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In this paper, we prove some weighted sharp inequalities of Trudinger–Moser type.
The weights considered here have a logarithmic growth. These inequalities are
completely new and are established in some new Sobolev spaces where the norm is a
mixture of the norm of the gradient in two different Lebesgue spaces. This fact
allowed us to prove a very interesting result of sharpness for the case of doubly
exponential growth at infinity. Some improvements of these inequalities for the
weakly convergent sequences are also proved using a version of the
Concentration-Compactness principle of P.L. Lions. Taking profit of these
inequalities, we treat in the last part of this work some elliptic quasilinear equation
involving the weighted (N, q)−Laplacian operator where 1 < q < N and a
nonlinearities enjoying a new type of exponential growth condition at infinity.
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1. Introduction and statement of main results

In 2015, M. Calanchi and B. Ruf have established a weighted Trudinger–Moser
inequality in the unit ball B of R

N , N � 2. Such type of inequality is not new
and many inequalities of Trudinger–Moser type defined in weighted Sobolev spaces
have been proved; we can for example cite [1–3, 5, 13–16, 21, 22, 26, 29, 33].
The majority of those works considered the restriction to radial functions, and in
[29] although the weight is not necessarily radial but its growth permits to pass
to the radial case through some radial rearrangement. This interest to reduce the
inequality to the radial functions is mainly motivated by their ability to increase
the maximal growth of the integrability. The weight that M. Calanchi and B. Ruf
considered is of logarithmic type and turned out to be of great interest. More
precisely, they introduced the subspaceW 1,N

0,rad(B, σβ) defined as the radial functions
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of the completion of C∞
0 (B) with respect to the norm

‖u‖Nσβ =
∫
B
σβ(x) |∇u|N dx,

where σβ(x) = (log 1
|x| )

β(N−1) or σβ(x) = (log e
|x| )

β(N−1), 0 < β � 1, x ∈ B. In
[16, theorem 1], M. Calanchi and B. Ruf proved the following result: for 0 < β < 1,
we have

• ∫
B

e|u|
N′
1−β dx < +∞, ∀ u ∈W 1,N

0,rad(B, σβ). (1.1)

•

sup
{∫

B
eα|u|

N′
1−β dx, u ∈W 1,N

0,rad(B, σβ), ‖u‖σβ � 1
}
< +∞ ⇔ α � αN,β ,

(1.2)

where αN,β = N [ω
1

N−1
N−1(1 − β)]

1
1−β and ωN−1 is the area of the unit sphere in

R
N .

The case N = 2 has been considered in a previous work (see [15]). Note that when
β = 0, (1.2) recovers the classical Trudinger–Moser inequality (see [31, 38]). Next,
M. Calanchi and B. Ruf considered the case when β = 1. In this case, the specific
behaviour of the weight function has an impact on the corresponding embeddings. In
fact, the maximal growth e|s|

N′
proved in the classical Trudinger–Moser inequality

significantly increased such that a doubly exponential growth is now permitted.
More precisely, they proved the following result given in [16, theorem 4]:

• ∫
B

ee|u|
N′

dx < +∞, ∀u ∈W 1,N
0,rad(B, σ1), where σ1(x) =

(
log

e

|x|
)N−1

.

(1.3)

•

sup

{∫
B

ea e
ω

1
N−1
N−1 |u|N′

dx, u ∈W 1,N
0,rad(B, σ1), ‖u‖σ1

� 1

}
< +∞ ⇐⇒ a � N.

(1.4)

The proof of (1.2) in the critical case α = αN,β is mainly based on a suitable change
of variable combined to some integral inequality due to M.A. Leckband. In [34],
V.H. Nguyen provided a simpler proof of (1.2) in which he proved that the function

β 
−→MT (N,α, β) = sup
{∫

B
eα|u|

N′
1−β dx, u ∈W 1,N

0,rad(B, σβ), ‖u‖σβ � 1
}

is decreasing on [0, 1). Moreover, V.H. Nguyen proved the existence of maximizer
for this inequality when β is sufficiently small. The question of the attainability of
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A weighted Trudinger–Moser inequalities and applications 3

the inequality (1.2) has been also considered by P. Roy in [35] for the case N = 2,
and in [36] for higher dimensions. Taking advantage of these new Trudinger–Moser
inequalities defined on the unit ball B in R

N , some authors studied an elliptic
problem having a doubly exponential growth at infinity. It mainly consists in the
following equation⎧⎨⎩

−div(σ1(x)|∇u|N−2∇u) = f(x, u), in B,
u > 0, in B,
u = 0, on ∂B,

where the nonlinear term f(x, u) is a continuous function, radial in x ∈ B and has
a critical doubly exponential growth at infinity, which means that there exists a
positive constant α0 such that

lim
s→+∞

f(x, s)

eN eα|s|N′ =
{

0, for all α > α0,
+∞, for all α � α0.

M. Calanchi, B. Ruf and F. Sani proved in [17] the existence of a nontrivial radial
solution for the case N = 2. This result has been recently generalized by C. Zhang
in [40] for higher dimensions. When we try to extend (1.1)–(1.4) to the whole
Euclidean space R

N , N � 2, we face many obstacles which mainly consist of the
embedding and denseness properties of the functional space that we construct by
extending the weight outside of the unit ball B. For the first attempts, we worked
with the weight σβ(x) = (log e

|x| )
β(N−1), |x| < 1. In [6], we considered a radial

weight wβ defined by

wβ(x) =

⎧⎪⎨⎪⎩
(

log
(
e

|x|
))β(N−1)

if |x| < 1,

χ(|x|) if |x| � 1,

(1.5)

where, 0 < β � 1 and χ : [1,+∞[→]0,+∞[ is a continuous function such that
χ(1) = 1, inf

t�1
χ(t) > 0. Denoted by Yβ the weighted Sobolev space

Yβ =
{
u ∈W 1,N

rad (RN ) ;
∫

RN

wβ(x)|∇u|N dx < +∞
}

and we equip it with the standard Sobolev norm

‖u‖NYβ =
∫

RN

|∇u|Nwβ(x) dx+
∫

RN

|u|N dx.

