limits, which may provide a better representation
of the true NOAEL value. Now, estimated ED1 is 0.35 (95%CI: 0.21
to 0.48) mg ae ha−1, and estimated ED2.5 is 1.62 (95% CI: 0.99 to
2.25) mg ae ha−1 (Table 5, Line 06). In this case, the relative
calculations of ED values are more conservative, as the estimated
upper limit is 87%, which is lower than 100%.

Case Study 2b. Estimating LOAEL
From a practical standpoint, we propose estimating LOAEL using
crop yield, at least with crops that produce grains as the final yield.
When crops grown for biomass are the focus of research, DM
serves as an equivalent of yield. Determining the lowest dose of a
herbicide with an adverse effect on crop yield is crucial for farmers,
extension educators, and weed science practitioners. Moreover,

knowing the LOAEL values can be critically important when
addressing drift complaints and for environmental and pesticide
regulation agencies when establishing legislation, and for other
stakeholders involved in ensuring the safety of chemical use in
agricultural practices.

Data for this example were obtained in a field experiment aimed
at studying the effects of clethodim tank contamination on
subsequently treated corn (Knezevic unpublished data). The study
used a randomized complete block design with four replications
and tested nine different clethodim doses, including 0, 0.133, 0.268,
0.531, 1.062, 2.124, 8.494, 16.988, and 39.976 g ae ha−1. The
observed response was grain yield, expressed relative to an
untreated check (100%).

Step 1 is the same (reading in the data) as in other case
studies, and the curve fitting process is similar to that of
previous examples. With a prior inspection of the data, we
assume there is no initial increase in response and that the lower
limit is not zero. Therefore, the drm model of choice is LL.4
(Table 5, Line 01), followed by the modelFit (Table 5, Line 02),
which yielded an insignificant P-value (0.7136), suggesting an
adequate description of data.

Proceed with parameter estimate (Table 5, Line 03). The fitted
model is plotted for visual inspection (Table 5, Line 04; Figure 6).
Finally, threshold effective dose values are estimated using the ED
function (Table 5, Line 05). Note that the additional argument
“interval = delta” specifies the 95% confidence interval estimation
(delta-method, default 95%). Considering the very subtle changes
in response (1% to 5%) is detected, it is useful to report the
confidence intervals along with estimated ED values. In this case,
the estimated ED5 is calculated as 7.61 g ae ha−1, with a
corresponding 95% CI ranging from 7.28 to 7.94. Therefore, the
results suggested with 95% confidence that the true lowest dose of
clethodim that will cause a significant yield reduction (yield
LOAEL) is between 7.28 and 7.94 g ae ha−1. In other words, a dose
lower than 7.28 g ae ha−1 is not expected to cause a 5% yield
reduction.

08

First model

The F-value of 12.797 with a corresponding P-value of 

0.002 indicates a statistically significant difference 

between the two models. This suggests that the BC.5 

model provides a better fit to the data compared to 

the LL.4 model, because the reduction in RSS is 

significant.

Fct LL.4(fixed = c(NA, NA, NA, NA))

Second model

Fct BC.5(fixed = c(NA, NA, NA, NA, NA))

Anova table

ModelDf RSS Df F-value P-value

First model 20 45,561

Second model 19 27,224 1 12.797 0.002

09

logLik IC Lack of fit Res var Each row corresponds to a different model, and the 

values in each column provide information about 

how well each model fits the data and how complex it 

is. Log-likelihood (logLik) of the model measures the 

goodness of fit, with higher values indicating better 

fit. A lower vale of IC indicates a better trade-off 

between goodness of fit and model complexity. Lack 

of fit provides the P-value derived from the lack-of-

fit test with lower values indicating a better fit. 

Residual variance (Res var) measures of the

variability of the residuals around the fitted model 

with lower values indicate a better fit.

