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A GENERALIZATION OF MOAK’S
q¢-LAGUERRE POLYNOMIALS

ROELOF KOEKOEK

0. Introduction. In [6] we studied the polynomials {L&" ¥ (x)}>° ; which are
generalizations of the classical (generalized) Laguerre polynomials {L{® (x)}>,,.
These polynomials were shown to be orthogonal on the interval [0, 0c0) with

respect to the inner product

1

+M - £(0)g(0)+N - f'(0)g'(0),

/ x%e ™ f(x)g(x)dx
0

where « > —1,M 2 0 and N 2 0. They can be defined in terms of the classical

Laguerre polynomials as

02)  LEMN(x) = Ag- LP0) — A - L D) + Ay - L

where
(. (nta n(a+2)—(oc+l)'
Ag=1+M (n—l) (a+ 1)(a+3)
. M-N .(n+a)(n+a+l)
(ax+1)ax+2) n—1
—1
0 L (Y
+2M-N'(n+a) n+oa+1
(a+ 1)? n n—2
A, — N .(n+a) M-N_
L2 (a+ ) \n—1/" (a+1)?
and

L) == 0 =: L'9).

For N = 0 these polynomials reduce to

Ly (o) = [1 +M - (:ia)].Lﬁp(A_)hM : (”;a)
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which are Koornwinder’s generalized Laguerre polynomials. See also [7], [8]
and [9]. In [7] we found a g-analogue of the polynomials {Lg’M (x)}22, which
can be defined by

o2,
04) LM g)=|1+M- @7 @t L9 g)
(45 @n
@ @

@D L0 g), nz
bl n

where L{*(x; ) denotes the g-Laguerre polynomial described by D. S. Moak
in [10]. See also [7] for more details and Section 2 of this paper for a
summary. In this paper we study further generalizations of the polynomials
{LIM(x; @)}, These polynomials {L¥M:N(x; )}, are g-analogues of the
polynomials {L%MN (x)}>° ' defined by (0.2) and (0.3).

1. Some basic formulas. First we summarize some definitions and formulas
from the g-theory. For details the reader is referred to [3].
Let 0 < g < 1. Then we define for n = 1,2,3,...

(@ @ =1 —a)l —ag)(1 —aq*)---(1 —ag"™")
(a; q) = 1

1.1 "
- L (—gaty-ql) 1

= = ,a
(@g="; @)n (ga="; @)y (ag™"5 g7,

(@9)-n = # 0.

For all @ € C we may define

(@; @)oo

P a0

where
o0
@ @)oo = [ [(1 = ag™.
n=0
In [4] F. H. Jackson defined a g-analogue of the gamma function as

(@ Do

1.2)  T,(x) = (1=q' .
12) Ty = = (1=g)
Note that
1—g°
x+1)= =g - Ty(x).

He also showed that I'y(x) —T'(x) as ¢ — 1".
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In [1] R. Askey proved an integral formula which is due to Ramanujan:

> X« IN—a) T 1
(1.3) / ! de = DE Ter D o
0o (I =gx; ¢@oo [y(—a)
A sketch of the proof can be found in [7] too.
For a = k € N we take the limit
o) - 1 _ T(—
lim LTt D Catb T no
o—k Iy(—a) a—k (—a+ k) - Ty(—a)
1V —1
_ =D @ tigncIng Tk+1)
k! (1 — g)+!

() g
_(ggh-g * -Ing
(1 =gy
See formula (1.10.6) in [3] for the residue of the g-gamma function.
By using the g-binomial theorem

i @ @9
g G

we easily see that

> 1 _ ([)” - B
1.4 —_— o LN X as 1
( ) (l — ([)\ ({)oo Z (q q)n \) ¢ e

Further we have a g-analogue of the differentiation operator:

f(\)*f(q\)
(I—gx

Observe that D, f(x) — f/(x) as ¢ — 17 if f'(x) exists and that

(1.5)  Dyjv) =

(16) Dq[f(’yv\)] =7 (qu)(/Y\)« Y €R.
The g-product rule reads
(L7 Dylf(0)g)] = fgx) - Dyg(x) + g (x) - Dy f(x).

This follows immediately from the definition (1.5).
The basic hypergeometric series , @, is defined by

(1.8) ,D(ay,as. ..., a,; bi.by, ..., bs; q.2)
dai.as,. .., a,
=,0, .2
" (bhbz, b |7 )
_ i (ay,az.....ars q)y (‘”“H o 'q(lﬂ;r)(g) =
(b[.b’), .. ,hx, q)n (C[; ([)n
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where

(@, ary...,ar;5 @) =(ar; q)n - (a2; @n - (ar; @n-
Note that

(q"%q"%..-,qa'
"\, P

A, 00, ..., 0
__"_Fs( 15 (X2, s Ly

ﬁl?ﬁ%'“aﬂs

q, (q _ 1)I+s—r . Z>

2) g—1,

where .F; denotes the hypergeometric series.
We will use the following g-identities:

19 @' ¢ " n=a"y-a ) @

(1.10) (@ ek = (@ @) - (aq"; @,
and
e n 1
(L1 ey(2) = 1Pp(0; = g,2) = » | ——— = — .zl < 1.

