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In this paper, we prove some weighted sharp inequalities of Trudinger—Moser type.
The weights considered here have a logarithmic growth. These inequalities are
completely new and are established in some new Sobolev spaces where the norm is a
mixture of the norm of the gradient in two different Lebesgue spaces. This fact
allowed us to prove a very interesting result of sharpness for the case of doubly
exponential growth at infinity. Some improvements of these inequalities for the
weakly convergent sequences are also proved using a version of the
Concentration-Compactness principle of P.L. Lions. Taking profit of these
inequalities, we treat in the last part of this work some elliptic quasilinear equation
involving the weighted (NN, ¢)—Laplacian operator where 1 < ¢ < N and a
nonlinearities enjoying a new type of exponential growth condition at infinity.
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1. Introduction and statement of main results

In 2015, M. Calanchi and B. Ruf have established a weighted Trudinger—Moser
inequality in the unit ball B of RY, N > 2. Such type of inequality is not new
and many inequalities of Trudinger—-Moser type defined in weighted Sobolev spaces
have been proved; we can for example cite [1-3, 5, 13-16, 21, 22, 26, 29, 33|.
The majority of those works considered the restriction to radial functions, and in
[29] although the weight is not necessarily radial but its growth permits to pass
to the radial case through some radial rearrangement. This interest to reduce the
inequality to the radial functions is mainly motivated by their ability to increase
the maximal growth of the integrability. The weight that M. Calanchi and B. Ruf
considered is of logarithmic type and turned out to be of great interest. More
precisely, they introduced the subspace W&”N (B, 03) defined as the radial functions
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of the completion of C§°(B) with respect to the norm

N N
Jull, = [ oale) [Vul" da.
B

where og(x) = (log ‘714)5(]\’_1) or os(x) = (log ﬁl)ﬁw_l), 0<B<1, z€B. In
[16, theorem 1], M. Calanchi and B. Ruf proved the following result: for 0 < 8 < 1,
we have

’

/ el dz < +oo, Y u e Wyl (B, og). (1.1)
5

rad

N/
sup{/B @™ qp w e Wg”:\;d(B, o8), ||uH0_ﬁ < 1} <400 e a<ang,

(1.2)
1
where an g = Nwy ) (1 — 6)]ﬁ and wy_1 is the area of the unit sphere in

RV,

The case N = 2 has been considered in a previous work (see [15]). Note that when
B =0, (1.2) recovers the classical Trudinger-Moser inequality (see [31, 38]). Next,
M. Calanchi and B. Ruf considered the case when 3 = 1. In this case, the specific
behaviour of the weight function has an impact on the corresponding embeddings. In

fact, the maximal growth elsl™ proved in the classical Trudinger—Moser inequality
significantly increased such that a doubly exponential growth is now permitted.
More precisely, they proved the following result given in [16, theorem 4]:

N e \ V1
/ e° dz < 400, Yu € W(}ﬁd(B, o1), where o1(z) = (log |) .
B ’ z
(1.3)

1
o Tl
Sup{/ gac Nt da, we Wy (B,a1), |lul,, < 1} <4oo<=a<N.
B
(1.4)

The proof of (1.2) in the critical case a = a3 is mainly based on a suitable change
of variable combined to some integral inequality due to M.A. Leckband. In [34],
V.H. Nguyen provided a simpler proof of (1.2) in which he proved that the function

N/
8+—— MT(N,a,3) = sup {/B U™ qg u e W&ﬁd(B,ag), ull,, < 1}

is decreasing on [0,1). Moreover, V.H. Nguyen proved the existence of maximizer
for this inequality when ( is sufficiently small. The question of the attainability of
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the inequality (1.2) has been also considered by P. Roy in [35] for the case N = 2,
and in [36] for higher dimensions. Taking advantage of these new Trudinger—-Moser
inequalities defined on the unit ball B in RY, some authors studied an elliptic
problem having a doubly exponential growth at infinity. It mainly consists in the
following equation

—div(oq (2)|Vu|N2Vu) = f(z,u), in B,
u >0, in B,
u =0, on 0B,

where the nonlinear term f(z,u) is a continuous function, radial in x € B and has
a critical doubly exponential growth at infinity, which means that there exists a
positive constant g such that

flx,s) {O7 for all o > ay,

lim 400, for all o < ap.

s— 400 eNeQIS\N/
M. Calanchi, B. Ruf and F. Sani proved in [17] the existence of a nontrivial radial
solution for the case N = 2. This result has been recently generalized by C. Zhang
in [40] for higher dimensions. When we try to extend (1.1)—(1.4) to the whole
Euclidean space RY, N > 2. we face many obstacles which mainly consist of the
embedding and denseness properties of the functional space that we construct by
extending the weight outside of the unit ball 5. For the first attempts, we worked
with the weight og(z) = (log ﬁ)ﬁw*l), |z] < 1. In [6], we considered a radial

weight wg defined by

oot — | (1 (ﬁ))w_l) e < 1 (15)

x(|]) if |z| > 1,

where, 0 < <1 and x:[1,+00[—]0,+0o0[ is a continuous function such that
x(1) =1, %r>1£ x(t) > 0. Denoted by Yj the weighted Sobolev space

Y = {u € W:,;g(RN) ; / wg(2)|Vu|N de < +oo}
RN

and we equip it with the standard Sobolev norm

ully, :/ |Vu|Nw,3(a:)dx+/ lul™ d.
RN RN

We obtained the following extensions of (1.1) and (1.2) to the whole space R : Let
N > 2 and wg be defined by (1.5). Then, for all & > 0 and u € Y3, we have

alu‘llilﬁ Nf/
e — Sn_a2 | alu|™=? dz < +o0, (1.6)
RN

N-—-2 tk
Snoa(t) =Y o t=0
k=0

where
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Moreover, if a < a3, then

N’ N’
sup / (e“'l ? —Sn_o (a, |u|1—ﬁ>) dz < 400, (1.7)
ueYs, flully, <1 JRN

and if o > au g, then the supremum in (1.7) becomes infinite. For the value o =
an,g, the supremum in (1.7) is not necessarily finite. However, the sharpness of the
Trudinger—Moser inequality could be recovered by considering a different functional
space. More precisely, for 0 < 8 < 1, we define Yé as the space of all the radial

functions of the completion of C§°(RY) with respect to the norm

1
N N
fulh = 9y + 05 gy = ([ 90) 1901 )

1
’ d’,
+ </ |u) % dm) .
]RN

where d% = %{fgj For that space, we obtained the following sharp

Trudinger—Moser inequality which can be considered as another extension of (1.2):
Let 0 < 8 < ﬁ and wg be defined by (1.5). Then,

N N
sup / <e°‘|“1 Y (au|1—5>>dx<+oo<:>a<a1vﬁ.
RN

weYs, flully, <1

The value =1 is a kind of second order limiting case. In [6], we established the
following extension of (1.3) and (1.4):

e For all & > 0 and u € Y7, there holds

/N (ea<euNl_1> — Sn—2 (a (e'“‘N, — 1))) dx < +o0. (1.8)

1
(i TN(N=T)
(;gfl x(s))

e lfa< Ne , then

1
N—

( w 1 \U,\Nl )
al e N—1 —1 1
WwN-1 |u‘N’
sup / e — Sn_2 (a (e N-1 - 1)) dx < +o0.

weYy, flully, <1

(1.9)
1 ey _Nt
e Ifa>Nexp|—— log™ (14+t)e " dt |, then
1
N—-1 N/
a(ele lul 1) 1
T N
sup / e —Sny_a|al|eN-1 —1 dz = 4o0.
wevi, flully, <1JRN

(1.10)
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Note that the previous results come as generalizations of earlier works dealing with
the case N =2. See [4, 7]. A further interesting extensions of (1.1)—(1.4) to the
whole Euclidean space RY has been provided in [8, 10].

In this paper, we consider two types of weights. First, for the case when 0 < § < 1,
we consider the weight defined by

wg(z) =

{(—mg(lxmw—” if o] <1, (1.11)

x(|]) if |z > 1,

where x : [1, +00[—]0, +00] is a continuous function such that x(1) = 0. Moreover,
the function x is chosen such that wgs satisfies (1.12), that is, wg belongs to the
Muckenhoupt’s class Ax (we also say that wg is an Ay—weight), that is

sup <|;|/Bwﬁ(x) dx) (liﬂ/B(wﬁ(x))llw dx)Nl < 400, (1.12)

where the supremum is taken over all balls B in RY. The importance of this property
of the weight wg lies in the fact that it implies that C5°(RY) is dense in the space
Ejs (see, for instance, [18, 28, 32] and references therein). An interesting example
of such a function y is given by: x(t) = log”(t), v > 0 (see [27]). In particular, one
can consider the weight

ws(z) = log 2"V | & e RV\{0}.

That last weight can be seen as a natural extension of (—log|z|)?V =1 defined
on B={z €R", |z| <1} and considered in [16]. Second, for the case 3 =1, we
consider the weight

(o) — {(1 ~log(Jz))N T if f#] < 1, 13

x([]) if |z > 1,

where x : [1, +o00[—]0, +o0[ is a continuous function such that x(1) =1 and w;
belongs to the Muckenhoupt’s class Ay. Here, are some examples of such a
function y.

e x can be any continuous and positive function such that y(1) = 1 and

0 < inf x(t) < sup x(t) < +oo.
t>1 t>1

o (1) =t*, 0<a<N(N—-1).

e x(t)=1+1og"t, v> 0.
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For details about these examples, we refer to [8]. Let 1 < ¢ < N. For 0 < 4 < 1,
denote by E, 3 the weighted Sobolev space

Eqp= {u € DYURN), /

ws(z) |Vu| de < +oo} ,
RN

where D}4(RV) = {u € LT (RY), w radial, /
RN
We first equip the functional space F; g with the norm

|Vul|? do < +oo} and ¢* = NN—_qq.

N\ W
HuHEm = (/RN |Vu|Nw5((E) dx + </RN |Vu‘q dx) ) , U € Eq,g.

The first result in the present work concerns the case 0 < § < 1 and the norm
Il E, - 1t is given by the following Trudinger-Moser inequality.