We obtained the following extensions of (1.1) and (1.2) to the whole space R
N : Let

N � 2 and wβ be defined by (1.5). Then, for all α > 0 and u ∈ Yβ , we have∫
RN

(
eα|u|

N′
1−β − SN−2

(
α |u| N

′
1−β

))
dx < +∞, (1.6)

where

SN−2(t) =
N−2∑
k=0

tk

k!
, t � 0.
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Moreover, if α < αN,β , then

sup
u∈Yβ , ‖u‖Yβ�1

∫
RN

(
eα|u|

N′
1−β − SN−2

(
α, |u| N

′
1−β

))
dx < +∞, (1.7)

and if α > αN,β , then the supremum in (1.7) becomes infinite. For the value α =
αN,β , the supremum in (1.7) is not necessarily finite. However, the sharpness of the
Trudinger–Moser inequality could be recovered by considering a different functional
space. More precisely, for 0 < β < 1, we define Y ′

β as the space of all the radial
functions of the completion of C∞

0 (RN ) with respect to the norm

‖u‖Y ′
β

= |∇u|LN (RN ,wβ) + |u|
L
d′
β (RN )

=
(∫

RN

wβ(x) |∇u|N dx
) 1
N

+
(∫

RN

|u|d′β dx
) 1
d′
β
,

where d′β = N ′(1−β)
N ′−1+β . For that space, we obtained the following sharp

Trudinger–Moser inequality which can be considered as another extension of (1.2):
Let 0 < β � 1

N ′+1 and wβ be defined by (1.5). Then,

sup
u∈Y ′

β , ‖u‖Y ′
β

�1

∫
RN

(
eα|u|

N′
1−β − SN−2

(
α |u| N

′
1−β

))
dx < +∞ ⇔ α � αN,β .

The value β = 1 is a kind of second order limiting case. In [6], we established the
following extension of (1.3) and (1.4):

• For all α > 0 and u ∈ Y1, there holds∫
RN

(
e
α

(
e|u|

N′
−1

)
− SN−2

(
α
(
e|u|

N′
− 1

)))
dx < +∞. (1.8)

• If a � N e
−( inf

s�1
χ(s))

− 1
N(N−1)

, then

sup
u∈Y1, ‖u‖Y1

�1

∫
Rn

⎛⎜⎜⎜⎝e

a

⎛⎜⎝e
ω

1
N−1
N−1 |u|N′

−1

⎞⎟⎠
− SN−2

(
a

(
eω

1
N−1
N−1 |u|N′

− 1

))⎞⎟⎟⎟⎠ dx < +∞.

(1.9)

• If a > N exp
(

1
N − 1

∫ +∞

0

logN (1 + t) e−Nt dt
)

, then

sup
u∈Y1, ‖u‖Y1

�1

∫
RN

⎛⎜⎜⎜⎝e

a

⎛⎜⎝e
ω

1
N−1
N−1 |u|N′

−1

⎞⎟⎠
− SN−2

(
a

(
eω

1
N−1
N−1 |u|N′

− 1

))⎞⎟⎟⎟⎠ dx = +∞.

(1.10)
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Note that the previous results come as generalizations of earlier works dealing with
the case N = 2. See [4, 7]. A further interesting extensions of (1.1)–(1.4) to the
whole Euclidean space R

N has been provided in [8, 10].
In this paper, we consider two types of weights. First, for the case when 0 < β < 1,

we consider the weight defined by

wβ(x) =

{
(− log(|x|))β(N−1) if |x| < 1,

χ(|x|) if |x| � 1,
(1.11)

where χ : [1,+∞[→]0,+∞[ is a continuous function such that χ(1) = 0. Moreover,
the function χ is chosen such that wβ satisfies (1.12), that is, wβ belongs to the
Muckenhoupt’s class AN (we also say that wβ is an AN−weight), that is

sup
(

1
|B|

∫
B

wβ(x) dx
)(

1
|B|

∫
B

(wβ(x))
1

1−N dx
)N−1

< +∞, (1.12)

where the supremum is taken over all ballsB in R
N . The importance of this property

of the weight wβ lies in the fact that it implies that C∞
0 (RN ) is dense in the space

Eβ (see, for instance, [18, 28, 32] and references therein). An interesting example
of such a function χ is given by: χ(t) = logγ(t), γ > 0 (see [27]). In particular, one
can consider the weight

wβ(x) = |log |x||β(N−1)
, x ∈ R

N\{0}.

That last weight can be seen as a natural extension of (− log |x|)β(N−1) defined
on B =

{
x ∈ R

N , |x| < 1
}

and considered in [16]. Second, for the case β = 1, we
consider the weight

w1(x) =

{
(1 − log(|x|))N−1 if |x| < 1,

χ(|x|) if |x| � 1,
(1.13)

where χ : [1,+∞[→]0,+∞[ is a continuous function such that χ(1) = 1 and w1

belongs to the Muckenhoupt’s class AN . Here, are some examples of such a
function χ.

• χ can be any continuous and positive function such that χ(1) = 1 and

0 < inf
t�1

χ(t) � sup
t�1

χ(t) < +∞.

• χ(t) = tα, 0 < α < N(N − 1).

• χ(t) = 1 + logγ t, γ > 0.
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For details about these examples, we refer to [8]. Let 1 < q < N. For 0 < β � 1,
denote by Eq,β the weighted Sobolev space

Eq,β =
{
u ∈ D1,q

r (RN ),
∫

RN

wβ(x) |∇u|N dx < +∞
}
,

where D1,q
r (RN ) =

{
u ∈ Lq

∗
(RN ), u radial,

∫
RN

|∇u|q dx < +∞
}

and q∗ = Nq
N−q .