The function ¢,(z) is a g-analogue of the exponential function, since
(1 =q)z) —e asqg— 1.

In (1.4) we have seen a special case of (1.11):

1
(—=(1 = @)x; @)oo

=e,(—(1—g)x)—e™ asg—1".

And we will use one summation formula for a terminating ,®,:

(c/b; @n ‘

(1.12) L, ®@(g7",b: ¢; g.cq" [b) = —=
(c; q)n

Further we have the basic bilateral series defined by

SWo(ay,az,...,a,5b1,b2,...,b55q,2)
ap,az,...,ar
:r\lj Z
S(bl,hz,...,bs T )

o
_ Z (al,az,...,a,.fq)n '(_])(s_,),,'q(s—r)(’_;) -
(b17b2~,~~~7bxaq)n

n=-—00
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In the special case ¥ = s = 1 we have a summation formula, called “Ramanu-
jan’s sum” (see for instance [1] and [3]):

0
(a; q)y
1.13 Yi(a:h:q.2) = - "
( ) Yi(aibig.2) ”;w b:
_ (g.a™' -boaz.a 27 g @)oo
(h.a™ ' g.z,a' -7V by @)

for [a~' - b| <|z| < 1.

2. The ¢-Laguerre polynomials. In this section we state the definition and
some properties of the g-Laguerre polynomials {L{™(x; ¢)}>°, which were de-
scribed by D. S. Moak in [10]. For more details the reader is referred to |7] and

(10].
Let « > —1 and 0 < ¢ < 1. The ¢-Laguerre polynomials {L{"(x: ¢)}>°,, are
defined by
(qa+l (/) (qfn ) C[(é) (1 7(/)1\ . (qn+a+l . \,)/\
Q2 L0 g) = — Z v —
@ an = @5 @ - (g
n=20,1.2,....

For ¢ — 17 the polynomials {L!{®(x; ¢)}>2, tend to the classical Laguerre
polynomials {L{®(x)}2 . It is easy to see that for n = 1

(22) DL q) = —¢* - L™ (gx; q).

n—1

where D, is the g-analogue of the differentiation operator defined by (1.5). By
using (1.6) we find more general for n 2 &

DALY (x5 g) = (=D - M LR Ghxs ).

q=n

Further we easily see from (2.1):

(x+l

{ (/)/1
Dn

The g-Laguerre polynomials are orthogonal on the interval [0, 0c0) with respect
to the weight function

(23)  LI"0:q) =

\.(X
e (—(1 —g)x) = —————— .
v e (—( q)x) A= 9m

We have the following orthogonality relation (compare with (1.3));

.(— 20 @
2.4) _ / . LY )L™ (v g)dx
=l + 1) Jy (=1 =g)x: @)
B ( a+l. q)”
(‘/.’ (’)” . mn-
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There is another orthogonality relation given by

1 > katk

q (rx) la() L
2.5 . L oL :
= a k; (—c(I = g*: P " (cq"s DL (cq"s @)

( a+l.

5 f])n
(61» ({)u °

“Umn
where ¢ > 0 is an arbitrary constant and
& ha+k

_ q
2O A=) Tiad

k=—00

7O

(g, —c(l — DG =T A=) g P
@ el =g =g A=) e

is a normalization factor. This can be shown by using “Ramanujan’s sum™ (1.13).
A proof of both (2.4) and (2.5) can be found in [7] and [10].
From the definition (2.1) we easily derive

n
n(n+a) | (1 —q) .~

29 LY@ =(1"gq :
(q: ¢

+ lower order terms

and the representation as basic hypergeometric series (see (1.8) for the defini-
tion):

(). — ;q)" —n. a+l, n+a+l R

LY gy = ———— -1 ®O1(¢g " ¢ g — (1 — gq)q - X).

The g-Laguerre polynomials satisfy a second order ¢-difference equation:

1 — a+l 5
2.10) x- quf’)(\ q)+ £(l+q)) — ¢ x| (DL g q)
1 —g"
+( q ) /(x+l L(n qu: CI) — 0

(I—=q)

We remark that the brackets in (D(,Lff“)(c/,\‘: ¢) are essential in view of (1.6).
Further we have a three term recurrence relation:

I a- ”H) L)
b ) = T g (2 )
(1 n+rx+l) .\ (] ‘C/”)
(l _ C[) . q2n+a+] (1— (/) . qlnmz
(] IH-O) ‘(Y)

B ]_(l).qlm-(x : " ](\ (/)

Ly (v q)
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and a Christoffel-Darboux formula:

,q),. g - (q; @ - L L (v; q)
211 (x—y)- Z T 0

1- C]"H) ) (@) (@) ()
S U—g g (L s L7 (s @) — L5 (s 9L (s )]

If we set y = gx and use (1.5) we obtain from (2.11):

@5 @ Z d (@ P - L (x; L™ (gx; q)

(q’ DS @™ g
(] — n+l)
B mzm (L% (x5 q) - DL (x; q)