THEOREM 1.1. Let 0< (<1 and wg be defined by (1.11). Let jz=
inf {j > 1, j > G0

For all o > 0 and v € Ey 3, we have

N’ ’
e g alu =y dr < +o0, 1.14
s
RN

Jjp—1
i
where Sj;_1(t) = g - te [0, +00]. Moreover, if & < an g, then
g
j=0
2~ N/
o W (7 s (o) Jar <
ucltig,p, ||w Eqp S

and if o > a,g, then

N/ ’
e N
sup / (e““l —Sj,1 (a |l 15)) dz = +o0. (1.16)
u€ky g, Hu”Eqﬁ<1 RN

The second result in this paper concerns the case § = 1. More precisely, we prove
the following theorem:

*

THEOREM 1.2. Let wy be defined by (1.13). Let j, = inf {j >1, 5> L,}. Set

-1

a—1
1 q— 1 q

For all a > 0 and u € E, 1, we have

/ (ea(e”/*) I (a <e|“|N' - 1))) da < 400, (1.18)
RN
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Nl ¥
where S;,_1(t) = Z =+ 1 €[0,+00[. Moreover, if o < Ne ™~ C;YN, then
i=0

4N171 N/
al e“N-1 ] -1 1
wiN—l‘u‘N’
sup e —Sj—1|a|eN-1 —1 dz < 400,
RN

uw€Eq1, llullg, , <1

(1.19)
and if
wﬁ‘f +oo gla=N)t N\ ¥
>N — —dt ,
B P </ L+ )
then
1
N—1 N/
a(euNl lul 1) 1
wﬁ‘u‘N/
sup / e —Sj—1|afeN-1 -1 dx = +o0.
ueBq 1, lullp, , <1/&N
(1.20)

Note that the Trudinger—Moser inequalities proved in theorems 1.1 and 1.2 are
not necessarily sharp. However, as we will see, this sharpness can be recovered when
we consider another norm on the space Eg g equivalent to || - [|;  and given by:

N N
lullgp = IVulLy @ny + [Vl pagyy = [Vul ™ wp(x) da
N, ) o

+</ |qudx>q, for 0 < 4 < 1,
RN

and

[ull,, = </ VY wi () dx) + (/ [Vul? d:r) , for B =1.
’ RV |z|>1

The equivalence of this norm and || - || £, 18 proved below (see remark 1.8). Using
the new norm || - ||, 5, we can establish the following sharp Trudinger—Moser
inequalities.

THEOREM 1.3. Let 0 < 8 < 1 and wg be defined by (1.11). We have,

25 N
sup / (eo‘“l1 ! —Sj,-1 <a|u|1ﬁ>)dx< +00 & a < ang.
uE€Bq g, llull, <1 /RN
(1.21)
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THEOREM 1.4. Let wy be defined by (1.13). We have,

ﬁ N’
a(ewN—l lul 1) 1
N—-1 ‘ulN’
sup / e —Sj,-1 <a (ele - 1)) dx
RN

wEB 1, Ilull, <1

< +oo & a <N (1.22)

Comparing to previously cited works, there are many novelty aspects in the
present work that we have to highlight. First, we are considering the case when
the weight wg, 0 < 3 < 1, vanishes at x € RY such that |z| = 1. In fact, as it was
mentioned above, we did not consider such a case and we preferred take wg(z) =
(1 —1log|z|)’™=1 0 < |z| <1 in such a way that iégN wg(x) > 0. The second

xr

aspect of novelty consists on taking only the gradient of the function to define the
norms || || £, and [ -, The combination of the norms of the gradient in two

different Lebesgue spaces which are Ly (R™) and L?(R") has a real impact on the
obtained inequalities. At this stage, we have to mention the work [19] in which the
authors proved that

1
sup /RN D, j,(u)dr < 400, VO<a<any =Nwy_j, (1.23)

u€ BN, Jluf| pn g <1

and

sup / Q4 jo (u) de = +00, ¥V a > ay, (1.24)
RN

u€ BN, Jluf| pn, g <1

where 1 < ¢ < N, EN:9 is defined as the completion of C§°(RY) with respect to

the norm
N\ W
q
lull prv.a = (/ (V| dz + (/ |Vu|? dx) ) ,
RN RN

Jjo—1
N/ aJ N’ . . ) ) q*
Do jo (u) = eclul™ — Z F lul’™, jo = inf {] eN, 72> N’}
j=0

and

So, we can clearly note that this result can be recovered when we take 3 =0 in
theorem 1.1. In other words, our present work can be partially seen as a general-
ization of [19] (when we choose y = 1). But in contrast with [19], we are able here

to establish the sharpness of the inequality by introducing the new norm || - ||, 5.
Obviously, this result of sharpness also holds for (1.23) provided that we pass from
the norm || - || pn., to the new one given by

lul| = (/ |V dx) + (/ |Vul? dx) ! , ue BN,
RN RN

This leads us to the next point of novelty in the present work. It mainly consists on
the sharpness of the inequalities (1.21) and (1.22). Actually, we have to highlight
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that such a sharp inequalities have been obtained in [9] for the case when 0 < 5 < 1
and its singular generalization proved in [11] for the case when 0 < 8 < 1 or even
when 5 =1 (i.e., for the doubly exponential growth case). In our present work and
due to the existence of the term |vu|L‘1(]RN , we are able to guarantee the same
sharpness property of the inequalities for the both cases 0 < # < 1 and also g = 1.
Finally, we establish an improvement of (1.15), (1.19), (1.21) and (1.22) for weakly
convergent sequences in E, 3, 0 < <1 with constants larger than those found
in (1.15), (1.19), (1.21), and (1.22). These results are completely new. Moreover,
inequality (1.25) proved below is also an improvement of the inequality proved
by J.L. Carvalho, G.M. Figueiredo, M.F. Furtado, and E. Medeiros in [19]. The
proof of these new results is mainly based on some version of the Concentration-
Compactness principle due to P.L. Lions in [30].

THEOREM 1.5.

1. Assume that 0 < 3 < 1. Let (un)p C Eqp and u € E,\{0} be such that
||un||Eqﬁ =1 and u, — u weakly in E, 3. Then,

N’ 7
pan . glun|1-8 11375 d
sup e — Pjs—1 | PANg |t | €T
n RN

<400, VO<p< PN,B(“% (1.25)
where
1
1 1=p(N-1)
Py g(u) = W oif ullg, , <1,
Eq.5 .
oo, if ull, , = 1.

Moreover, there exist a sequence (uy)n, C Eq and a function u € Eq3\{0}
satisfying HunHEq , =1 and uy — w weakly in Eqp such that

N’ 7
Sup/ (e”a”'“"'lﬁ —Sjs-1 <paN,ﬁ IunllNﬁ)> dz=+00, V p> Py g(u).
n RN
(1.26)

2. Let (un)n C Eqn and u € Eq1\{0} be such that ||unllp, , =1 and u, — u
weakly in Eg 1. Then, for all 0 < p < Py 1(u), we have

1
N(ele plun| ¥ 1> 1
N-1 lu ‘N’
sup/ e -8 -1 (N (e“’N—l” " —1)) dx < +o0,
RN

(1.27)
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where
1
L YT iy, <0
PN,l(u) = N ) 2 u E, < )
1=l ;
~+00, if ||u||qu =1.

Moreover, there exist a sequence (uy)n C Eg1 and a function u € Eq1\{0}
satisfying ||un||Eq =1 and up, — u weakly in Ey1 such that, for all o> 0
and p > Py 1(u), we have

1
N—1 ’
@ ewal P\un|N -1 1
w‘N—lp‘un‘N/
sup e —Sj -1 |a| eyt -1 dz =4o00.
RN

(1.28)

The next result concerns the norm || - ||, 5, 0 <3 <1, and it consists in some
improvements of the inequalities (1.21) and (1.22). At first glance and in a natural
way, the reader is expecting to find that these improvements can be obtained by
a simple change of the norm || - || Eyp 0 < 8 < 1 which appears in the expression

of Py g(u) in theorem 1.5 by || - [|, 5. But, due to the difference of the ‘geometric
structure’ of the two norms, the situation is less easier than it seems.

THEOREM 1.6.

1. Assume that 0 < 8 < 1. Let (un)n C Eqp and u e Egg\{0} be such that
lunll, 5 =1 and u, — u weakly in Eq 5. Then,

N’ N/
pan,slun| 1=F . i3 d
sup ePan, —Sjs-1 | pan,s un| x
n RN

< 400, V0 <p< Pyglu), (1.29)
where
N/
1 q(1=p)
Py p(u) = — o if flullgs <1,
sle) (1 - |u||3,6> @s
oo, if ull, 5 = 1.

Moreover, there exist a sequence (uyn)n C Eqp and a function u € Eq43\{0}
satisfying |[unll, 5 =1 and up, — u weakly in Eq g such that

N’ N/
pan slun| =0 _ g |, | TP
sup € js—1 | PON,B |Un
n RN

de = 400, V p > Py g(u). (1.30)
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2. e Let (un)n C Eg1 and u € Eq1\{0} be such that |[u,ll,, =1 and u, —
uweakly in Eg1. Then, for all 0 < p < Py 1(u), we have

ﬁ N’
N(Cm plun 1> 1
N—1 N/
sup/ e T T (N (e“’Nl pltn] —1)) dr <400,
RN

n

(1.31)
where

N/

1 q
P ", <1,
() QML> s
+OO, Zf Hqu,l =1

Moreover, there exist a sequence (un)n C Eg1 and a function u € Eq1\{0}
satisfying ||’U/n||q71 =1 and u,, = v weakly in E, 1 such that, for all « > 0 and
p > Pn1(u), we have

1
N—-T N’
a(ﬁ“”“ o 1) e
sup/N e —Sj 1 (o[ en—rPlual™ g dz=+o00.
R

n

(1.32)

REMARK 1.7. Obviously, all the results obtained for the weight wgs given by (1.11)
hold true when we take

wte) = { (L o6l <
’ x(l) if x| > 1,
where x : [1, +00[—]0, +o0[ is a continuous function such that x(1) =1 and wg €

An.