We first equip the functional space Eq,β with the norm

‖u‖Eq,β =

(∫
RN

|∇u|N wβ(x) dx+
(∫

RN

|∇u|q dx
)N

q

) 1
N

, u ∈ Eq,β .

The first result in the present work concerns the case 0 < β < 1 and the norm
‖ · ‖Eq,β . It is given by the following Trudinger–Moser inequality.

Theorem 1.1. Let 0 < β < 1 and wβ be defined by (1.11). Let jβ =

inf
{
j � 1, j � (1−β)q∗

N ′

}
.

For all α > 0 and u ∈ Eq,β , we have∫
RN

(
eα|u|

N′
1−β − Sjβ−1

(
α |u| N

′
1−β

))
dx < +∞, (1.14)

where Sjβ−1(t) =
jβ−1∑
j=0

tj

j!
, t ∈ [0,+∞[. Moreover, if α < αN,β, then

sup
u∈Eq,β , ‖u‖Eq,β�1

∫
RN

(
eα|u|

N′
1−β − Sjβ−1

(
α |u| N

′
1−β

))
dx < +∞, (1.15)

and if α > αN,β, then

sup
u∈Eq,β , ‖u‖Eq,β�1

∫
RN

(
eα|u|

N′
1−β − Sjβ−1

(
α |u| N

′
1−β

))
dx = +∞. (1.16)

The second result in this paper concerns the case β = 1. More precisely, we prove
the following theorem:

Theorem 1.2. Let w1 be defined by (1.13). Let j1 = inf
{
j � 1, j � q∗

N ′

}
. Set

Cq,N = ω
− 1
q

N−1

(
q − 1
N − q

) q−1
q

. (1.17)

For all α > 0 and u ∈ Eq,1, we have∫
RN

(
e
α

(
e|u|

N′
−1

)
− Sj1−1

(
α
(
e|u|

N′
− 1

)))
dx < +∞, (1.18)
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where Sj1−1(t) =
j1−1∑
j=0

tj

j!
, t ∈ [0,+∞[. Moreover, if α � N e−ω

1
N−1
N−1 C

N′
q,N , then

sup
u∈Eq,1, ‖u‖Eq,1�1

∫
RN

⎛⎜⎜⎜⎝e

α

⎛⎜⎝e
ω

1
N−1
N−1 |u|N′

−1

⎞⎟⎠
− Sj1−1

(
α

(
eω

1
N−1
N−1 |u|N′

− 1

))⎞⎟⎟⎟⎠ dx < +∞,

(1.19)
and if

α > N exp

⎛⎝ω
N
q −1

N−1

N − 1

(∫ +∞

0

e(q−N)t

(1 + t)q
dt
)N

q

⎞⎠ ,

then

sup
u∈Eq,1, ‖u‖Eq,1�1

∫
RN

⎛⎜⎜⎜⎝e

α

⎛⎜⎝e
ω

1
N−1
N−1 |u|N′

−1

⎞⎟⎠
− Sj1−1

(
α

(
eω

1
N−1
N−1 |u|N′

− 1

))⎞⎟⎟⎟⎠ dx = +∞.

(1.20)

Note that the Trudinger–Moser inequalities proved in theorems 1.1 and 1.2 are
not necessarily sharp. However, as we will see, this sharpness can be recovered when
we consider another norm on the space Eq,β equivalent to ‖ · ‖Eq,β and given by:

‖u‖q,β = |∇u|LNwβ (RN ) + |∇u|Lq(RN ) =
(∫

RN

|∇u|N wβ(x) dx
) 1
N

+
(∫

RN

|∇u|q dx
) 1
q

, for 0 < β < 1,

and

‖u‖q,1 =
(∫

RN

|∇u|N w1(x) dx
) 1
N

+

(∫
|x|�1

|∇u|q dx

) 1
q

, for β = 1.

The equivalence of this norm and ‖ · ‖Eq,β is proved below (see remark 1.8). Using
the new norm ‖ · ‖q,β , we can establish the following sharp Trudinger–Moser
inequalities.

Theorem 1.3. Let 0 < β < 1 and wβ be defined by (1.11). We have,

sup
u∈Eq,β , ‖u‖q,β�1

∫
RN

(
eα|u|

N′
1−β − Sjβ−1

(
α |u| N

′
1−β

))
dx < +∞ ⇔ α � αN,β .

(1.21)
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Theorem 1.4. Let w1 be defined by (1.13). We have,

sup
u∈Eq,1, ‖u‖q,1�1

∫
RN

⎛⎜⎜⎝e
α

⎛⎝e
ω

1
N−1
N−1 |u|N′

−1

⎞⎠
− Sj1−1

(
α

(
eω

1
N−1
N−1 |u|N′

− 1
))⎞⎟⎟⎠dx

< +∞ ⇔ α � N. (1.22)

Comparing to previously cited works, there are many novelty aspects in the
present work that we have to highlight. First, we are considering the case when
the weight wβ , 0 < β < 1, vanishes at x ∈ R

N such that |x| = 1. In fact, as it was
mentioned above, we did not consider such a case and we preferred take wβ(x) =
(1 − log |x|)β(N−1), 0 < |x| < 1 in such a way that inf

x∈RN
wβ(x) > 0. The second

aspect of novelty consists on taking only the gradient of the function to define the
norms ‖ ·‖Eq,β and ‖ · ‖q,β . The combination of the norms of the gradient in two
different Lebesgue spaces which are LNwβ (R

N ) and Lq(RN ) has a real impact on the
obtained inequalities. At this stage, we have to mention the work [19] in which the
authors proved that

sup
u∈EN,q,‖u‖

EN,q
�1

∫
RN

Φα,j0(u) dx < +∞, ∀ 0 < α < αN = Nω
1

N−1
N−1, (1.23)

and

sup
u∈EN,q,‖u‖

EN,q
�1

∫
RN

Φα,j0(u) dx = +∞, ∀ α > αN , (1.24)

where 1 < q < N, EN,q is defined as the completion of C∞
0 (RN ) with respect to

the norm

‖u‖EN,q =

(∫
RN

|∇u|N dx+
(∫

RN

|∇u|q dx
)N

q

) 1
N

,

and

Φα,j0(u) = eα|u|
N′

−
j0−1∑
j=0

αj

j!
|u|jN ′

, j0 = inf
{
j ∈ N, j � q∗

N ′

}
.