—L'P(x; @) - DL (x5 @)l

n+l

And if we divide (2.11) by x —y and let y tend to x then we find

@5 Pn Zq (q: - {L& s )}
(q» q)n =0 01+l’ q)k

(] n+l) (1
T =g gt [Lffi)'( D e Ll

n+1

d
=LY q) - L g
dx

3. Definition and some elementary properties. Now we define the polyno-
mials {L&MN (x; ¢)}%, in terms of the g-Laguerre polynomials by

(3.1)  LMN(x; ) = Cy - L'x; q)
—C LD @)+ Co - LD )

where

(Co=1+M - (Chiat?) Y
(G qn-1
L gratd ] (=g —g” ) gU—q)1=¢*") |  (¢"ig
+N -q { (T—g (1 —g%+) } -
LN . gRo3 (I—¢)’ R Vit /) PR Uit /)
+M - N q (1—q@*)(1—¢>*2) (an | (G @2
(B2 (C =M ity N P2 Qg (@i
(G 9)n (1— q"“:) (4 q),,4 |
2042 | (I=@)(1—¢%) . (¢"*':g RAEY7) P
M -N-q (1—g+1)? (q; q), (f/ P2
N 22 =) (G
C2=N-q (1= (g @

N L 202 (=g @™ @i
N +tM N -q (1—go+") (G2 @ (G gy
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Note that this is a g-analogue of (0.2) and (0.3).
The definition (3.2) is valid for all n 2 0, since (1.1) implies that

1
(G5 @-n

=@ @.=0, n=1,2,3,....

For N = 0 these polynomials reduce to the polynomials {L&¥ (x; q)}2°,, defined
by (0.4). Further we have by using (2.3) and (3.2):

a+l. " 1 — atd. .
(33) Lg’M’N(O; q) — u 1=N- q2a+4 . ( anl . (q : 5 q) 2
(45 @n (=g (g @Ins
and
a+2.
(3.4) (Dquf’M’N)(O; q) = _qae+l ) (¢ : ; P
(@5 Dn—1

1-9 @5 @5 P

1
—-M .q01+ . e - -
( q**h) (G5 Pn (G5 @n—1

We will prove that the polynomials {LZ" " (x; ¢)}2° ) defined by (3.1) and (3.2)
are orthogonal on the interval [0, 00) with respect to the inner product

B Ty(—e)  [* x“
CT(=ol(a+1) Jo (=(1=@)x; @)oo
+M - £(0)g(0) +N - (Dyf)0) - (Dyg)(0)

3.5  (f,g) - f(X)g(x)dx

where « > —1, M 2 0 and N 2 0. Note that this a g-analogue of (0.1).
Further we will prove another orthogonality relation in terms of an inner
product involving a bilateral series defined by

e ko+k

1 q k k
3.6 _— .
(B0 If.8l=7 > el — 7 D fleq)gleq™)

k=—00

+M - f(0)g(0) +N - (Dgf)0) - (Dgg)(0)

where ¢ > 0 is an arbitrary constant and A is defined by (2.6). Compare this
with (2.4) and (2.5). The orthogonality is proved in the next section.

4. The orthogonality. In this section we will prove two orthogonality rela-
tions for the polynomials {LEMN (x; ¢)}2°,, defined by (3.1) and (3.2). First we
have a generalization of (2.4):

@1 (LEMN(x; q), LMV (x5 q))

a+l.

_G"" Dn

= “Co-[Co+q" - Cr+q" " - Cal - by
(@ @n-q"
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where the inner product (, ) is defined by (3.5). A second orthogonality relation
is

@42) LSV @), LMY (x; g))

o+l

_ 4 ,q)n‘

, Co-[Co+q" - Ci+q™ " Cal by
(C[’ q)n °

where the inner product [, | is defined by (3.6).
To prove (4.1) we first show that

F (_a) [o¢] on+m
43 @ —I—— — L\ (x; )
@) Calar D Jy (g g T DR
_ ( - m’ q)n i (qaﬂ, q)m . —((x+l)m—(;')‘

(G5 Pn—i (I—g)m

To do this we use the definition (2.1) of the g-Laguerre polynomial and the
integral formula (1.3) to obtain

00 xarm
44 / —— . L{"*(x: g)dx
o (U =9x; Qoo
_ ( a+1+l’ q)n i i (qAn+r q)k q( ) . (1 _q)k _q(n+a+l)k
@ Dni = @ @ - (g5 @
y /oo xa+m+k 4
——— aX
o (I —qux; q)oo
(qa+:+l —n+i. Q)Ic q( ) . (1 _ q)k . q(n+a+l)k

E q)n I (q
(G Dn—i Z @Y - (g5

y F(-a—m—k)F(a+m+k+1)
Iy(—a—m—k)

Now we use the definition (1.2) of the g-gamma function and the identities
(1.10) and (1.9) to find

Fy(—a)l(—a—m—kI(a+m+k+1)