In the last part of this work, we apply the Trudinger—Moser inequalities estab-
lished in theorem 1.2 to study some elliptic quasilinear equation defined in R and
containing a nonlinearities having a doubly exponential growth at infinity. More
precisely, we prove the existence of at least one nontrivial solution to the equation

—div (wl(:c) (VN2 Vu) —Agu=f(u), n RN, N>2

where f:R — R is a continuous function enjoying a doubly exponential growth
at infinity governed by the inequality (1.22). In the mathematical literature,
the first equation involving an operator with non-standard growth of the type
(p, N)—Laplacian with 0 < p < N appeared in [39] where the problem was studied
in a bounded domain and where the nonlinear term has an exponential growth
governed by the classical Trudinger—Moser inequality. In [39], the authors obtained
an existence result via a suitable minimax argument. This work was followed by
[24] where the Nehari manifold approach has been used to obtain an existence
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result always by assuming the boundedness of the domain. For equations in the
entire space, we can quote the following recent works [19, 20, 25] which deal with
exponential growth governed by classical non-weighted Trudinger—Moser inequality.

REMARK 1.8. We can easily show that, for 0 <8 <1, the norms | - [[, 5 and

Il B, , are equivalent. The case when 0 < <1 is rather evident, we only prove
the equivalence of the norms when 3 = 1. For that aim, let u € E, 1. We have

%
/ |Vul|? dz = / |Vul! wPw; ¥ dz < (/ [Vu|N w () dx>
|z|<1 Jz[<1 |z|<1

N—g

__4a N
/ wy Y dw
lz|<1

1
Since / (1 —logr) IW=D/N=0;N=1 4 < 450, then / wl_q/N_q dz < +o00.
0 |z|<1

Consequently, there exists a positive constant M, such that

/ |Vu|? dz | < My / (VN w dz
|z|<1 |z|<1

2|

Thus,

Q|-

(/ |Vu|qu> +</ w%u) <(+Mo)full,, -  (133)
|z|<1 Jz[>1

Now, using the following elementary inequality,
(a+b)*<a”+b%, Va,b=20, VO<a<l,

we infer from (1.33) that

1

</ |Vu|? dx) = / |Vul? dx—l—/ |Vu|? da
RN |z|<1 |z]>1
< / |Vu|? dz | + / [Vu|? do
|z <1 2|21

< L+ Mo) [lully, -

Q
Q=

Hence,

2~

+ (/ IV dx> L <@+ M) lull, ;- (1.34)
RN

(/ (Vu|N w dx)
RN
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< (/ (VN w dx)
RN

Now, having in mind that

[ull g =</ |vu|Nw1d-73+</ |Vu|qdm>
q,1 RN RN

1

+ (/ |Vul? da:) ' ,
RN

by (1.34) we obtain

2|z
N———
2=

lullg, , < 2+ Mo) [lull,, (1.35)

On the other hand, taking into account that the function z —— ZN is concave on
[0, +00[, we get

Fb¥ <2 N (a+ b))V, Va,b > 0.

2|~

a

It follows that,

1 =

||“||Eq . 2wt ((/ |VU|NU}1 d@") + (/ [Vul|? dx) ’
' RN RN

Combining that last inequality with (1.35), we deduce that

) > 28l ;-

1 _
28 ullyy < llullg,, < 2+ Mo)llully,; -

REMARK 1.9. A pertinent question is why when 3 = 1, we change the form of the
norm || - ||, , by taking only the integral over the set {z e RY, |z| > 1}. In fact,
one can naturally expect that this last norm takes the form

1 1

W q

||uf;i=(/ |VUINw1dz> +(/ |vu|qu) .
RN RN

Taking that last norm, we can easily adapt the proof of theorem 1.4 to prove that,
if « < N, then

N1—1 N’
af e“N-1 Il -1 1
wN—llu‘N'
sup e —Sj—1|alev1 —1 dz < 4o00.
RN

1
u€Eq 1, [lull{)<1

The problem lies in the construction of a sequence (if there exists) (ux)r C Eq1
such that ||uk||¢(zli <1 and

( wﬁlu ‘N' >
al e“N-1 I"Fk —1 1 ,
wN:llukIN
/ e —Si—1 (a (e N-1 —1>> dz — 400, k — +00.
RN

We do not know the existence of such a sequence.

https://doi.org/10.1017/prm.2023.86 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2023.86

14 S. Aouaoui
2. Proof of theorem 1.1

We start by proving (1.14). For that aim, fix & > 0 and u € E, 3. We have

111/3 N’
L )
RN
N’ ’
/|>1 (eaullﬁ — a1 <a|u|1]z">) dz
x|z
| 757 2y
+ it e —Sj,—1 | alul dz. (2.1)
z|<

On the one hand, we have

N/ , +oo
ofu|1=F 1Nfﬂ dr =
e =S, | alul x =
|z|>1

J=ijp

J JN’
‘i/ |t de. (2.2)
J! |z|>1

Since u belongs to D}4(RY), then by the radial lemma (see [37, lemma 1]), we
know that

—9q

_N—g
lu(@)] < Con |z [Vulpogny, V@ #0, (2:3)

where C, y is given by (1.17). For j > jg, we have % > ¢*. By (2.3), it yields

N iNT o« ANT _x
u(@)] =7 < Cun TP [Vl Yo €RY, Jaf > 1 (2.4)

By (2.4), we infer

= al N’
E 7' |u|1*5 dz <
75 Jz|>1

—+oo : -
J N4 N *
Q IN_ ox i—5 4 *
— q 1-8 q
g —CqN1F |V“|Lq(]RN) / [ul? dz
J: lz|>1

Jj=is Jj=is
—+00 ; .
o’ iN' INT_g* *
T—5 4 1-p q
< E :?C%Nl p |VU|LQ(RN) |U|Lq*(RN)
J=ip
N N/ﬁ
aCy N 1P |Vu|'~
<C'e Vel Loy, (2.5)

where we used the continuous embedding D29(RY) < L9 (RN). Putting (2.5) in
(2.2), we obtain

1N/,8 N’ aC lji,ﬁ Hu”l%/ﬁ

= N

/ <eau| ~ sl <a |ul 1">> dz <C'e * Fa.b., (2.6)
[z[>1

Now, in order to estimate the second integral in (2.1), set

_ Ju(z) —uler), 0<|z[ <1,
v(z) = { 0, o > 1, (2.7)
where e; = (1,0,---,0) is the first vector in the canonical basis of RY. Clearly,
UNS Wol,}]id(B’Jﬂ)’ with og(z) = (—log |2[)? V=1, x € B. An elementary calculus
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A weighted Trudinger—Moser inequalities and applications
gives the following inequality: for all € > 0, we have

’ ’ 1 ’
(a+b)77 < (1+e)a’s + b
1-3 ——3

((1 +€) N 1E5 — 1)

-3
Fix 0 < e < 1. By (2.8), we get

N’ N/
alul=F _ g -5 ) ) d
e = Sjs-1 | alul x
lz]<1

Nl
-3
< / el dx
|z|<1

N/
g/ ool Hu(e)) TP g,
|z|<1

1+ N .
< exp a(l +¢) v [ule)] T / eHA=F g,
i |z|<1

1-p

((1 + G)N’I%ﬁrﬂ - 1)

By (1.1), we know that

/ ec(1telvl =7 dz < +o0,
lz]<1
and by consequence (2.9) leads to

2 N
/ <ea|“ —Sj,1 (a ] 1—f*)> dz < +o0.
|z|<1

Combining (2.10) and (2.6), we deduce that (1.14) holds.
Now, we prove (1.15). By (2.6), it yields

N’ ’
i—3 _NT i—73
su eonolul™" _g.  (aynglu/T7 ) ) de<C eV sCan P
Ve B
u€Eqp, llullg, ,<1J|z[>1

b1, Y a,b > 0.

15

(2.8)

(2.9)

(2.10)

N/

(2.11)

Next, let aw < ay g. Clearly, there exists € > 0 such that a(1+¢€) < ayg. Let u €
E, s be such that Hu||Eq , < 1. Having in mind that v defined by (2.7) belongs to

W raa(B. o) and

/| > VoY o5(x) de :/ IVu|N ws(z)de < 1,
z|<

|z|<1

then, by the virtue of (1.2), we infer that there exists a positive constant Cg > 0

such that

N’ N’
/ ea(1+e)|v\1fﬂ dx</ eozNﬁh;\l—B dIgCg
|z|<1 |z|<1
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16 S. Aouaoui

Moreover, by (2.3), we know that |u(e1)| < C, n. Hence, by (2.9) and (2.12) we
obtain

N’

Nf/ N’ G{N) Cliﬁ
/ eolult=7 _ -1 a|u| TP dx <exp FZa.N T Cs.
lz|<1 B 17;5
((1—1—6)1\”*1*5—1)

(2.13)
Combining (2.13) and (2.11), we deduce that (1.15) holds.
For u € E, g, set ¥(t) = wq{_ju(z) with |z| =e™, t € R. A direct computation

gives:
+oo
/ vl wp(z) dz = / PN N e,
|z|<1 0
0
/| @) [Vl do = / e o) d,
+oo
/RN Vul® da :w}j/ ()7 =Nt at,
and

1N/[3 N’
/ (ealu e (a |U| 15)) dir
RN

400 _ 1 N
DI 25
— ons / (eawm (o)

— 00

-1 ’
~Sj,m1 (T w01 ) )N

Let v > 0 to be fixed later. Consider the sequence of test functions:

1
B=1)(v+=3)+
ROVOR L Gk
8—1
Yi(t) = E N -8 k<t <k,
1-p
kE N, t>k,
0, t <0.
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A weighted Trudinger—Moser inequalities and applications 17

1
For k > 1, define uy, € E, g by ¥p(t) = wl_jur(z), |z| =e7*, t € R. We have

k
Ll sty de = [0 o) ar

0
k _ A\N4—B k™7

:/ wm/ HBIN=1) N (B-D ()47 4y
k= k1=p 0

_ (1= @)V 4 EB-DGD) (1 . ﬂ)N1> .