BC.5 118.4603 248.9205 8.190346e-01 1,432.858

CRS.5a 118.6166 249.2332 7.671447e-01 1,451.645

BC.4 119.6237 249.2475 6.273195e-01 1,499.802

CRS.4a 120.4184 250.8369 4.453656e-01 1,602.489

LL.4 124.6395 259.2790 4.645579e-02 2,278.034

LL.3 126.6419 261.2837 2.522046e-02 2,563.535

CRS.6 146.1426 306.2851 6.164382e-09 15,189.392

aAbbreviations: AIC, Akaike information criterion; IC, information criterion; SE, standard error.
bThe drm function is the key function in DRC for fitting dose response curves.

Figure 4. Dose-response curves with four parameter log-logistic (solid line) and five
parameter Brain-Cousens (dashed line) models displayed together on MEUOF
[Melilotus officinalis (L.)] data set. The log-logistic curve overestimates the upper
limit (untreated check response) and exhibits high deviation from the actual data
points. The Brain-Cousens curve adequately fit the data. Commands and equation
parameters can be found in Table 4.
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Table 5. R codes, outputs, and comments for Case Study 2a.a

R program and output Comments

Line Step 2: Fitting dose the -response curvesb

01
noael <- drm(inj21DAT ~ Dose, fct = LL.4  (fixed = 
c(NA,NA,NA,NA)), data = dataname)

This line is used to fit a four-parameter log-logistic model to dataset. The object with 

user-assigned name, ‘noael’, will contain all information pertaining to the model 

generated by the drm function. The response variable is inj21DAT (injury 21 d after 

exposure) (y-axis) (specify the response of interest), while Dose is explanatory 

variable (x-axis). The function ‘fct = LL.4(fixed = c(NA, NA,NA, NA))’ specifies 

the use of a four-parameter log-logistic model, and the ‘data = dataname’ argument 

identifies the name of the dataset. 

Executing this code will not produce any output. Instead, all information regarding the 

model fit is stored within the object (‘noael) in this case) for subsequent analysis or 

visualization.

02 modelFit (noael) The modelFit function performs a lack-of-fit test, comparing the chosen dose-

response model to a more general ANOVA model using an approximate F-test.

03 summary(noael) The summary function provides parameter estimates with corresponding standard 

errors and P-values.

04

x11(width=6, height=5)
par(mar = c(4.5, 6, 2, 2), mgp = c(4, 0.75, 0))
plot(noael,col = "black", lty = 1, pch = 21, type = 

"average",cex.axis = 1.6, cex.lab = 2.0, cex = 1.4, xlab = "", 
ylab = "",

xlim = c(0, 500), ylim = c(0, 100), xtsty = "standard", main = 
"",lwd = 3)

title(xlab = expression(paste("Dicamba dose (g ae ha "^"-
1",")")), ylab = expression(paste("Visual injury (%)")), 
cex.axis = 1.6, cex.lab = 2.0, cex = 1.4, line = 3.4)

legend("topleft", legend = c("LL.4 model"),text.col 
=c("black","black"), lty = c(1), lwd = 3, col = 
c("black"),inset = -0.02, cex = 1.6, bty = "n")

Plot function is employed to visualize the fitted model stored in the object noael. The 

col = "black" parameter determines the color of the curve. The lty and pch 

parameters control the line type and plot symbol for the curve, respectively. The 

type = "average" specifies that the plot displays the mean response for each dose 

level. Axis ranges are set with ‘xlim’ and ‘ylim’.

Subsequently, the title function is used to add axis labels to the plot and formatting 

parameters such as cex.axis, cex.lab, and cex control the size of the axis labels.

Visit http://www.R-project.org for additional information on how to do produce 

graphs within R environment.

05 ED(noael ,c(1,2.5,5), type = "relative", interval = "delta")

The function ED() is used to estimate EDs for the fitted model represented by the 

object ‘noael’. The EDs are calculated at three specified response levels: 1%, 2.5%, 

and 5%. The type = "relative" argument indicates that these doses are expressed 

relative to the maximum response observed in the dataset (calculated as percent 

change in response between 0 and 87% as estimated  upper limit).