*2) T(—l @+ Dy~ —m — k)
—a—m—k.
— (_1)’"+k - _q)—m—k . (q _ 5 4)00
(q as f])oo

— (_l)m+k . (1 _ q)*m~k . (q*ll' m~k’ q)m+k
=" A= @R e @
— (1 _q)~m~k . q-(a-#l)M*(’;) q_(a+”7+l)l‘ ( ) (q()!+l ) . (qa+m+l; q)A-
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Combining (4.4) and (4.5) we obtain by using the summation formula (1.12):
Iy(—a) o0 xotm

T—aola+ ) Jo (=1 — 9% 9

- L0(x; g)dx
@ @ n—i @™ g ,q(é) (1 = g)f - gDk
@ Dt = @ @n - (4 9r
y Mol (—a—m— kb a+m+k+1)
T(—a)l(a+ D, (—a —m — k)
@ Qe @D e (7)
(@ @n-i (=g

q—n+i7 qoc+m+1 B
X 2@ ( q.94" "

qa+i+1
_ @ Qi @ D (1)
(@ Pni A—qm '
This proves (4.3).
Now we have by using the definition (3.1) and (4.3)
r'q(_a) o0 xa+m

. JoOMN L
@O FCofern fy Ca-gman o O
_ @ D arm=(7) [(cf’"; PDn Cy
(I—=qr (@ @n
A ) RN C A ) S
(5 @ Y@ e

This equals zero for 2 = m < n. Hence
(x™ LEMN (e @)y =0 for2 S m < n.
For m = 0 and m = 1 we find by using (4.6), (3.1), (2.3) and (2.2)

_ n—1
@D (LM g) = —C+ )

(I—¢q)
a+l. a+2.
Y L ARE 0_(q .’Q)n—l .C
(CI§ q)n (q, q)nfl
a+3.
+(f] H 61)n~2 G| = 07
(G5 @n—
nz1.
Also forn 2 2
(1 _ qa+l)
@8 oLy @) = =g g G
v [ @ D g @™ @ua
(@5 @n (q; Pn—
at+d.
+qa+3 . @*""; @n-3 G| =o0.
(45 @n—3
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This proves the orthogonality. To complete the proof of (4.1) note that we have
with (3.1) and (2.9):

1—ag)
4.9)  LMN(x; g) = (=1)"- "™ . d=ar Cop - x" + lower order terms.

(@5 @

Now it follows from (4.6) with m = n 2 2, (4.9) and (1.9) that

(LEMN (x5 g), LEMN (x5 q))
” a+l. —n.
:(—l)n’q(z) .(q ’q)n 'Co‘ (q 7g)n 'CO
(@5 D (G5 @n
@D o @
(@5 @n—1 ' (@5 P

(a+l; " \ -
= ﬁ'CO'[CO"'q G +q" -Gl

For n = 0 and n = 1 we find the same formula by direct calculation. This proves
(4.1). To see (4.2) we prove that for m < n:

(4.10) " LMN (s ] = (" LEMN (1 g)),

where [,] denotes the inner product defined by (3.6) and (,) that defined by
(3.5). By using (2.1) we find for m € N

1 00 qka+k . (s .
4.11) = ) m e ok
A k;oo (=c(1 = 9)¢"; @)oo ca)" La=ieds @)
B 1 (qa+i+l; Q)n—i i (q—n+i; q)j . q(jz) . (1 _ q)j . q(n+a+l)j
A @ Dn-i (q**1; @) - (5 q);

m+j q(a+m+j+ 1k

C
X Z (—c(1 = G5 Qoo

k=—00

Now we use (2.6) and (1.9) to obtain

m+j | q(a+m+j+] )k

1 ad C
4.12 — -
@D 2 Chi—oF on

k=—00
Cm+j . (an, —c(1 — q)qoz+m+j+17 _C—l(l _ C])_lq_a_m_j§CI)oo
(@t —c(l = @)g™', =™ - (1= @)™ - 7% @)oo

@ @ (T (= @) g @y
(—c(1 = Q)G Qs
(q"“; q)m+j “(m;j) .

T a- g™ - glarDime) |
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So we have with (4.11), (4.12) and (1.12)

o kor+k

1 q
_ m L(a+1)
A k;oo i —adsom ) )

— (qa+i+l; q)n*i . ( atl q)m . A(a+l)mf('2")
(G5 Pn—i (=g
q—n+i qa+m+l _
X 2@, ( q(:z+i+l a9

_ (qi—m; q)nfi . (qLH—l

: N qznm . q—(a+l)m ("')7
(45 Pn—i (1—q)

which equals (4.3). This proves (4.10) and therefore (4.2).