So, we can clearly note that this result can be recovered when we take β = 0 in
theorem 1.1. In other words, our present work can be partially seen as a general-
ization of [19] (when we choose χ ≡ 1). But in contrast with [19], we are able here
to establish the sharpness of the inequality by introducing the new norm ‖ · ‖q,β .
Obviously, this result of sharpness also holds for (1.23) provided that we pass from
the norm ‖ · ‖EN,q to the new one given by

‖u‖ =
(∫

RN

|∇u|N dx
) 1
N

+
(∫

RN

|∇u|q dx
) 1
q

, u ∈ EN,q.

This leads us to the next point of novelty in the present work. It mainly consists on
the sharpness of the inequalities (1.21) and (1.22). Actually, we have to highlight
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A weighted Trudinger–Moser inequalities and applications 9

that such a sharp inequalities have been obtained in [9] for the case when 0 < β < 1
and its singular generalization proved in [11] for the case when 0 < β < 1 or even
when β = 1 (i.e., for the doubly exponential growth case). In our present work and
due to the existence of the term |∇u|Lq(RN ) , we are able to guarantee the same
sharpness property of the inequalities for the both cases 0 < β < 1 and also β = 1.
Finally, we establish an improvement of (1.15), (1.19), (1.21) and (1.22) for weakly
convergent sequences in Eq,β , 0 < β � 1 with constants larger than those found
in (1.15), (1.19), (1.21), and (1.22). These results are completely new. Moreover,
inequality (1.25) proved below is also an improvement of the inequality proved
by J.L. Carvalho, G.M. Figueiredo, M.F. Furtado, and E. Medeiros in [19]. The
proof of these new results is mainly based on some version of the Concentration-
Compactness principle due to P.L. Lions in [30].

Theorem 1.5.

1. Assume that 0 < β < 1. Let (un)n ⊂ Eq,β and u ∈ Eq,β\{0} be such that
‖un‖Eq,β = 1 and un ⇀ u weakly in Eq,β . Then,

sup
n

∫
RN

(
epαN,β |un|

N′
1−β − Sjβ−1

(
pαN,β |un|

N′
1−β

))
dx

< +∞, ∀ 0 < p < PN,β(u), (1.25)

where

PN,β(u) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

1

1 − ‖u‖NEq,β

) 1
(1 − β)(N − 1)

, if ‖u‖Eq,β < 1,

+∞, if ‖u‖Eq,β = 1.

Moreover, there exist a sequence (un)n ⊂ Eq,β and a function u ∈ Eq,β\{0}
satisfying ‖un‖Eq,β = 1 and un ⇀ u weakly in Eq,β such that

sup
n

∫
RN

(
epαN,β |un|

N′
1−β −Sjβ−1

(
pαN,β |un|

N′
1−β

))
dx=+∞, ∀ p>PN,β(u).

(1.26)

2. Let (un)n ⊂ Eq,1 and u ∈ Eq,1\{0} be such that ‖un‖Eq,1 = 1 and un ⇀ u

weakly in Eq,1. Then, for all 0 < p < PN,1(u), we have

sup
n

∫
RN

⎛⎜⎜⎝e
N

⎛⎝e
ω

1
N−1
N−1 p|un|N′

−1

⎞⎠
−Sj1−1

(
N

(
eω

1
N−1
N−1 p|un|N

′
−1

))⎞⎟⎟⎠dx<+∞,

(1.27)
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10 S. Aouaoui

where

PN,1(u) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

1

1 − ‖u‖NEq,1

) 1
N − 1

, if ‖u‖Eq,1 < 1,

+∞, if ‖u‖Eq,1 = 1.

Moreover, there exist a sequence (un)n ⊂ Eq,1 and a function u ∈ Eq,1\{0}
satisfying ‖un‖Eq,1 = 1 and un ⇀ u weakly in Eq,1 such that, for all α > 0
and p > PN,1(u), we have

sup
n

∫
RN

⎛⎜⎜⎝e
α

⎛⎝e
ω

1
N−1
N−1 p|un|N′

−1

⎞⎠
−Sj1−1

(
α

(
eω

1
N−1
N−1 p|un|N

′
−1

))⎞⎟⎟⎠dx=+∞.

(1.28)

The next result concerns the norm ‖ · ‖q,β , 0 < β � 1, and it consists in some
improvements of the inequalities (1.21) and (1.22). At first glance and in a natural
way, the reader is expecting to find that these improvements can be obtained by
a simple change of the norm ‖ · ‖Eq,β , 0 < β � 1 which appears in the expression
of PN,β(u) in theorem 1.5 by ‖ · ‖q,β . But, due to the difference of the ‘geometric
structure’ of the two norms, the situation is less easier than it seems.

Theorem 1.6.

1. Assume that 0 < β < 1. Let (un)n ⊂ Eq,β and u ∈ Eq,β\{0} be such that
‖un‖q,β = 1 and un ⇀ u weakly in Eq,β . Then,

sup
n

∫
RN

(
epαN,β |un|

N′
1−β − Sjβ−1

(
pαN,β |un|

N′
1−β

))
dx

< +∞, ∀ 0 < p < PN,β(u), (1.29)

where

PN,β(u) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

1
1 − ‖u‖qq,β

) N ′

q(1 − β)
, if ‖u‖q,β < 1,

+∞, if ‖u‖q,β = 1.