1+ B(N—1)
(2.14)
1 g ka((B=D(r+3)+7) vy
—a (1=p)F [F ela=N)t
+wn e /}(7 tap dt. (2.15)

Choosing v small enough such that (3 —1)(y + &)+ < 0. By this choice, we
get

((B=D)(v+%)+7)
14 k1 v ( (q—N)k”*)
War_ 1—e — 0, k — 4o0.
N-1 N —g

On the other hand,

umk/kéth (L= k199
k

dt < -
e _, (B 527 N — g

(e(q*N)k_7 - e(q*N)k) — 0, k — +oo0.
Thus, by (2.15), we infer
/ [Vug|? dz — 0, k — +oo.
RN
Now, taking into account that (5 —1)(y+ 1) < 0, it follows from (2.14) that

/ VeV wp(z) dz — (1= BN, k — +o0.
RN

Hence,

2|~

N N 1
foall,, = (F0sl3 oy + [V ) = (1= B3, b= o
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Set uy = W For a > 0, we have
I E
a,8

N’ N/
alu| 18 . 5 ) ) d
sup e —Sjs1 | alul x
N
u€Eqp, |lullg, ;<1/R
N’ ’
T |1-8 N
2/ (e"luk| — g1 (alukl")>dx
]RN

N/
SO | | TP
ool awnsy e
= WN-_1 e a,8
— 00
N/
-5
] 4(1\/71)(1—,@ wk(t) =Nt 44
je—1 | AWN-1 ¢
lullg, ,
N/
1 -5
+oo awNiqil)(liﬁ) 7”,f:’ﬁg>
20)1\/_1 (6] q,8
k
N/
-5
o= | Ykt _
—Sjpo1 | awy TP () e Ntqt
Tnlls, .
-1
NG ERI
Nk | ¢ N7 ~ DO
e e w k
_ luellz,’s g N—1 2.16)
=WN-1" . jp—1 | O . (2.
el 37

Clearly, for 0 < j < jg — 1, we have

_ , 1
e NkkjiN,HO, k — +oo.
-3
U
lurll £
Thus,
o= 1)(1—ﬁ)k
N—1
Sjs—1 a————w— | =0, k — +oo. (2.17)
U
el g, ",
Moreover,
-1 -1
NCEDICOM wry F-DA=P)
—71\7/ Lk _N_;'_Oé—i}v,
u 17ﬁ u
o Nk o lerllz, s — e luells, 2 0B
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Having in mind that [[ug|/ , — (1 - B)Y/N" | then

1 1
TN=DH(O-8) T (N=DH(A=8)
w w
7N+041V_17N/*>*N+O[(JV_1#'
1-p08)1-7
||uk?||Eq B
If @ > ay g, then
S S
N—D{I-5)
(1-p)==
Consequently,
-1
w EN—l)(lfﬁ‘)k
7N,
o= NE & H“k”Eq 8 — 400, k — +00. (2.18)

Combining (2.18) and (2.17), we deduce from (2.16) that

N’ ’
i3 N
sup / (eaul =851 (a [ul 15)) dz = +oo, Va > ang.
u€Eqp, |lullg, ;<1/RY

We conclude that (1.16) holds.

3. Proof of theorem 1.2

Let o > 0 and u € E, ;. We have

’ +o0 y 1
ate ™ _1y _ g ful ™’ ) _ ‘L]/ (s 7
e —Sj, -1 (a(e —-1)) |dz = - e —1) da.
/z|>1 ( " ( )) ;: 3 etz )

(3.1)
Using the monotony of the function defined on [0, +oo[ by s — 85;1, from (2.3)
it yields

N’ N’
eCQ-,vau‘L(I(]RN) -1

\u(a:)|N/ . N’ N
e 1< ; |u(z)] VeeRY, |z| 21
/ N ) ’
Cé\,[N Y u|[q(]RN)

Observe that j > 71 & jN' > ¢*. Thus, for j > j;, we have
N/ J e q N‘vu‘L‘J(]RN) 1 ] N
(@ 1) < jufa)
qN |VU|LQ(RN)

N’ N’
C N‘Vu‘Lq(]RN) 1

()N Juz)|
Ca N |VU|LG (RN)
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N o it j
Cq.N\VU|Lq(RN) -1

5

JN'—q
Co [Vl ey ) (@)

Cévz/v \VU\Lq(RN)
VeeRY |21 >1

Putting that last inequality in (3.1), we infer

L (e = s (o™ 1)) ) as
lz]>1

J
“+o0 O[] e quv |L‘1(RN) 1 jN/—q* q*
< g Cy.nN [VU| g gy lul? dx
i CN’ \v4 ) (RY)
J=j1 J: qN| u|L‘1(]RN |z|>1
400 j ’ ’ J
J N N
<q” E : 057' (qu1N|Vu|Lq(RN) _ 1)
J=i1 J:
+oo J
ol N
<oy ( CN Iy | _1)
=0’

T exp <a (eczxmmgm B 1>) . (3.2)

Next, by (2.8) one can easily deduce the following inequality:

! ! 1 ’
@+ <1 +ed + te V' Va,b>0,Ve>0. (3.3)

((1 FeoV - 1)Nl '

By (3.3), we have
1+e€

((1 o)V - 1)

where v is given by (2.7). Thus,

!
lul N
/ e*® dx
lz]<1

</ exp | aexp
|z|<1 ((1 FoVT - 1)

= / exp (a exp ( futen)l” 1) e(HE)”lN/) dx. (3.4)
|z|<1 (1 — (1+€)17N)N—1

Clearly, v € Wo md(B,al). By (1.3) and (3.4), it follows

Ju(@)|" < (146 Jo(@)[™ + o lule)[V, V2 € RN, Ja] < 1,

1 ’ . ’
e N1 |u(€1)‘N e(1+6)‘U|N dx

N
[
ae
e

dz < +00. (3.5)

lz|<1
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Combining (3.5) and (3.2), we easily see that (1.18) holds.
The next step in the proof of theorem 1.2 consists of proving (1.19). First, observe
that by (3.2), we have

1
N-1, N’
a(‘aWNl " _1) N1 N
W |uw
sup / e —Sj—1 (a(e L 1)) dz
|z|>1

w€Bq1, ullg, <1

< C"exp (a (ecgflv“’gl_ll - 1)) . (3.6)

Let u € Ey1 be such that |lul|g < 1. Note that if / (V)N w (z)de = 1,
o |z|<1
then / |Vu|? dz = 0 which implies that u = 0. If/ (V| wy(z) dz = 0, then
RN |z <1
v = 0 (where v is given by (2.7)) and by consequence u(z) = u(e;), Vz € R, 0 <
|x] < 1. Hence, by (2.3), we get

1 1

N—-1 N’ N—1 N’ N—-1 N’
wn—1 lu@l wn—1 lulenl WN-1 “N—-1 %N
/ e** dr= e*® der < e*® T Ya>0.
lz|<1 |z]<1

Thus, without loss of generality, we can assume that
N
0< / [Vu|™ wy(z)der < 1.
|z|<1

Choose € > 0 such that

1
W — ,/|x|<1 |Vu|Nw1(cE) dx.

Using again (2.3), it yields

N N
luer)]” < Cé\,]N |VU|Lq(RN)

= Cé\fN (1 - /RN IVu|N w () dx)
< Cé\fN (1 - /x<1 V)N w () dx)

_ AN B 1
N ()

Thus,

1

N , 1 N1
u(e)|™ < Cyly (1 - (1“‘6)1\[_1) : (3.7)
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In view of (3.7) and (3.4), we infer

- WX (o)l
< exp | aexp I eN-1 dz
o<1 (1—(1+¢l-N)~v-T

1 1
N—1 ~N’ N—1 N’
e R O T ()] ) e

1 1
N= / N=T |~ N’
= / exp (a e“n—1 Can gonr o7 > dz, (3.8)
Jz]<1

1

/

~ N-1 . .
where v = (1 + e)ﬁv. Assume that ae“~v-1 Cow < N. Taking into account that
v € Wy (B.oy) and

/ |V5|Nw1(x)d:1c: 1,
z|<1

then we deduce from (1.4) that

Rt Y
sup / e“* dz < +o0. (3.9)
|z|<1

u€Bq,1, |lullp, , <1

Plainly, (1.19) immediately follows from (3.9) and (3.6).
The end of the proof of theorem 1.2 consists of showing (1.20). For that aim,
we make a change of variable similar to the case 0 < § < 1. More precisely, for

1
u€ Egq,set (t) =wf_ju(z) with |z| =e™?, t € R. We have

/ |Vu|N wi(x)dr = /+0<>(1 + )Nt |¢'(t)|N dt,
lz|<1 0

/z|>1 (V™ wy (z) da = /0 e D @) dt,

oo

—+o0
[t ar =i [ o e,
RN e
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( le—l‘u‘N’ )
al e N—1 —1 i ,
UJN:I‘ulN
/ ¢ _Sjl—l (O‘ <e N-1 —1)> dz
RN
oo [ le@N g ,
:wal/ <e (e ) = Sji-1 (a (e‘w(t)lN — 1))) e Nt dt.

— 00

and

For k > 0, consider the family of test functions:

BN goyey,
(log(k + 1)) N
Yr(t) = ! (3.10)
(log(k +1)N',  t>k,
0, t <0,

and define uy, € Ey1 by ¥ (t) = wﬁfluk(aﬁ). We have

/ Vg™ wi (z) de = 1,
RN

and
1— 4

N k o(g—N)t
/ |Vu;€\q dx = YN-1 - / © dt — 0, k — —+o0.
RN (log(k 4+ 1))~ Jo (1+1)

Observe that,

1 1
kgrf log(k+1) (1 N,) = kET log(k+1) | 1— ——
> ”uk”EqJ > (1+‘Vuk|gfl(]RN)> m
= lim log(k+1 ! o
= Jim tos(k D | 7 Vuklzaes) ) -
(3.11)
We have

N _
q

i 1 N Wi, +00 o(g—N)t a
lim 1 D{—o|V = IN-1
koo og(k+1) (Nl | “’“'L"GRN>) N —1 (/0 (1+t)4 )

which, by (3.11), leads to

N

N_q N
. 1 w]\q[71 too e(q_N)t q
lim log(k+1)|1-— — | = (/ —Qdt] . (3.12)
k—-+o0 Hungq,l N-1\J, @@+t
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Set uy = W For a > 0, we have
e, .