5. Representation as basic hypergeometric series. If we write

5.1) LMV (x; q)

a+l k
G @ Z (ratDk X
(61, D (45 an

then it follows from the definition (3.1) and (2.1) that

@ o A=d) @ "™ an
@ @ (I =g (g% qx
A=g"1—q¢"" @ "% aqx
(I =g —g*2)  (@*5 g

(g q) har :
_ GZHT[% 1a _qk+ *H —q“‘”z)'co
— qn . (1 _ q/\'~n)(1 _ qk+a+2) . CI
+@" (=g =g )
=[Co+q"-Ci+q"" - C3]

A=gH0-¢) @ @5 @™ g
(1 =qH1 —q**2) @ 9% @5 D@5

for some 3 € C and v € C. Note that 3 and 7 satisfy

52) Er=

(qa+l +qa+2) . CO + (1 +qn+(x+2) . Cl + (qnfl +qn) . C2
Co+q"-Cr+g* 'y

¢ +q =

and

q2a+3 _C()+qa+2 ~C] +C2
Cotq"-Cr+gm'-Cy
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Hence with (5.1) and (5.2) we have by using definition (1.8)
(1-¢H1-q")
(] _ q‘”l)(l _ qa+2)

a+l —n B+ 7+l
NECRT )T (q (g )
(q, q)n qak ’ qﬁ’ q

LMN(x; q) = [Co+q" - C1+¢*" " - Ca] -

But in view of (3.3) we may write

_ a+4.
(5.3) Lg‘M’N(x; q) = [1 —N- q2(x+4 . -9 (g @n— 2}

(1 =g**" (g Puo

Y+l
__(1 — C]) qn+a+l ) .

o+l

NECRET IR <q",qﬂ“,q
(4; @n q*",4%.q

Note that in the case that —(3 € {0,1,2,...,n} or =y € {0, 1,2,...,n} we have
to take the analytic continuation of (5.3) in view of (5.1) and (5.2).

6. Recurrence relation. In this section we will derive a five term recurrence
relation for the polynomials {L%MN (x; q)}>2,. First we introduce the notation

A, for
6.1) Ay = <La,M,N La.M,N>
( a+l, )n . .
:E:?_.q_-co-[co.i.q.cl_‘_qz 1‘C2].

Since Cy,C; and C, depend on n we will sometimes write Cy(n), Cy(n) and
Ca(n). Since x? - L¥MN (x; q) is a polynomial of degree n +2 we may write

n+2
6.2)  x* LMN(x; q) = ZDI((n),L?,M,N(x; )
k=0

for some coefficients D{” € R, k =0,1,...,n+2.
It appears to be convenient, in the sequel, to set

63) D =0 ifeitherk <0orn<0
' M =1 if £ <O0.

By taking the inner product with L&EMN(x; g) on both sides of (6.2) we find
with (6.1) and the definition of the inner product (3.5)

64) MDY = (LM (s ), - LEM (s ).

Hence with the orthogonality property D{” = 0 for k = 0,1,2,...,n— 3. So
we have with (6.2) for n = 2

n+2
65 LMV g = Y D LMV g,
k=n—2

https://doi.org/10.4153/CJM-1990-016-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1990-016-9

MOAK’S ¢-LAGUERRE POLYNOMIALS 293

which is a five term recurrence relation for the polynomials {LZM N (x; ¢)}%,
provided that D, # 0 and D, # 0.

To find the coefficients {D{"}7*2 , we first note that

] — n
L ) = (=1 - g LD
(q: Pn
F 1yt govma-y, A=) A=y
1—q9) (& P

+ lower order terms,

which follows easily from the definition (2.1) and (1.9).
Then we have with the definition (3.1)

(6.6) Lg’M’N(x; Q) =ky X" +k, - x""!+ lower order terms,
where

6.7) ky = (—1)" ‘qn(nﬂx) ) Q—_q)ﬁ Cy
(q; Pn

and

ey A= T —g™)
(@ Dn—t I—-q

K=D""¢q Co—q"! ~Cl].

Further we have with (4.6) and (3.5) by using (1.9)
<xn+l’L'(f,M,N(x; q)>
—(=1)"- Ca (D)D) —n(n+2)
(1—qr!
1-— n+l 1—qg" 1— n—1
d—gq )‘0+( q)~q”+l‘C1+( q ).2n+1.C2:|-
1-9 1—-¢q) (1—¢g)

Now we find D%

n+2

ki (1—g"H(1 =g  Co)
68) DIy =-—"-= '
(6.8) n+2 a (1 —q)?- g2ty Co(n+2)

X

by comparing the leading coefficients on both sides of (6.5):

£0

For D, we obtain by using (6.4) and (6.6)

k k,
(6.9) DW= (x™LEMN (x; g) + 2.
)\,H.] kn+l

Alternatively, we compare the coefficient of x™1 on both sides of (6.5) and use
(6.6) and (6.8) to obtain

pw — kn —kup DD Ky ko —kn - Ky

n+l =
kn+l kn+1 ) kn+2
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From (6.4) we obtain by using (6.6), (6.7) and (6.1)
" kn2 - Ay
B (1— qn+(x—l)(1 _qn+a)
- q)? - g?nm+a—l)
« Co(n)+q" - Cy(n)+q*" " - Ca(n)
Con—=2)+q"2-Ci(n—=2)+¢q*> - Cy(n—2)
and by using (6.4) and (6.6)

#0, n22

(6.11) D, = f\—:“< MULEMN () + 2 /’\‘ i nzl.
To find D{™ we substitute x = 0 in (6.5) and find
6.12)  —L*MN; ¢)- D™
= D L (0 @)+ DI - LT 0: )
+ D - LN 05 g+ DYy - LN (05 ).