Moreover, there exist a sequence (un)n ⊂ Eq,β and a function u ∈ Eq,β\{0}
satisfying ‖un‖q,β = 1 and un ⇀ u weakly in Eq,β such that

sup
n

∫
RN

(
epαN,β |un|

N′
1−β − Sjβ−1

(
pαN,β |un|

N′
1−β

))
dx = +∞, ∀ p > PN,β(u). (1.30)
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2. • Let (un)n ⊂ Eq,1 and u ∈ Eq,1\{0} be such that ‖un‖q,1 = 1 and un ⇀
uweakly in Eq,1. Then, for all 0 < p < PN,1(u), we have

sup
n

∫
RN

⎛⎜⎜⎝e
N

⎛⎝e
ω

1
N−1
N−1 p|un|N′

−1

⎞⎠
−Sj1−1

(
N

(
eω

1
N−1
N−1 p|un|N

′
−1

))⎞⎟⎟⎠dx<+∞,

(1.31)
where

PN,1(u) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

1
1 − ‖u‖qq,1

)N ′

q
, if ‖u‖q,1 < 1,

+∞, if ‖u‖q,1 = 1.

Moreover, there exist a sequence (un)n ⊂ Eq,1 and a function u ∈ Eq,1\{0}
satisfying ‖un‖q,1 = 1 and un ⇀ u weakly in Eq,1 such that, for all α > 0 and
p > PN,1(u), we have

sup
n

∫
RN

⎛⎜⎜⎝e
α

⎛⎝e
ω

1
N−1
N−1 p|un|N′

−1

⎞⎠
−Sj1−1

(
α

(
eω

1
N−1
N−1 p|un|N

′
−1

))⎞⎟⎟⎠dx=+∞.

(1.32)

Remark 1.7. Obviously, all the results obtained for the weight wβ given by (1.11)
hold true when we take

wβ(x) =
{

(1 − log(|x|))β(N−1) if |x| < 1,
χ(|x|) if |x| � 1,

where χ : [1,+∞[→]0,+∞[ is a continuous function such that χ(1) = 1 and wβ ∈
AN .

In the last part of this work, we apply the Trudinger–Moser inequalities estab-
lished in theorem 1.2 to study some elliptic quasilinear equation defined in R

N and
containing a nonlinearities having a doubly exponential growth at infinity. More
precisely, we prove the existence of at least one nontrivial solution to the equation

−div
(
w1(x) |∇u|N−2 ∇u

)
− Δqu = f(u), in R

N , N � 2,

where f : R → R is a continuous function enjoying a doubly exponential growth
at infinity governed by the inequality (1.22). In the mathematical literature,
the first equation involving an operator with non-standard growth of the type
(p,N)−Laplacian with 0 < p < N appeared in [39] where the problem was studied
in a bounded domain and where the nonlinear term has an exponential growth
governed by the classical Trudinger–Moser inequality. In [39], the authors obtained
an existence result via a suitable minimax argument. This work was followed by
[24] where the Nehari manifold approach has been used to obtain an existence
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12 S. Aouaoui

result always by assuming the boundedness of the domain. For equations in the
entire space, we can quote the following recent works [19, 20, 25] which deal with
exponential growth governed by classical non-weighted Trudinger–Moser inequality.

Remark 1.8. We can easily show that, for 0 < β � 1, the norms ‖ · ‖q,β and
‖ · ‖Eq,β are equivalent. The case when 0 < β < 1 is rather evident, we only prove
the equivalence of the norms when β = 1. For that aim, let u ∈ Eq,1. We have

∫
|x|<1

|∇u|q dx =
∫
|x|<1

|∇u|q w
q
N
1 w

− q
N

1 dx �
(∫

|x|<1

|∇u|N w1(x) dx

) q
N

(∫
|x|<1

w
− q
N−q

1 dx

)N−q
N

.

Since
∫ 1

0

(1 − log r)−q(N−1)/N−qrN−1 dr < +∞, then
∫
|x|<1

w
−q/N−q
1 dx < +∞.

Consequently, there exists a positive constant M0 such that(∫
|x|<1

|∇u|q dx

) 1
q

� M0

(∫
|x|<1

|∇u|N w1 dx

) 1
N

.

Thus, (∫
|x|<1

|∇u|q dx

) 1
q

+

(∫
|x|�1

|∇u|q dx

) 1
q

� (1 +M0) ‖u‖q,1 . (1.33)

Now, using the following elementary inequality,

(a+ b)α � aα + bα, ∀ a, b � 0, ∀ 0 < α < 1,

we infer from (1.33) that

(∫
RN

|∇u|q dx
) 1
q

=

(∫
|x|<1

|∇u|q dx+
∫
|x|�1

|∇u|q dx

) 1
q

�
(∫

|x|<1

|∇u|q dx

) 1
q

+

(∫
|x|�1

|∇u|q dx

) 1
q

� (1 +M0) ‖u‖q,1 .

Hence, (∫
RN

|∇u|N w1 dx
) 1
N

+
(∫

RN

|∇u|q dx
) 1
q

� (2 +M0) ‖u‖q,1 . (1.34)
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Now, having in mind that

‖u‖Eq,1 =

(∫
RN

|∇u|N w1 dx+
(∫

RN

|∇u|q dx
)N

q

) 1
N

�
(∫

RN

|∇u|N w1 dx
) 1
N

+
(∫

RN

|∇u|q dx
) 1
q

,

by (1.34) we obtain

‖u‖Eq,1 � (2 +M0) ‖u‖q,1 . (1.35)

On the other hand, taking into account that the function x 
−→ x
1
N is concave on

[0,+∞[, we get

a
1
N + b

1
N � 21− 1

N (a+ b)
1
N , ∀ a, b � 0.