Additionally, the interval = "delta" parameter is employed to compute the confidence 

intervals for the estimated EDs. This means that the output will include the 

uncertainty associated with each ED estimate, providing a range within which the 

true effective dose is likely to fall.

06 ED(noael ,c(1,2.5,5), type = "absolute", interval = "delta") Contrary to Line 05, argument type = "absolute" will estimate the ED value 

considering the upper limit of 100%, regardless of the estimation of 87%.

Output from Step 2

Lack-of-fit test

02

Model Df RSS Df F-value P-value
Lack-of-fit test (LL.4 model) yields a P-value of 0.7081, which is not significant

at 5%, indicating that the log-logistic model fitted in Line 01 provides acceptable

description of data.  
ANOVA 30 403.23

DRC model 36 423.71 6 0.6260 0.7081

03

Model fitted: Log-logistic (ED50 as parameter) (4 parms)

Parameter estimates:

Estimate SE t-value P-value

Output of summary function: parameter estimates in the four-parameter log-logistic model. 

Parameter b is the slope, c is the lower limit, d is the upper limit, and e is the ED50.

errors of the parameters and an approximate t-test with 

the hypothesis that the parameters are equal to 0.

b:(Intercept) -0.729273 0.093036 -7.8395 2.686e-09***

c:(Intercept) -4.120624 2.614624 -1.5760 0.1237760

d:(Intercept) 87.394178 3.947524 22.1390 < 2.2e-16***

e:(Intercept) 296.634297 71.616343 4.1420 0.0001988

05

Estimated effective doses

ED1, ED2.5, and ED5, corresponding standard errors and 95% confidence interval, 

shown in milligrams for readability. 

For example, ED1 is estimated to be 0.32 (±0.06) mg ae ha−1. The associated 95% 

confidence interval, spanning from 0.191 to 0.47 g ae ha−1, suggests that in 95% of 

cases, the true value for ED1 is expected to fall within this range.

Estimate SE Lower Upper

e:1:1 0.321745 0.061703 0.196834 0.446656

e:1:2.5 0.481638 0.284142 0.906422 2.056854

e:1:5 4.816453 0.923679 2.946562 6.686343

06

Estimated effective doses ED1, ED2.5, and ED5, corresponding standard errors and 95% confidence interval, 

shown in milligrams for readability. 

Contrary to output Line 05, these ED values are calculated as 1%, 2.5%, and 5% 

change between 0 and 100, and not zero, and estimated upper level as in output Line 

05.

Estimate SE Lower Upper

e:1:1 0.35223 0.06755 0.21549 0.48898

e:1:2.5 1.62437 0.31151 0.99374 2.25499

e:1:5 5.29360 1.01518 3.23847 7.34873
aAbbreviations: AIC, Akaike information criterion; IC, information criterion; ED, effective dose; SE, standard error.
bThe drm function is the key function in DRC for fitting dose-response curves.
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It is important to note that the same procedures can be used
to estimate the NOAEL and LOAEL values for any other
responses, including visual injury, dry matter, height reduction,

or any other growth or yield parameter of interest. This is
achieved by specifying the respective variable within the drm
function (Table 5, Line 02).

Figure 5. Dose-response curve with four parameter log-logistic model (LL.4). The
curve adequately fits the data. Commands and equation parameters can be found in
Table 5.

Figure 6. Dose-response curve with four parameter log-logistic model (LL.4). The curve
adequately fits the data. Commands and equation parameters can be found in Table 6.

Table 6. R codes, outputs, and comments from Case Study 2b

R program and output Comments

Line Step 2: Fitting the dose-response curvesa

01
corn.ll4 <- drm(relative.yield ~ Dose, fct = LL.4 (fixed = c(NA,NA, 

NA, NA)), data = dataname) See Table 5 for details. 

02 modelFit(corn.ll4) See Table 5 for details. 

03 summary(corn.ll4) See Table 5 for details.