Hence D™ can be computed by using (3.3), (6.8), (6.9), (6.10), (6.11) and (6.12)
in the case that L*M-N(0; ¢) # 0.

7. A Christoffel-Darboux type formula. From the recurrence relation (6.5)
we obtain

T 0=y LN L 0 )
= Dy - ILEY N e LE" N 0 @) = LEY N 0 LN (0 )]
+Dz‘+’l LT O QLEY Y (s @) = LYY 0 L s g
Dl(‘k)l [LaMN(X q)LaMN(y; q)_ aMN(y q)LuMN(X; (/)]
D, (LN e LM (v @) = LY (s LM (e ).
From (6.4) it follows by using (3.5)
Mz - Dy = (LMY (x5 @), 7 - LY (x5 @) = M- D
and in the same way
Mevt -DE = N - DD,
Hence with (7.1) we obtain, by using (6.3)
2. Z LEMN q)L“MN(v 9

(72)  (

D(n)
/{”2 (LA (e LEMN (v; q) — LEMN (v )LSM N (x5 )]

D(n)
L QLT 6 @) = LN s L ()
n
D:ri?l) a,M N a,M N a,M N aM.N
+ A | [Ln+l (\r; Q)Ln 1 (.y; ([) Ln+l (.); ({)L,, 1 (\; q)l
n—
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This can be seen as a Christoffel-Darboux type formula for the polynomials
{LIMN (x; @)}, If we set y = gx in (7.2) and use (1.5) we obtain:

~ LEM"V o LMY gx; q)
(1 + q) ox- Z k q k q. q

A
k=0 k

D™
= 2L s DL (0 ) — L (s @D LM (v )
n

D™
LY DL (s ) — LY 0 DL (s )

Dr=D
+ S LT O DL (6 @) = L (6 )DL (v @)l

n+1 n+l
n—1
Moreover, if we first divide (7.2) by x — y, then let y tend to x, we find:

- Z {LEN (x: )}

Ak
Dr(z'i)z oM N d omn aM N aM N
3 S| Ly q)aLn;z’ (5 @) — Ly (x; m L x5 q)
sz,-:-)l a,M N d a,M N a,M N a,M N
o BT ) o L ) — Lt (s g) - L (x; q)
Dy LOMN aMN aM N aM N
M LS q)—LnH’ (5 q) — Ly (g q)—L x5 9| -
n—1

8. The zeros. All sets of polynomials {P,(x)}2, which are orthogonal with
respect to a positive weight function have the nice property that the n-th poly-
nomial P,(x) has n real simple zeros, which are located in the interior of the
interval of orthogonality. Our polynomials {L%N (x; @)}, fail to have this
property, but we can prove:

TueorEM 8.1. The polynomial LEMN (x; q) has n real simple zeros. At least
n — 1 of them lie in (0,00), the interior of the interval of orthogonality.

In other words: at most one zero of Lﬁ*M N(x; q) is located in the interval
(_007 0]

Proof. Suppose that xj, xa, ..., x; are all zeros of L*™-N (x; ) which are pos-
itive and have odd multiplicity. Define

p(X) = kp - (x —x1)(x —x2) -+ (X — x¢)
where k, is defined by (6.7). Then we have

px)-LIMN(x; g) 20, Vx20.
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Now we define h(x) and d so that
h(x) = (x +d) - p(x)
and (D,4h)(0) = 0. For every polynomial i(x) we have (D,h)(0) = h'(0), hence

0 = (D,h)(0) = K (0) = p(0) +d - p'(0).

Hence
p(0)
d=—-——=>0
p'(0)
since p(0) and p’(0) have opposite signs. This implies
(h, L")
I, (—a) o0 x“

= _——— " - . aMN ...
T T(—ala+1) Jy (=1 —@)x; Qoo hQO)L™ ™ (x5 q)dx

+M - h(O)LEMN (0; q) > 0.
Hence: degree [k] 2 n, which implies that £ 2 n — 1. This proves the theorem.

Now we examine the non-positive zero of LMV (x; ) in somewhat greater
detail. Since 0 < ¢ <1 and o > —1 we have

1_q<1_qn,nzz and q(l_qa+l):q_qa+2<]_qa+2'
Hence
(1 =g —g"H —q(1 —g)(1 —g**") >0, nz2.

This together with (3.2) implies that Co > 0 for M > 0 and N > 0. So we have
in view of (4.9): LgvM’N(x; q) > 0 for all x < —B with B > 0 sufficiently large.
This implies that the polynomial L%V (x; ¢) has a zero in (—00,0] if and only
if L&MN(0; q) < 0.

Then from (3.3) we must have n = 2 and

N - g 1=q9 @™ P <0

8.1 1—
@1 A =q*Y) (¢ Do
Define
at+d.
foy=Y . s Dn2
(q’ q)n—2

Then we have

a+d, _ 1— n+a+2
#2  forn=T D0 OO )5
(45 Dn-1 (I—g")
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since n+a+2>n+1>n—1.So0 f(n) is an increasing function of n. But
a+d.
llm f(n) — (q ’ ‘1)00 .
n—00 (45 Poo

Now we look at

1-9 @ P

— 2a+4
F(a,qg,N)y=1—N -¢g=*" .(l—-q"“)‘ T e

For a = 0 we have

q4

F(0,q,N)=1—N - .
©a:80 = — (1 — )

So we have for instance
1 _ 791 .
F(O, 167999) =51 > 0.