It follows that,

‖u‖Eq,1 � 2
1
N−1

((∫
RN

|∇u|N w1 dx
) 1
N

+
(∫

RN

|∇u|q dx
) 1
q

)
� 2

1
N−1 ‖u‖q,1 .

Combining that last inequality with (1.35), we deduce that

2
1
N−1 ‖u‖q,1 � ‖u‖Eq,1 � (2 +M0) ‖u‖q,1 .

Remark 1.9. A pertinent question is why when β = 1, we change the form of the
norm ‖ · ‖q,1 by taking only the integral over the set

{
x ∈ R

N , |x| � 1
}
. In fact,

one can naturally expect that this last norm takes the form

‖u‖(1)
q,1 =

(∫
RN

|∇u|N w1 dx
) 1
N

+
(∫

RN

|∇u|q dx
) 1
q

.

Taking that last norm, we can easily adapt the proof of theorem 1.4 to prove that,
if α � N, then

sup
u∈Eq,1, ‖u‖(1)

q,1�1

∫
RN

⎛⎜⎜⎝e
α

⎛⎝e
ω

1
N−1
N−1 |u|N′

−1

⎞⎠
−Sj1−1

(
α

(
eω

1
N−1
N−1 |u|N′

−1
))⎞⎟⎟⎠dx<+∞.

The problem lies in the construction of a sequence (if there exists) (uk)k ⊂ Eq,1

such that ‖uk‖(1)
q,1 � 1 and

∫
RN

⎛⎜⎜⎝e
α

⎛⎝e
ω

1
N−1
N−1 |uk|N′

−1

⎞⎠
− Sj1−1

(
α

(
eω

1
N−1
N−1 |uk|N

′
− 1

))⎞⎟⎟⎠dx→ +∞, k → +∞.

We do not know the existence of such a sequence.
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2. Proof of theorem 1.1

We start by proving (1.14). For that aim, fix α > 0 and u ∈ Eq,β . We have∫
RN

(
eα|u|

N′
1−β − Sjβ−1

(
α |u| N

′
1−β

))
dx

=
∫
|x|�1

(
eα|u|

N′
1−β − Sjβ−1

(
α |u| N

′
1−β

))
dx

+
∫
|x|<1

(
eα|u|

N′
1−β − Sjβ−1

(
α |u| N

′
1−β

))
dx. (2.1)

On the one hand, we have∫
|x|�1

(
eα|u|

N′
1−β − Sjβ−1

(
α |u| N

′
1−β

))
dx =

+∞∑
j=jβ

αj

j!

∫
|x|�1

|u| jN
′

1−β dx. (2.2)

Since u belongs to D1,q
r (RN ), then by the radial lemma (see [37, lemma 1]), we

know that

|u(x)| � Cq,N |x|−N−q
q |∇u|Lq(RN ) , ∀ x �= 0, (2.3)

where Cq,N is given by (1.17). For j � jβ , we have jN ′

1−β � q∗. By (2.3), it yields

|u(x)| jN
′

1−β−q∗ � Cq,N
jN′
1−β−q∗ |∇u|

jN′
1−β−q∗
Lq(RN )

, ∀ x ∈ R
N , |x| � 1. (2.4)

By (2.4), we infer

+∞∑
j=jβ

αj

j!

∫
|x|�1

|u| jN
′

1−β dx �
+∞∑
j=jβ

αj

j!
Cq,N

jN′
1−β−q∗ |∇u|

jN′
1−β−q∗
Lq(RN )

∫
|x|�1

|u|q∗ dx

�
+∞∑
j=jβ

αj

j!
Cq,N

jN′
1−β−q∗ |∇u|

jN′
1−β−q∗
Lq(RN )

|u|q∗
Lq∗ (RN )

� C ′ e
αCq,N

N′
1−β |∇u|

N′
1−β
Lq(RN ) , (2.5)

where we used the continuous embedding D1,q
r (RN ) ↪→ Lq

∗
(RN ). Putting (2.5) in

(2.2), we obtain∫
|x|�1

(
eα|u|

N′
1−β − Sjβ−1

(
α |u| N

′
1−β

))
dx � C ′ e

αCq,N
N′
1−β ‖u‖

N′
1−β
Eq,β . (2.6)

Now, in order to estimate the second integral in (2.1), set

v(x) =
{
u(x) − u(e1), 0 � |x| < 1,

0, |x| � 1, (2.7)

where e1 = (1, 0, · · · , 0) is the first vector in the canonical basis of R
N . Clearly,

v ∈W 1,N
0,rad(B, σβ), with σβ(x) = (− log |x|)β(N−1), x ∈ B. An elementary calculus
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gives the following inequality: for all ε > 0, we have

(a+ b)
N′
1−β � (1 + ε)a

N′
1−β +

1 + ε(
(1 + ε)

1−β
N′−1+β − 1

)N′−1+β
1−β

b
N′
1−β , ∀ a, b � 0. (2.8)

Fix 0 < ε < 1. By (2.8), we get∫
|x|<1

(
eα|u|

N′
1−β − Sjβ−1

(
α |u| N

′
1−β

))
dx

�
∫
|x|<1

eα|u|
N′
1−β dx

�
∫
|x|<1

eα(|v|+|u(e1)|)
N′
1−β dx

� exp

⎛⎜⎜⎝ α(1 + ε)(
(1 + ε)

1−β
N′−1+β − 1

)N′−1+β
1−β

|u(e1)|
N′
1−β

⎞⎟⎟⎠∫
|x|<1

eα(1+ε)|v|
N′
1−β dx. (2.9)

By (1.1), we know that ∫
|x|<1

eα(1+ε)|v|
N′
1−β dx < +∞,

and by consequence (2.9) leads to∫
|x|<1

(
eα|u|

N′
1−β − Sjβ−1

(
α |u| N

′
1−β

))
dx < +∞. (2.10)

Combining (2.10) and (2.6), we deduce that (1.14) holds.
Now, we prove (1.15). By (2.6), it yields

sup
u∈Eq,β , ‖u‖Eq,β�1

∫
|x|�1

(
eαN,β |u|

N′
1−β −Sjβ−1

(
αN,β |u|

N′
1−β

))
dx�C ′ eαN,βCq,N

N′
1−β

.