1
n—1, N’
al e¥n-1 Il —1 1 ,
WN=T |y
sup e —Sj—1|afent —1 dx
w€Bq 1, llullp, | <1JRN
N1 1 N’
af e“n-1 I | -1 1
wﬁlmlz\r'
> e —Sj—1|afefn-r -1 dx
RN

N/
Py (t)
JToele, | .y
+0c0 P ()
=wN_1/ . _5 o o™l 4 0Nt 4t
— 00
log(k+1)
kI,
too al e a1 —1 log(kl\-ll—/l)
2 wN_l/ e - Sj1—1 <OL (e'uklEml — 1)) eth dt
k

log(k+1)
N7/
el

e lo@ log (-4 1)
e llw I
:wN_lT € 75]‘1_1 ol e a1t — 1 . (313)

Taking into account that

log(k+1) log(k+1)
N7 N7
~NEk+ « (eluk'Eq’l ) 1) — N+ 1) +ac™MF a4 N
LosUED Jog(k+1)
= (k+1) (—N+ el ) —a+N,

and using (3.12) we obtain that

log(k +1) a1 400 L (g—N)t 0
—Nk+« e“u"'ugml —1) — 400, Va> Nexp “N-1 / et dt '
N-1\J, (141t
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Finally, by (3.13), we conclude that, if

-1

N n ( ) N
wa OOeq—Nt q
>N oL / dt
wovew (T2 ([ |

then

N1 N’
af en-1 T 4 1
Wi =N _
sup e —Sja|ale N -1 dz=4o00.
<1JRN

w€Eq 1, llullp, , <

This ends the proof of theorem 1.2.

4. Proof of theorem 1.3

We claim that

N N
Eass In <1/RN (eawul © S (aN’B |u1_ﬁ)>dm<+oo' 1)
ucky g, ||u

q,87

First, observe that arguing exactly as in the proof of (2.11), one can easily show
that

N’ ’
i3 A
sup / <e°‘Nﬁ|u — 8,1 (aN,g [u 1—f’)> dr < 4o00. (4.2)
u€Eq g, [lully s<1 J]z>1

It remains to prove that

N’ ’
-3 A
sup / (e‘”w“l —Sj5-1 <ozNﬁ [ul 1—ﬁ>) de < +o00.  (4.3)
ueEq 3, Hqu,ﬂgl |z[<1

For that aim, let u € Ey 3 be such that [ul|, 5 < 1. Choose € > 0 such that

-1
1+ 6)(1*5)(1\7*1) = </| . |Vu\Nw5(x) dx) .
z|<

Using inequality (2.8), it follows

N/

N’ -

s an (1 +e€) ule)]7

/ L ™Mol dy < exp g N 145
|| < ((1+E)m - 1)

-5

/ N, o (1+e)[v| =7 da. (4.4)
|z|<1
We have,

/W1 ‘V((l )

N

wg(x)dz = (1+ 6)(17’8)(1\{71)/ |Vu|Nw5(x) dz = 1.

|z|<1
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By the virtue of (1.2), we know that there exists a constant Cz > 0 such that

N/
/| e T 4 < .
x| <

On the other hand, by (2.3), we have

N N'

’ N’
= 1-58 1-38
7 < Cq,N |vu|Lq(]RN)

uen)[”

N/

25 =
< Cq,N (1 — |VU|L55(RN))

, i\
X5 N
<O,y [1- </ [Vul™ wg(x) dx)
jel<1
2 a-pa-m\ 75
<y (1—(1+e) N )
5 1 1-8 s
<CIY (140 ((1+e) ~ —1) .
Putting that last inequality in (4.4), we deduce that
N - f,
~ ansC, N ((1 + e)% - 1) o
/| - eomslul =" qp < Cgexp s (4.5)

((1+e)wl%f+ﬂf1)

Since % > Nllilgrﬁ, then the function defined on |1, +o0[ by

NG

(xljgiﬁ — 1) 1=h

T —

N/ =148
-5

1—p3
(xm _ 1)

is bounded. In view of (4.5), we can easily conclude that (4.3) follows. Combining
(4.2) and (4.3), we deduce that (4.1) holds. Finally, if & > a g, we proceed exactly
as in the proof of theorem (1.1) keeping the same Moser sequence to prove that

1N,ﬁ N
sup / (ealu —Sj,1 (a [ul 15)) dz = +oc0.
weBy g, llull, ,<1 JJz<1
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5. Proof of theorem 1.4

We claim that

Nl—l N’
N(ewl\’l ful —1) 1
N—-1 N’
sup / e -5 (N(e“’N1 lul —1)> dx <+400.
RN

u€Eq 1, ”qung

(5.1)
First, proceeding as in the proof of (3.6), one can easily see that
1

N—1 N’
N(ewN1 lul —1) 1
N—-1 N’
sup / e —Sj-1 (N(e“’N—1 ™ _ 1)> dz < +o0.
|z|>1

u€Eq 1, H“”q,1<1

(5.2)
Now, let u € Eq 1 be such that [|ul|, ; < 1. Without loss of generality, we can assume
that

0< / \Vu|N w(2)de < 1.
|z|<1

Using the convexity of the function defined on [0, +oco[ by & —— e , we can easily
get the following inequality

e(“er)Nl < € e(%)N/aN/ + Le(lJre)N/le, Va,b>0,Ve>D0.
1+e¢ 1+e¢

For v defined as in (2.7), it yields

elu@™ € ()Y e | L ar0 @y g e Y (g < 1.

1+e 1+e
Hence,
1 .
N—1, N’ 1+e\NV' N1 N/
wn =Ll e ()T e e
/ eae dz g e(x1+e e
|z|<1
N W TT ooy N
o N W y(a
/ eTH © dz. (5.3)
Jz[<1

Choose € > 0 such that

(1+6)N/| 1\Vu|Nw1(x)dx:1.
z|<

Clearly, v = (1 + e)v € W&’N (B,o1). We have

rad

_1 1
o JatoN o @)V o n g @
eT+e dz = eT+e dx
|z]<1 Jz|<1

1

N—1 . N
wa_q 9@
/ e** dz.
|z|<1

N
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For a < N, by (1.4) we get

1

N—1 . N
w N o)
/ eTte ® dx
lz]<1

1

Wl L@
N-—-1
< / elve dx
Jz[<1

1
w N z@ Y
< sup{/ 1 oNe“N-1 dz, z € Woly’rjzd(B,al), I2]l,, < 1} < 4oo. (5.4)
x|<

On the other hand, by looking at the proof of (2.3) in [37], we can easily see that
we have a more precise inequality, that is

ju(z)| < Co J2] =" (/ Vu(z)]" dz> VA0,
|z|>|x]

It follows,
1
q
fu(en)] < Cyu / Vul da
|z]>1
< Con (1 - |VU|Lg1(RN)>
1
N
<Cyn | 1- / [Vu|™ wy(z) de
|z|<1
1
— 1—
Co.n < 1+ e)
Hence,
N/ ~eT ’ L ’
eaﬁee(lt YV e N uen N < eaewf\’v’ll Cé\,’N. (5.5)

Combining (5.5) and (5.4), we deduce from (5.3) that

1

N w11\7V711 ul N’
sup / ete dz < +o0. (5.6)
weBq 1, llull, ;<1 Jel<1

In view of (5.6) and (5.2), we can conclude that (5.1) holds. The end of the proof
gives a clear idea about the real reason of taking only the integral of |Vu|? over
the set {x € RN, |z| > 1} in the definition of the norm |ull, ;- In fact, we take
the family of test functions given by (3.10) and we define as usual uy € E, 1 by

1
up(z) = wy M Uk(t), |z| = et t € R. Observing that uy(z) =0, V2 € RV, |z| >
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1, we immediately get

1
1 ~

N B N
wuﬂz(/ Ww|umM) = / |Vug| wyde | =1, Vk>0.
RN |z|<1

Consequently, we are returning to the case of a sequence lying in WO1 ’T]Zd(B, 01).
Therefore, the conclusion follows.

6. Proof of theorem 1.5

1. Case 0 < < 1: Sub-case 0 < |[ul|p  <1:

1
Assume by contradiction that for some 0 < p; < (W)U*WN*U we
Eq,8

have

n

N’ N’
sup/ <eP1aN,/3un -5 o1 <p105N,ﬁ |Un‘ 1—5)) dz = +00. (61)
RN

For L €]0,4+o0[ and v € E, g, set

L if o> L,
Gr(v)=4¢ —L,ifv<—L, and T (v) =v — Gr(v). (6.2)
v, if |v| <L,

Plainly, there exists ¢ > 0 such that
1

1— N—-1
(p(1+ )N«
1—|ullg, ,

Since [|GL(u)llg, , = llullg, , as L — +oo, then one can choose L large
enough such that’ '

1

_ 6.3
1G]z, , o)

(pl(lJre))(l—ﬁ)(N—l) <

We claim that
lim sup (/ (VT (un) [N wp(z) dz + </ VT (un)|? dx) q)
n—-+o0o RN RN

- (pl(;m)“‘w‘”. 6.4

Suppose that this does not hold. Then, there exists a subsequence of (uy,)n
that we still denote by (), such that

[

2

q

ANWHWwaw@®+<ANVﬂ@“Wm>

L\
>(— Ym0 6.5
<P1(1 +€)> (6.5)
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Using (6.5), it yields

1 :/ |Vun|Nwﬁ(x) dz + (/ [V, |? dx)
RN RN

:/ |VTL(un)|Nwﬁ(x)dx+/ VG (un)[N ws(x) dz
RN RN

+ (/]RN VT (up)|? do + /RN IVGL(un)|? da:)

> [ 9T we)do+ [ 96w ws(a) da

4 (/RN VT ()] dx)q + (/RN VG ()| d:c) q

L\ =AW= .
Z | — G n . 6.6
(a55) FIGL I, (6.5

=

q

q

Z
[z

Clearly Gr(u,) = Gr(u) weakly in E, 3. Consequently, passing to the lower
limit as n tends to 400 in (6.6), we obtain

1 )(1—5)(1\/—1)

1> |G yo+ (
H L(U)HEq,ﬂ pl(l +€)
Thus,

_ _ 1
(p(1+e)t PV >~
1- Gz, ,

which is in contradiction with (6.3). Therefore, our claim (6.4) is true. Set
Q. = {x e RY, [un ()] = L} .