04

x11(width=6, height=5)
par(mar = c(4.5, 6, 2, 2), mgp = c(4, 0.75, 0))
plot(corn.ll4, col = "black", lty = 1, pch = 21, type = 

"average",cex.axis = 1.6, cex.lab = 2.0, cex = 1.4,xlab = "", ylab 
= "",xlim = c(0, 100), ylim = c(0, 150), xtsty = "standard", main 
= "",lwd = 3)

title(xlab = expression(paste("Clethodim dose (g ae ha "^"-
1",")")),ylab = expression(paste("Relative yield (%)")),cex.axis = 
1.6, cex.lab = 2.0, cex = 1.4, line = 3.4)

legend("topright", legend = c("LL.3 model"),
text.col = "black", lty = c(1), lwd = 3, col = "black",
inset = -0.02, cex = 1.6, bty = "n")

See Table 5 for details.

05 ED(corn.ll4, c(1,2.5,5), interval = "delta")

The effective doses are calculated for the response levels 1%, 2.5%, and 5% 

(specified by ‘c(1, 2.5, 5)’) relative to the maximum response. The model is 

specified by the first argument (‘corn.ll4). Argument interval = “delta” will 

include the 95% confidence intervals in the output. 

Output from Step 2

02

Lack-of-fit test

ModelDf F-value P-value Lack-of-fit test yields a P-value of 0.7136, which is not significant at 5%, indicating

that the log-logistic model LL4 fitted in Line 01 provides an acceptable description 

of data.
ANOVA 27 483.18

DRC model 32 535.23 5 0.5817 0.7136

03

Model fitted: Log-logistic (ED50 as parameter) (4 parms)
Output of summary function: parameter estimates in the four-parameter log-logistic 

model. Parameter b is the slope, c is the lower limit, d is the upper limit, and e is 

the ED50.

Provided are also standard errors of the parameters and an approximate t-test with 

associated P-value that is testing the hypothesis that the parameters are equal to 

zero.

Parameter estimates:

Estimate SE t-value P-value

b:(Intercept) 4.71764 0.47806 9.8684 3.132e-11***

c:(Intercept) 8.17314 2.33702 3.4973 0.001403**

d:(Intercept) 99.35358 0.83563 118.8986 <2.2e-16***

e:(Intercept) 13.89762 0.40409 34.3928 <2.2e-16**

05
Estimated effective doses

ED1, ED2.5, and ED5, corresponding standard errors and 95% confidence interval. 
Estimate SE Lower Upper

e:1:1 5.36102 0.11388 5.12959 5.59244 For example, ED1 is estimated to be 5.3 (±0.1) g ae ha−1. The associated 95% 

confidence interval, spanning from 5.1 to 5.5 g ae ha−1, suggests that in 95% of 

cases, the true value for ED1 is expected to fall within this range.
e:1:2.5 6.53621 0.13884 6.25405 6.81837

e:1:5 7.61684 0.17628 7.28804 7.94565
aThe drm function is the key function in DRC for fitting dose-response curves.
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Practical Implications

The R software, coupled with the DRC package, offers substantial
value to users in the weed science community. In particular, the
ability to estimate ED values, compare multiple curves and
models, make the DRC package a versatile tool for researchers. The
R codes shared in this manuscript could foster collaboration,
encourage dialogue and knowledge exchange among researchers.
Users can leverage the codes as a basis for the analysis of their
data, and to promote discussions, refinements, and improve-
ments. Collaborative efforts driven by shared codes will
contribute to the collective advancement of methodologies in
the field of weed science.

Furthermore, the basic approach provided in this manuscript,
which emphasized the enhancement of research in several dose-
response concepts (e.g., hormesis) should help weed scientists
move away from using traditional ANOVA approaches. The
simple calculation of NOAEL and LOAEL, as demonstrated with
the R codes provided here, will contribute to advancements in
methodology and can be beneficial in environmental conservation
and addressing ecotoxicological concerns.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/wet.2024.44
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