(2.11)
Next, let α < αN,β . Clearly, there exists ε > 0 such that α(1 + ε) < αN,β . Let u ∈
Eq,β be such that ‖u‖Eq,β � 1. Having in mind that v defined by (2.7) belongs to

W 1,N
0,rad(B, σβ) and∫

|x|<1

|∇v|N σβ(x) dx =
∫
|x|<1

|∇u|N wβ(x) dx � 1,

then, by the virtue of (1.2), we infer that there exists a positive constant Cβ > 0
such that ∫

|x|<1

eα(1+ε)|v|
N′
1−β dx �

∫
|x|<1

eαN,β |v|
N′
1−β dx � Cβ . (2.12)
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Moreover, by (2.3), we know that |u(e1)| � Cq,N . Hence, by (2.9) and (2.12) we
obtain

∫
|x|<1

(
eα|u|

N′
1−β − Sjβ−1

(
α |u| N

′
1−β

))
dx�exp

⎛⎜⎜⎝ αN,βC
N′
1−β
q,N(

(1+ε)
1−β

N′−1+β −1
)N′−1+β

1−β

⎞⎟⎟⎠Cβ .

(2.13)
Combining (2.13) and (2.11), we deduce that (1.15) holds.

For u ∈ Eq,β , set ψ(t) = ω
1
N

N−1u(x) with |x| = e−t, t ∈ R. A direct computation
gives:

∫
|x|<1

|∇u|N wβ(x) dx =
∫ +∞

0

tβ(N−1) |ψ′(t)|N dt,

∫
|x|�1

wβ(x) |∇u|N dx =
∫ 0

−∞
χ(e−t) |ψ′(t)|N dt,

∫
RN

|∇u|q dx = ω
1− q

N

N−1

∫ +∞

−∞
|ψ′(t)|q e(q−N)t dt,

and

∫
RN

(
eα|u|

N′
1−β − Sjβ−1

(
α |u| N

′
1−β

))
dx

= ωN−1

∫ +∞

−∞

(
eαω

− 1
(N−1)(1−β)

N−1 |ψ(t)|
N′
1−β

−Sjβ−1

(
αω

− 1
(N−1)(1−β)

N−1 |ψ(t)| N
′

1−β

))
e−Nt dt.

Let γ > 0 to be fixed later. Consider the sequence of test functions:

ψk(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

k
(β−1)(γ+

1
N

)+γ
t, 0 � t � k−γ ,

k

β − 1
N t1−β , k−γ � t � k,

k

1 − β

N ′ , t � k,
0, t � 0.
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For k � 1, define uk ∈ Eq,β by ψk(t) = ω
1
N

N−1uk(x), |x| = e−t, t ∈ R. We have

∫
RN

|∇uk|N wβ(x) dx =
∫ k

0

tβ(N−1) |ψ′
k(t)|N dt

=
∫ k

k−γ

(1 − β)N t−β

k1−β dt+
∫ k−γ

0

tβ(N−1)kN((β−1)(γ+ 1
N )+γ) dt

= (1 − β)N−1 + k(β−1)(γ+1)

(
1

1 + β(N − 1)
− (1 − β)N−1

)
.

(2.14)∫
RN

|∇uk|q dx = ω
1− q

N

N−1

kq((β−1)(γ+ 1
N )+γ)

N − q

(
1 − e(q−N)k−γ

)
+ ω

1− q
N

N−1

(1 − β)k

k
(1−β)q
N

∫ k

k−γ

e(q−N)t

tqβ
dt. (2.15)

Choosing γ small enough such that (β − 1)(γ + 1
N ) + γ < 0. By this choice, we

get

ω
1− q

N

N−1

kq((β−1)(γ+ 1
N )+γ)

N − q

(
1 − e(q−N)k−γ

)
→ 0, k → +∞.

On the other hand,

(1 − β)k

k
(1−β)q
N

∫ k

k−γ

e(q−N)t

tqβ
dt � (1 − β)k

k
(1−β)q
N

kγqβ

N − q

(
e(q−N)k−γ − e(q−N)k

)
→ 0, k → +∞.

Thus, by (2.15), we infer

∫
RN

|∇uk|q dx→ 0, k → +∞.

Now, taking into account that (β − 1)(γ + 1) < 0, it follows from (2.14) that

∫
RN

|∇uk|N wβ(x) dx→ (1 − β)N−1, k → +∞.