By (6.4), up to a subsequence,

<1, Vn=>=0.

|11+ )™+ Tiun)

Eq.5

‘We have

lN’/j N/
« Up |1~ i3
/ (e voprlunl TP g (aN,,B]h || f’)) dx
Szn'L
| 757 e
_ « u - 1i—3
_/ (e N,BP1|Un — Sjs-1 (aN,ﬂpl |un|1 B)) da
Qn,LﬁB

N’ N
+/ (eaN’ﬁpllu"ll - Sj[-}*l (OlNﬁpl |un| 1ﬁ>) dz. (67)
Q,, LNBe
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On the one hand, by (2.8), we get

N’ N’
an.gpilun|t=F _ g [tn |77 d
€ jg—1 | &N,3P1 [Un €T
QTL’LQB

N/
=
g/ e, aP1lun] 18 4.
anLﬂB
N/

N/
</ eplaN,5(1+e)|un—L\1—f’ eplaN,gA(e)Ll—ﬁ dz
Qn,LﬂB

N’ N’
< enanpALTT / ePrans (146) [ Tr ()| 178 g0
Qn,LﬂB

< ePrans AL / 1 a1 OITL () T8 g (6.8)
B

)

where A(e) = 3 t———5. Having in mind that |u,(z)|=
(1) N/ =145 —1)” 1=7

lun(e1)] < Cyn, Vo € RN, |z| =1, then

Tr(un(z)) =0, Ve eRY || =1, VL > Cyn.

Consequently, T7,(u,) € Wol’ﬁd(li’,aﬁ), vV L > C, n. Since

/B ‘V(pl(l + e))ll%’BTL(un) ng(gc) dr < 1,

then by (1.2), we infer

N/
Sup/ eProns(HATL@) ™ qp o oo ¥ L > Cy .
B

n

Putting that result in (6.8), we obtain

1N/B N/

a Up |t i—g

sup/ (e N,BD1|Un| - Sj,-1 (QN,BPI |Un|1 5)) dx
n Qn. .NB

< +o00, VL > Cq,N. (69)

On the other hand, in view of (2.3), we know that
|un (z)| < CoN [Vun|pomyy < Con, Vo € RN |z| > 1.
Hence,
Q. NB =0,V L>Cyn.
We deduce from (6.9) and (6.7) that

A N
sup/ (eaN,Bp1|un1 B I (OéN,ﬁpl |un|16>> dz < +o0, V L>Cq7N-
Qn,L

' (6.10)
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Next, observe that

N’ N/
pranglun|1=7 _ o | |1—/3 d
€ js—1 | ON,BP1 |Un x
QL

PlOéN,,@)j i’
/ Gl de
|'Ufn|<Lj

=jg
J
« u
:/ pl 1;/15) ; L1 de
|“"|<LJ =jg 7
. N’
plaNng 5) Uy, 19875
< E — A x
Jj=ijp |un| <L
pray gL1-7 Up |9
<ey § ﬁ—) f” dx
i=is |un|<L
;
epran, gL =5 T
<y La / ‘Un| dx
RN
N/
epran gL 1=F

g Cs La )

where we used the fact that jg > (1_]\?,)"* together with the boundedness of
the sequence (uy,), in L7 (RN). Therefore,

&5 N
SUP/ (eplaN’B|u" R is—1 (OzN,gpl [y, | 1_[’>> dr < 4o00.  (6.11)
Qo

n

Combining (6.11) and (6.10), we conclude that

L N
Sup/ (eplaN’Blunll - Sjﬁfl (aN,Bpl |Un| 16>) o= oo
n RN

which, in view of (6.1), leads to the expected contradiction. Case ||ul|p, , =

Since u, — u weakly in I, 3 which is uniformly convex, then u,, — u strongly
in E, 5 (see [12, proposition 3.32]). We can easily adapt the arguments used
in the proof of [23, propositionl] to deduce that there exists v € E, g such
that, up to a subsequence, |u,(z)| < v(z) a.e. z € RN, Vn. Let 0 < p < +o0.
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We have

o N
sup/ (epaN,ﬁunl b Sjs—1 (paNﬁ |un|1ﬁ)> dz
n RN

+00 25
—sp Y [ o lelR g,
R

i
" j=is J:
too 1121/1 J
< Z/ (pO‘NﬁM Y i
— RN ]'
J=Iip

N N
_ / (ePaN,Bvll B - <p04N,ﬂ |1}| 1;3)) dz < +oo.
RN

Now, we exhibit a sequence (&) C Ey 5 and a function £ € E, 3\{0} such
that Hgk”Eqﬁ =1, Ek - g Weakly in Eq,ﬁv ||€||Eq,5 <1, and

P N
/N <e"Nﬁ”§*‘ — D1 <ozN,ﬁp|§k|1‘f*>) dz
R

— 400, k — +00, ¥V p> Py (&)

For k € N\{0} and A €]0,4+00[ to be fixed later, we define the function v :
R—R by

=8 — (1/2)'8

o 1/2<t<k,
k18 — (1/2)1-8)N
de(t) =24 | (1/2) )1
(K'=° —(1/2)'=F)N" | t>k,
0, t<1/2.

We also define the function v : [0, +o0[— [0, +00] by

0, t<1/4,
= —(1/a)'F

o 4SS,

YO=N - apapen N
((1/2)18 = (1/49)1F)N" | £>1/2,

where a > 0. Set uy(x) = w;[iwk(t), u(z) = w;,ii/)(t), |z =et, t € R. We
have

+o00
[ vl wstyde = [ 000 o) ar
0

)\N k t,G(Nfl)(l_ﬁ)NtfﬁN
- /1/2 k10— (1/2)1F

_ )\N(]. _6)N71.

dt
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Furthermore,

k
[Vt o= [ o el e
RN 1/2

dt.

Ny i (1 6)" /k ela=

(k19— (1/2)=0)% S 87

Clearly,

/ |Vug|? dz — 0, k — +oo.
RN

Set v = u + ug. It yields,

ol :/ \Vuk|Nw5(x)dx+/ Vul” wp(z) de
’ RN RN

+ (/ |V |? dm—i—/ |Vu|? dx) ’
RN RN

_ o N-1/ N )\N \v4 qd \V4 qd)
=+ ([ vl [ 9l as

N
q

Consequently,

N
q

ol = 1= BV 1N 4 aY) + ( [ 1w dx)
q,8 RN
— (1= BVl k= oo,

where we used the fact that

lull, , = /RN (VN ws(z) dz + </RN |Vul? dx)

=(1-p)N "t + (/RN |Vl dx)

Choose A > 0 and a > 0 such that

N
q

2z

(1= BN 4 Jlull, , = 1. (6.12)

One can easily see that uy — 0 weakly in E, 3. By (6.12), we derive that
— u weakly in E, g. Let p > Py g(u). Then, there exists € > 0 such

Vg
Toele, ,
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that p = (1 + €) Py g(u). We have

A '
QaN,BP UU7]C h
/ o I k”Eqﬁ — Sjg—l QN 3P ’Uik dz
. HUk:HEq,g
. “ o OaH + Y (t 1%3
>wN_1/ exp | 22 N1 |¢() Vi (t)] 0Nt
k ||U7€||Eq B
j 1 JN’
(aN’.?p) / |vk|{*ﬁ dz
— j 1 [3
_]70 || ||Eq3
o= Nk w7
= wno1—exp (0 (a ((1/2)'77 = (1/)' ) ¥
PN
FA (P = (1/2) ) ) 6)
S (awpp) 1 5
; / x| 25 da, (6.13)
. J:
7=0 || ||Eq B
where
m
Ny .
O = N, - N -pB)=rp
HUkHEq 5

=N(1- B)W(l +¢)Pyg(u), k — +oo.

On the other hand, by (6.12), we have

Py g(u) = L S 1 .
O i (et A
N 1
(- p)TEArE
Thus,
O (“(“/2)1_5—(1/4)1‘5)7“(kl‘ﬁ A2V (N
For 0 < j < jg — 1, we have

1— +oo AN
/ 0l 7 do = T ) + (0] B e M
RN 1/4
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Hence,

1 N7
zlg)j/w lvg| =7 da < 4o0.
ST

We finally deduce from (6.13) that

N/
1-p5

Yk
okl
a8 =851 | angp dx

AN,BP
(§
RN

— 400, kK — +o0.

Torlls,

2. Now, we treat the case = 1. For the first part of the proof (i.e., inequality
(1.27)), we can adapt the contradiction argument used for the case 5 < 1. But,
due to the existence of some essential technical difference, we give the proof
with a minimum of details. Observing that, as previously, the case ||u||qu =1
can be easily studied using the uniform convexity of the functional space E 1,
we can assume that 0 < |[|lullp , < 1. Assume by contradiction that there

1
N—-1
exists 0 < p; < L such that
1-flullf, ,

1
N-=T N’
N(e“’Nl p1lunl 1) L .
Sup/N e — Sjl—l (N (e“"N—l p1lun| _ 1>> dx
n JR

= +-00.

Arguing as for the case 0 < < 1, we can easily find € > 0 small enough and
L large enough such that

N
lim sup (/ VT ()| wy () da + (/ IVTL (un)|? dx) q)
n—-+o0o RN RN

- ((H)) (6.14)
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Here, the function 77, is defined by (6.2). Set again Q,, 1, = {z € RY, |u,(z)|
> L}. Using (3.3) and Young’s inequality, it yields

1
N—-1 N’
N| e¥N-1 prlunl™ _ .
N—-1 N’
e -S| N eUN—1 Plual™ g dz
Qp, L NB
N1 1 /
N(euN_l P1|“n‘N 1)
< / e dx
Q, LNB

1 1
_ e_N/ eNewva:f a+aplun—2l¥ - Tprag@rL’ "
~
Q,.LNB
N1 1 2 N’
wa—1 p1(14€)2|TL (un)| T . /
</ exp | N e N1 " + € ewl{l\/—ll p1iteA (LY dz
Q, LB 1+e¢€ 1+e¢€
ﬁ 14+ N’ N1 T 2 N’
wy_1 P1TecAL(L wn_1 P1(1+e)7|TL (un)|
<ee e e dz, (6.15)
B
where A;(e) = ——5—— By (6.14), we know that

((1+5)ﬁ_1)1\771'

. N
/ ’V(Pl(l + )V Tp(up)| wy(x)de < 1.
B

Using (1.4), we get

1

N—1 2 N
wn_1 P1(1+€)?| T (un)]
sup/ eNe dzr < +oc.
n B

By (6.15), we obtain

1
— ’
N (63“’11\7V11 p1lun|N _1)
sup/ e
Qn_’LﬂB

n

ﬁ N’
—5j,-1 (N (e"’N—l pilun|™ 1)) dr < 4oc.