This implies that we cannot guarantee the existence of a non-positive zero for
n sufficiently large as in the case of the polynomials {LZMN(x)}2 described
in [6]. Note that

LAMN (x; g) — LEMN(x)  forg— 1.

But in view of (8.1) and (8.2) it is clear that if L™-N(x; q) has a non-positive
zero for some n € N, then L%V (x; g) has one too. Moreover, we have: the
polynomials {LN(x; ¢)}2°, have a non-positive zero for all n 2 ny if and
only if F(a,q,N) < 0. Here ny is the smallest n for which (8.1) holds.

In that case we can prove the following

THEOREM 8.2. If the polynomial LN (x; q) has a non-positive zero —x,,
then we have for M > 0:

1 N
. 0= — =
(8.3) <3y

Proof. Suppose that the polynomial LN (x; g) has a non-positive zero —x,.
Then it is clear that n 2 2 and N > 0.
Let x{,x2,...,X,_1 be the positive zeros of L*N(x; ¢q) and define
r(x) = —x)x —x2) (X — Xp—1)-

Then we have in view of (6.6)

Ly q) = Ky - () - (¢ + )
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where x, 2 0. Since degree [r] = n— 1 and (D,r)(0) = r'(0) we have

84 0= (r(r),LgM N )
ke Ty~ o0 x¢
T Tole+ D) Jo (—(1— g5 @)oo
+hy M -r20) - x, +ky - N - r'(0) - [x, - 7'(0) + r(0)].

. rz(x) - (x + x,)dx

Since the integral in (8.4) is positive we must have
M -r*(0) - x, + N - r'(0) - [x, - '(0) + r(0)] < 0.
Hence
(M - r2©0)+N - {r'(0)}] - x, < =N - r(0)’'(0) = N - |r(0)(0)|
since (0) and r'(0) have opposite signs. Now it follows that
2VM N - [r(O)F(0)] - x, £ M - r20)+ N - {'0)}*] - x, <N - |[r(0)r'(0)|.
Hence
2VM -N -x, <N.
This proves (8.3).
9. Another definition. In view of the relative simple formulas (3.3) and
(3.4) we might expect that there is another definition for the polynomials

{LAMN (x; )}, which is simpler than the definition (3.1) and (3.2).
By using the same arguments as in [7], Section 3.7 we find the formula

(1 —q") Cr@),. _ (1 —Cla“) (oz+l)
(CRY) oy L, (x5 q) —q L7 q)
= =" x L (s )

which is a g-analogue of formula (A.35) in [6] and formula (1.7.2) in [7]. Now
it easily follows from (3.1) and (9.1) that we may define

9.2)  LEMN(x; q) = By - LY(x; )
+By-x - L™P(x; @) +By - x2 - L (x; q)
where

B (1 _ q)Z . q2a+5
=g =g
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Hence with (3.2) we have

— )3 a+2.
32 — N . q4a+7 . ] (l q)2 . X (q ) q)n—]
(I =g**H(1 —g***)A = q*) (g5 @n—1
AT | (1-g*
+MN q (] _qa+l)2(1 _qa+2)(1 _qa+3)

o+l o+3.

x ((] 5 q)n . (fI 5 q)n—l
(@5 Dn (@ Pn

For B we easily obtain from (3.3) and (2.3)

-9 @ P
(=g (@ P

93) By=1—N-g>*.

To find B, we note that it follows from (9.2), (2.2) and (2.3) that

a+2. a+3

Y ,q)n-|+Bl.(q s Dnt
(G Dn—1 (G5 Pn—1

9.4) (D LEMNY0) = —¢™*" - By

So we obtain from (3.4), (9.3) and (9.4)

(1-9 . @5 qn

(I=g*'" (g @

A= =¢"?") @ P
(1 =g**HA = ¢ (@ P2

Bl :_M.qa+l'

__N 'q3a+5 .

Hence we have found another definition for the polynomials {L&MN (x; )},
given by (9.2) and

(B — 1 N .2+, _(=a . @*gy,

By=1-N-gq (== * @2
I VA 25 W € /) B (7 A

Bi=-M-q =4 " @

N eS| (= =¢*?) (@i
(95) N q (]—q‘“‘)(lvq;’*}) (q: q)"_z ,
_ N . AT (1—g)° R C At ) ]
BZ —_ N q (l—q“*‘)(l—q"‘*z)(lzq"‘”) (q?q)n—ll ,
. Ao (1—¢q) L@l . @i
+MN - q (1= (1=g**2)(1—¢°+3) (@ n (@ Dn1 -~

The formulas in (9.5) are simpler than those of (3.2).

Note that this definition given by (9.2) and (9.5) is a g-analogue of the defi-
nition (A.33) and (A.34) in [6] for the polynomials {L&MN (x)}%,.