The boundedness of the sequence

N (ew prlunl N _1> i »
/ e —Sj—1 <N <e°"N1 prlunl™ 1>) dzx,

n,L

1
N—-1
N—-1
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can be established by proceeding as for the case 0 < 3 < 1 and the details
are omitted. In order to prove (1.28), we consider the sequence of functions
P : R — R defined by

log(t+ 1) —log(3/2)

- 12<t<k,
(t) = (log(k + 1) — log(3/2))]¥ (6.16)
(log(k + 1) — log(3/2))N" , >k,
0, t<1/2.
We also define the function ¢ : R — R by
0 t < 1/4,

log(t + 1) — log(5/4) 1A<t<1)2

P(t) =

(log(3/2) —log(5/4))

(log(3/2) — log(5/4) N’ | t>1/2.

1 1
Set, as for the first case, ug(z) = w95 () and u(z) = wy ¥ P(t), x| =e "
Observe that

/ [Vug|? dz — 0, k — +oo.
RN

Set, v = u + ug. We have,

N
q

ol | = g+l =2+ (/ IV dx—i—/ Vul? d:v)
’ ’ RN RN

Thus,

N

N ! N
foul, 2+ ([ 7uac) " =1 ful,

Since uj — 0 weakly in Ey 1, then

Vk = u

vk S EEE—
lvellg, , (1 + Hullgq.l) )
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Let > 0 and p > Py 1(u) = (1 + Hu||gql)ﬁ We have

1 N’
e N C))
N=1t Pvgllg,
« e q, —1 1 N/
W T, @)
N-1 B
e —Sj1|ale Torlleg | g dx
RN
log(k+1)—log(3/2)
p 1
q q % N1
2+(|VU|LLI(RN)+W“,€\LQ(RN))
al e —1
~+o0 N
—Nt
>wN_1/ e e dt
k
1 N’
wN-T, v (x)
N-1 B
_ Sjl—l ale [ k”Etbl 1 dx
RN
log(k+1)—log(3/2)
P T
q q % N1
2*('V“'LQ(1RN)+W“"‘LﬂRN))
al e —1
e—Nk:
= WN-1€
N
1 N’
. N-1 vg (@)
N =1 P ol
— Sj1_1 ol e q,1 -1 dz. (617)
RN

Since p > (14 ||quq 1)1\&1, then

1 1) -1 2
lim |p og(k +1) — log(3/2) — —logk | = +o0.

k—+o00 % N1
<2 + (|Vu|%q(RN) + |Vuk\qu(RN)> )

It follows,

p log(k+1)—log(3/2)
N T

(2+<W“‘1<1(RN)+|W‘"‘qu(RN)) !

N—-1
ale ) —1| = Nk — 400, k — +o0.

Finally, one can easily show that

N171
W1 P
sup Sip—1|ale
k>1JRN

N/
vg (@)
Toalle, s

-1 dz < +o0.
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In view of (6.17), we deduce that (1.28) holds. This ends the proof of theorem
1.5.

7. Proof of theorem 1.6

We start with the case 0 < § < 1. As in the proof of theorem 1.5, we argue by

NI
contradiction. So, assume that there exists 0 < p; < ( a(1-8) such that

1
Tl ;)

N’ ’
a Up| 18 2 _
SHP/ (em w,plunl W1 (plaN,ﬁ |un|1 ﬁ)) dz = 4o0.
n RN

The function T}, and G, being defined by (6.2), it is easy to see that there exist
0 < € < 1 small enough and L > 0 large enough such that

1-8

i1+ ) < (1= GulL,) . r.)

The keystone of the proof is to establish the inequality

1-8

1 N
lim sup || 77, (uy < | ——- . 7.2
s 73 (0)l 5 < (57557 &

For that aim, we argue once again by contradiction. So, we assume that there
exists a subsequence of (uy,)y, still denoted by (u,,),, such that

1-8

)N Vo0 (7.3)

1
2 -
q.B8 (p1(1+€)

First, observe that the general form of (2.8) is given by the following inequality

1T (un)

(a+b)' < (1+68)a’ + Di(6)b', Yt >1, Va,b=0,¥§>0,

where D;(§) = —F%—— . From that last inequality, we can easily deduce
((1+0) -1 —1)t-1
another useful inequality, that is

(@ + b > (1+0) Ta+ (D) th, VE>1,Va,b>0,¥V5>0.  (74)
Let 6 > 0. Applying (7.4), we obtain

V| o any = </ [V, N wgs do:)
B RN

(/ |VTL(un)|ngdx+/ |VGL(un)ngdx>
RN RN

N

1

N

= \VTL(un)gN (RN) + |VGL(un)|]LVN (RNV)
'lUB 'lUﬁ

> (140) 7% [VT1 (un)lpy vy + (DN (0) ™V [VGL(un)l gy (o) -
(7.5)
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In a similar way, we have

Vit oy = (/RN V|7 dx)
( VT ()] der/ VG (un)]? dx)q

(‘VTL Up, |Lq (RN) + ‘VGL(un)qu(RN)) ’

> (14 0) 7 VT (un)| oy + (Da8) ™4 IVGL ()| pageny - (7.6)

A simple analysis shows that the function defined on |1, +oo[ by

z 7% 1 =t
t [ — Y = (1 — Zm> ‘ s
(z7=1 — 1)t
where z is some fixed real number such that z > 1, is nondecreasing. Thus,
_1 1
(Dn(6))"~ = (Dq(6)) 2.
From (7.5) and (7.6), we get

1= Huan,g = \Vun|Lgﬁ(RN) + |Vun|Lq(JRN)
_1
> (06 (I9Tulm) g a) + 9T o) |

#0400 (16l ) + 1960 e, )

_1 _1

2 (1+0)" 7 [TL(un)lly 5+ (Dg(8)) 7 |GL(un)lly 5 -
Putting (7.3) in that last inequality and using the fact that

tim nf |G ()| > |G (0
we infer
1-8 14+6) «
) > — L
L= [|GL(u)lly 5 (Dq(6)) "

Now, consider the function defined on |1, +oo[ by

1

(7.7)

Xr —

g=1"

J
= 1G], (277 =1)
A quick analysis of this function shows that it attains its maximum at the point

1

Zo = -1

(1-lGL@e,) ©
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and this maximum is

1
(1- 6Lz,

Hence,

Q=

X
max T
z>1 —3
_ - xr
L= G, 5 <(m11 1)q—1)
1
= max —
Pah G (7T - )T
- 1
TR PN
2= |G W), 5 (277 = 1)

1

1.

(1= IGL@l ;)"

Consequently, the function defined on ]0, +o00[ by

Q=

(1+9)
1~ |Gl 5 (Dy(6) T

o —>

attains its maximum at the point dg > 0 given by the identity

1

(1+ o) = T

(1= lGr@il,)

and this maximum is

1
(1- 6Lz,

Thus, choosing § = &y in (7.7), it comes

1+ ) > —
(1= G @),)"

)

which is in contradiction with (7.1). Therefore, (7.2) holds. The rest of the proof is
similar to what has been done in the proof of theorem 1.5 (with suitable adaptation)
and, in order to avoid redundancy, the details will be omitted. For the case § =1,
we can easily adapt the same arguments used previously for the case 0 < § < 1 to
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prove that there exists € > 0 small enough and L > 0 large enough such that

li T ! ”
im su U, <|— .
imasup 173l < (552
The rest of the proof of (1.31) is similar to the proof of (1.27) and will be omitted.
The same can be said concerning (1.32) whose proof is similar to (1.28). This ends
the proof of theorem 1.6.

8. Applications to some elliptic equations

In this section, we deal with the following elliptic equation:
—div (wl(x) VN2 Vu) ~Agu=f(u), nRY, N>2 1<g<N, (81

where f:R — R is a continuous function such that f(s) =0, V s < 0. Here, we
assume that the weight given by (1.13) satisfies

inf wy(x) > 0.

zeRN 1( )

By this assumption, it yields E, 1 < EN'¢ with continuous embedding where EN:4
is defined in [19] as the subspace of radial functions of the completion of C§°(RY)
with respect to the norm

1

NN\ N
U — (/ (Vu|Y d$+(/ |Vul? dx)q> ,ue BN,
RN RN

By [19, proposition 2.1], we know that EN:9 is continuously (resp. compactly)
embedded into LY(RY), V ¢* <t < 400 (resp. V ¢* < t < +00). Consequently, the
embedding E, 1 — L'(RY) is continuous for ¢* <t < +o0o and compact for ¢* <
t < +o00. We assume that f has a critical double exponential growth at infinity,
that is there exists a constant ag > 0 such that

f(S) { 0, if @ > «p,

lim = .
s—+00 gNeas™' 400, if a < ag.

(8.2)
We also assume that: (Fy) There exists # > N such that
0<0F(s) = 0/ f@)dt < f(s)s, Vs> 0.
0

(Fy) There exist C' > 0, s; > 0 and p > max {¢*, N} such that
f(s) < CsP™ 1 V0O<s<s.
(F3) There exist A > 0 and r > ¢ such that

F(s) > As", Vs> 0.
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EXAMPLE 8.1. An example of a function f satisfying the conditions (F}) — (F3) is
given by: f(s) = F'(s), where

with & > 0, m > max{N,¢*}. A radial weak solution of the equation (8.1) is a
function v € E, ; such that

/ wy(z) |Vu|N 7 VuVo dz Jr/ |Vu|'™? VuVo de = (wvde, Yve Eg.
RN RN RN

THEOREM 8.2. Assume that (Fy) — (F3) hold. Then, there exists Ag > 0 such that
the equation (8.1) has at least one nontrivial and nonnegative radial weak solution
for all A > Ay.

The energy functional associated to (8.1) is

1 1
I(u) = /RN (VN w(z) dz + . /RN [Vu|? do — /RN F(u)dz, u e E,,.

LEMMA 8.3. Assume that (Fy) and (Fz) hold. Then, the functional I satisfies the
(PS). condition for all ¢ < (3 — %) min {1, o

Proof. For the simplicity in notation, set

Dy(s) =e®—5;,-1(s), Vs> 0.

Let (un)n C Eq1 bea (PS) sequence of I at alevel ¢ < (3 — ) min {1, ﬁ} i
It yields

01 (up) — (I'(un), un) = Oc + on(1) ”“n”q,l

)

——1 Vu,|" wi(z)de + | - —1 Vu,|* dz
(%-1) [, wul e (2-1) [ 19wl

[ () = 0F () do = B+ 0,(01) a1

where o, (1) stands for any sequence of nonnegative real numbers converging to zero
when n tends to +oo. Since § > N > ¢, from (F}) we can immediately deduce that
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(tun)n is bounded. Moreover,

Oc Nbc
i ( . . )<447: ) 8.3
im sup Vu |LN ®") + V|7 @ 21 9-N (83)

2

N@c

Taking into account that < 1, we deduce from (8.3) that, up to a subsequence,

N
[Vun|ry @y + |Vun\qu(RN) <1
wy
Thus,
|vun|LN (RN) + |vu’n|Lq(RN) ‘vun|LN (RN) + |vu’n|Lq (RN)

1-N N

> 2 (|vun|L51(RN) n |Vun|Lq(RN))
— N

> 2"V funly

Putting that last inequality in (8.3), we get

. I H No2N—1c
imsup [|u,,; < ————
anp 9— N
Then, there exist €y, €; > 0 and a subsequence of (uy,),, still denoted by (up)n,
such that

#

wN 1
| Nl , V.
(14 e€0)(1+e1)ao

Let u € E, 1 be the weak limit of (uy,), in E, 1. We claim that, up to a subsequence,
u, — u strongly in Ey 1. Let t > ¢* — 1. By (8.2) and (F»), we have

fup)(un —u)dz

RN
< 06/ tn P |ty — ul da
RN

+ 06/ | g — u| By (N (e(1+€°)“0|“”|N - 1)) dz
RN
p—1 L
P p
< e (/ [un|? dx) (/ [t — ul? da:>
RN RN

t—1

1
== =
+cr (/ |un|t+1> </ [ dx)
RN RN
1
’ t+1
X (/ ol ((t—i— 1)N (e(1+50)a°‘“”‘N - 1)) dx) , Von. (8.4)
RN
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Clearly, there exist cg > 0 and sy > 0 such that

o ((t+ 1N (e<1+60>a0‘8|N' -1))

< gy (N (e(1+€0)(1+€1)(¥0|s‘1\l’ _ 1)) 7 v |5| > 5

Hence,

O ((t+1)N (1+eo)aolun N _ 1))d
IR GG )
= / D, ((t +1)N (e(1+€o)a0|un|1\ﬂ — 1)) dz
{lun|>s2}
+/ o ((t+ DN (e(”%)“("“n"vl ~1))de
{lun|<s2}

RN

* /{u,,b<32} ¢y ((t +1)N (e<1+eo>ao|un|N’ B 1)) b

Plainly, there exists a positive constant x such that

N’ ’
ellteo)ans™ 1 < N , V0<s<so.

Then, we can derive that

/{‘un<52} ¢1 <(t + 1)N (e(1+60)a0|un|N/ N 1)) dx

+oo P , .
_ Z (t + ]:)JN] / (e(1+60)f¥0|un‘N B 1)] Az
|un|<52

|
J=J1 J:
t 1) N i .
<y M/ V7 d
I j' [t | <s2
J=n "

Having in mind that if j > j1, then N'j > ¢*, it follows from (8.6) that

/{uﬂ%} D, ((t +1)N (e<1+eo)ao|un|fv’ B 1)) e

+13N3njsévj N'g
S /

dz
= [t |<s2

Z t+1jN]I€]SNJ/

= [Un|<s2

e(t—&-l)NﬁsQﬂ .
<O [ de
RN

Un

52

.
dx

Un,

52

r
S2
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Hence, there exists a positive constant cg > 0 such that

/ ool ((t +1)N (e(HeO)“O‘“”'N/ - 1)) dz < 09/
{lun|<s2}

lun|? da.
RN

Putting that last inequality in (8.5), we get

/N@1«p+nN(éHWWWMW5—Q)dx
R

< Cg/ d, (N (e(1+€0)(1+61)a0‘un|N/ — 1)) dz + Cg/
RN

R

€ €1)ap||u Nl __up N N
_ CS/ o, (N <e(1+ o) (en)aollun )| = | 1)) dx—i—cg/ lun|® dz
RN RN
Cg/ (I)l (N <e"-’N—1 )W| _1>>d$+09/ |un|q da.
RN RN

Using (1.22), it yields

un|? dz
N

N

Sup/ o, ((t F1)N <e(1+eo)ao|un\N' _ 1)) dz < +oo.
RN

n

Now, since t+1>¢* and p > ¢*, then the embeddings E,; — L'**(RY) and
E,1 — LP(RY) are compact. It follows from (8.4) that

flup)(uy —u)de — 0, n — +oo.
RN

Taking into account that

(I'(up), up — u) = / \Vun|N_2 Vu,V(u, —u)w(z)dzr
RN
+ / V| Vi, V(uy, — u) da
RN

— fun)(uy —u)da
]RN
— 0, n — 400,

we infer u,, — 0 strongly in E, ;. This ends the proof of lemma 8.2. (|

Now, we claim that there exist pg >0, p1 >0, eg € Eg;1 such that [leoll, ; >
Po, I(eO) < 07 and

I(w) = pr, Yuc Eg, ull,, = po.

https://doi.org/10.1017/prm.2023.86 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2023.86

48 S. Aouaoui
Given u € E, 1 and t > p. By (8.2) and (Fz), we have

/ \F(u)\dxgcm/ fuf? dx+c10/ ' @ (I (214 1))
RN RN RN

=1
< ClO/ |u|p dx + e (/ |u|t+1 df£>
RN RN
/ o, ((t LN (e%o‘“lN' - 1)) da
RN
< e fJull? ; + er \|u||;1/ P, ((t+ 1)N (ezaomN B 1)) "
]RN

N/
<612||u||§71—|—613\|u||;1/ o (N (@ 1) Y ae (5)
RN

Nl
—1
(.«.)N7

1
NI
For u € Ey1 such that [lul[, ; = po <min {1, ( oo ) , by (1.22), there
exists a constant ¢4 > 0 such that

’ ﬁ T N/
/ D, (N (ewow _ 1)) dz < / o, <N <e“N—1 Itz 1)) dz < e
RN RN

Putting that inequality in (8.7), for u € Ey 1 such that ||lul|, ; = po, it yields

1 N 1 t
1) > 57 [VulZly oy + [Vl = sl +ull, )

> - (1Yl @y + 1Vul3oany) = ers (lul, -+l
217N N .
> (IVulpy, vy + Vulpage) - —ess (Il + llully )
91-N N ) .
> llullyy = ers (lull?, + )
S 2NN o 8.8
Z N Po C1500- (8.8)
1
Plainly, one could choose py small enough such that py < (%) piN. By (8.8),
we deduce that
91-N

I(u) > po —2¢c15p5 = p1 >0, Vu € Ega, |ull,; = po.

N
Now, for a fixed ¢ € Cf,,4(RY)\{0} such that ¢ > 0, we have

I(t¢) — —o0, as t — +oo.

In fact, from the hypothesis (F} ), one can see that there exist two positive constants
c16 and ¢17 such that

F(s) > c168% — 17, YV s = 0.
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Let

c= inf max I(’Y(t)) > p1>0, where 1‘*:{7 € C([Oa 1]7 EqJ)v ’Y(O) =0, I(’y(l)) <O} )
yel 0<i<1

the mountain pass level of the functional I. In order to complete the proof of
theorem 8.1, it suffices to show that there exists Ag > 0 such that

0—N . {N—l CUN—l}
< ———min< 2V 7 ———= 5, VA > Ag. (8.9)
2N-1NQ ay
For that aim, fix a function ¢ € Cgf’md(RN) such that ¢g # 0 and ¢¢ > 0. By (F3),
we have
Volrn @y [VolLymn
I(¢o) = ]\}Ul + . —/ F(¢o)dx
q RN
N
|V¢O‘L{Xl (RN) ‘V¢O|%q(RN) r
X N + q _A|¢O LT (RN) -
We infer,
|V¢0|fgl<uw) n W%‘iq(ml\’)
I(¢0) <0, VA> i T 4
F -
|V¢0|2,{)[1(ugN) \v¢0\‘£q(R{N)
Hence, for A > & |¢0|2::RN) 4 , the function g : [0,1] — Eg 1 defined by
Yo(t) = teo

belongs to I'. Consequently,

<
€< max I(tgo)

< ma
0<t<1

tN|V¢0|gN N t?|Vol?
w, (RY) OlLa(®N) r r
1 4
s < ( N q ! |¢0|LT(RN>

IVoolin vy [Veol?, mn
< wq LQ(R ) q _ i r i
S ogih (( N + p £ — At" |go[Lr@w)

N 5 N
(iéV¢0|Lgl(mw)+|woliqw)) : (|V¢0L51(RN)+|V¢o|iq(Rw))(1 0)

AT|¢0|ZT(RN) N q
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Clearly, there exists Ag >

S. Aouaoui

IV ol q
e | V0l

N

large enough such that

-
[Pol7 i)

N = N
¥ |V¢O|L{:{1(]RN) + |V¢O|qu(RN) |V¢0|Lgl(ﬂw) N |V¢o\qu(RN) (1 q)

Ar |¢0|TLT'(RN) N q

- N .
< emin{QN_l,le}, vV A> A

This ends the proof of theorem 8.1.
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