For N = 0 this definiton reduces to the definition

LM @) = LYG ) =M g

=9 @5

(a+2)/...
(I—gq*Y (¢ @ LI )
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for the g-analogue of Koornwinder’s generalized Laguerre polynomials which
was found in [7].

10. A g-difference equation. In [5] J. Koekoek found a simple proof of a
second order differential equation for the polynomials {LZV(x)}* = defined
by (0.2) and (0.3). A similar method can be used to prove that the polynomials
{LIMN (x5 )}, satisfy a g-difference equation of the form:

(10.1)  x-Py(x) - (DILEMNY (g 2x; @) — Py (x) - (DLEM N x5 q)

q™=n
(1—q")

X JoaOMN L —
) Po(x) - L, (x5 q) =0,

where {Py(x)}?_, are polynomials with

Py(x)=Co-[Co+q"-Ci+¢* - Co] - x*
+ lower order terms
(10.2) Pi(x) = g™ - Cy-[Co+q" - Cr+q* " - Cy] - x?
+ lower order terms
Pox) = q** - Co - [Co+q" - Cy + g™ - Co] - x?
+ lower order terms.

To prove this we start with the definition (3.1) and use (2.2) to see that
(10.3)  LyMN(x; g) = Co - LP(x; @)+~ - C1 - (D L™ )g ™ 'x; q)
+q P Cy - (DL s ).

aton
Equation (1.5) implies that

LY@ @) = L0 @)+ 47 (1= @ - (DL ™' xs5 g).
This together with the g-difference equation (2.10) yields
(104) g x - (DIL)g *x; q)

__[a=¢"h
(I—q)
_(l_q") atl r(a),,.
=g ¢ Ly (x; )

Now we multiply (10.3) by x and use (10.4) to find

x| (DL g  x; @)

(10.5)  x- LMV (s @) = potx) - LiP (x5 @) + pr(x) - (D Li)g ™' x5 q)
where

a-q"
(] _ C[)C[(Hl

—2a-2 | a- an) _nta
(I—q)

polx) = Cox — 2
(10.6)

px)=q¢g*"C-x—q x| Cs.
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We can then use the g-product rule (1.7) together with (1.6) and (10.5) to obtain

(10.7) g 'x - (DL g ' x; @)+ LIV (x; g)
= (Dypo)g 'x) - LY(x; @) + [polg'x)
+(Dep1)g 0] - (DLNg x5 q)
+q7" - pig ) - (DILY)G x; ).

Now we multiply (10.7) by gx and use (10.4) and (10.5) to find

(10.8)  x? - (DLEMNY (g™ x; @) = ro(x) - LIP(x; @) + r1(x) - (DL g 'x; ¢)

where
_ —1 =4 —1
ro(x) = gx - (Dgpo)g™ 'x) — =g -q* - pi(gT x) — q - po(x)
(10.9) ri(x) = gx - [polg~'x) + (Dgp1)(q'x)]
]_ o+l
(L) =" x| pigT ) — g pi().
(1—¢q)

In the same way we obtain from (10.8) and (10.4)

(10.10) x> - (DILIMN) (g7 %x; q) = so(x) - L (x; q) +51(x) - (DLLE) g 'x: )

where
[ 50(x) = g°x - (Dyro)(g~"x)
1 —g"
_U-d) g°* - ri(qg ) — (L + @)q” - ro(x)
(I—-9)
(10.11) <

51(0) = @x - [rolg ") + (Dgri)(g ' x)]

[T
L 1-9

x| rgTix) — (1 +@)g? - rix).

Elimination of (D,L{®)(¢™'x; ¢) in (10.5) and (10.8) gives us in view of (2.3)
(10.12) po(x) - ri(x) — p1(x) - ro(x) = x - P2(x)

for some polynomial P;(x). In the same way we obtain from (10.5) and (10.10)
(10.13) po(x) - s1(x) — p1(x) - s0(x) = x - P1(x)

for some polynomial P;(x). Using (10.6), (10.9) and (10.11) we have

pox) =Co-x and ro(x) =s0(x) =0 forn=20.
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This together with (10.8) and (10.10) yields

I —q"

. 2.
g NP

(10.14) ro(x) - s1(x) — ri(x) - sp(x) =

for some polynomial Py(x).
In view of (10.5), (10.8) and (10.10) we conclude that the following determi-
nant

x - LEMN (x; g) po(x) pi(x)
x2 (DGLEMNY G x5 q)  ro(x)  ri(x)
X DILYMNYG X q) sox)  si(x)

must be zero. The first column can be divided by x, hence with (10.12), (10.13)
and (10.14) we find

LEMN(x; g) pox)  pix)
0=1|x-(DLIMNYg x5 q)  rox) ri(x)
X2 (DILYMNYGx; q)  sox)  s1(x)

=x - Py) - (DILYMN)(gx; q)
— 2 P1) - D Ly™ N )™ s g)
4=
I—=q
So we can divide by x? to obtain (10.1). By using (10.6), (10.9) and (10.11) we
can easily check (10.2). This proves the g-difference equation.
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x? - Po(x) - LEMN (x5 g).
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