Hence,

‖uk‖Eq,β =
(
|∇uk|NLNwβ (RN ) + |∇uk|NLq(RN )

) 1
N

→ (1 − β)
1
N′ , k → +∞.
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Set ũk = uk
‖uk‖Eq,β

. For α > 0, we have

sup
u∈Eq,β , ‖u‖Eq,β�1

∫
RN

(
eα|u|

N′
1−β − Sjβ−1

(
α |u| N

′
1−β

))
dx

�
∫

RN

(
eα|ũk|

N′
1−β − Sjβ−1

(
α |ũk|

N′
1−β

))
dx

= ωN−1

∫ +∞

−∞

⎛⎜⎜⎝e
αω

− 1
(N−1)(1−β)

N−1

∣∣∣∣∣ ψk(t)

‖uk‖Eq,β

∣∣∣∣∣
N′
1−β

−Sjβ−1

⎛⎜⎝αω− 1
(N−1)(1−β)

N−1

∣∣∣∣∣ ψk(t)
‖uk‖Eq,β

∣∣∣∣∣
N′
1−β

⎞⎟⎠
⎞⎟⎠ e−Nt dt

� ωN−1

∫ +∞

k

⎛⎜⎜⎝e
αω

− 1
(N−1)(1−β)

N−1

∣∣∣∣∣ ψk(t)

‖uk‖Eq,β

∣∣∣∣∣
N′
1−β

−Sjβ−1

⎛⎜⎝αω− 1
(N−1)(1−β)

N−1

∣∣∣∣∣ ψk(t)
‖uk‖Eq,β

∣∣∣∣∣
N′
1−β

⎞⎟⎠
⎞⎟⎠ e−Nt dt

= ωN−1
e−Nk

N

⎛⎜⎜⎜⎜⎝e

α
ω
− 1

(N−1)(1−β)
N−1 k

‖uk‖
N′
1−β
Eq,β − Sjβ−1

⎛⎜⎝αω− 1
(N−1)(1−β)

N−1 k

‖uk‖
N′
1−β
Eq,β

⎞⎟⎠
⎞⎟⎟⎟⎟⎠ . (2.16)

Clearly, for 0 � j � jβ − 1, we have

e−Nkkj
1

‖uk‖
N′
1−β
Eq,β

→ 0, k → +∞.

Thus,

Sjβ−1

⎛⎜⎝αω− 1
(N−1)(1−β)

N−1 k

‖uk‖
N′
1−β
Eq,β

⎞⎟⎠ → 0, k → +∞. (2.17)

Moreover,

e−Nk e

α
ω
− 1

(N−1)(1−β)
N−1 k

‖uk‖
N′
1−β
Eq,β = e

k

⎛⎜⎜⎝−N+α
ω
− 1

(N−1)(1−β)
N−1

‖uk‖
N′
1−β
Eq,β

⎞⎟⎟⎠
.
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Having in mind that ‖uk‖Eq,β → (1 − β)1/N
′
, then

−N + α
ω
− 1

(N−1)(1−β)

N−1

‖uk‖
N′
1−β
Eq,β

→ −N + α
ω
− 1

(N−1)(1−β)

N−1

(1 − β)
1

1−β
.

If α > αN,β , then

−N + α
ω
− 1

(N−1)(1−β)

N−1

(1 − β)
1

1−β
> 0.

Consequently,

e−Nk e

α
ω
− 1

(N−1)(1−β)
N−1 k

‖uk‖
N′
1−β
Eq,β → +∞, k → +∞. (2.18)

Combining (2.18) and (2.17), we deduce from (2.16) that

sup
u∈Eq,β , ‖u‖Eq,β�1

∫
RN

(
eα|u|

N′
1−β − Sjβ−1

(
α |u| N

′
1−β

))
dx = +∞, ∀ α > αN,β .

We conclude that (1.16) holds.

3. Proof of theorem 1.2

Let α > 0 and u ∈ Eq,1. We have

∫
|x|�1

(
eα(e|u|

N′
−1) − Sj1−1

(
α(e|u|

N′
− 1)

))
dx =

+∞∑
j=j1

αj

j!

∫
|x|�1

(
e|u|

N′
− 1

)j
dx.

(3.1)
Using the monotony of the function defined on [0,+∞[ by s 
−→ es−1

s , from (2.3)
it yields

e|u(x)|N′
− 1 � eC

N′
q,N |∇u|N′

Lq(RN ) − 1

CN
′

q,N |∇u|N ′
Lq(RN )

|u(x)|N ′
, ∀ x ∈ R

N , |x| � 1.

Observe that j � j1 ⇔ jN ′ � q∗. Thus, for j � j1, we have

(
e|u(x)|N′

− 1
)j

�

⎛⎝eC
N′
q,N |∇u|N′

Lq(RN ) − 1

CN
′

q,N |∇u|N ′
Lq(RN )

⎞⎠j

|u(x)|jN ′

�

⎛⎝eC
N′
q,N |∇u|N′

Lq(RN ) − 1

CN
′

q,N |∇u|N ′
Lq(RN )

⎞⎠j

|u(x)|jN ′−q∗ |u(x)|q∗
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�

⎛⎝eC
N′
q,N |∇u|N′

Lq(RN ) − 1

CN
′

q,N |∇u|N ′
Lq(RN )

⎞⎠j (
Cq,N |∇u|Lq(RN )

)jN ′−q∗
|u(x)|q∗ ,

∀ x ∈ R
N , |x| � 1.

Putting that last inequality in (3.1), we infer∫
|x|�1

(
eα(e|u|

N′
−1) − Sj1−1

(
α(e|u|

N′
− 1)

))
dx

�
+∞∑
j=j1

αj

j!

⎛⎝eC
N′
q,N |∇u|N′

Lq(RN ) − 1

CN
′

q,N |∇u|N ′
Lq(RN )

⎞⎠j (
Cq,N |∇u|Lq(RN )

)jN ′−q∗ ∫
|x|�1

|u|q∗ dx

� C ′′
+∞∑
j=j1

αj

j!

(
eC

N′
q,N |∇u|N′

Lq(RN ) − 1
)j

� C ′′
+∞∑
j=0

αj

j!

(
eC

N′
q,N‖u‖N′

Eq,1 − 1
)j

= C ′′ exp
(
α

(
eC

N′
q,N‖u‖N′

Eq,1 − 1
))

. (3.2)

Next, by (2.8) one can easily deduce the following inequality:

(a+ b)N
′ � (1 + ε)aN

′
+

1 + ε(
(1 + ε)

1
N′−1 − 1

)N ′−1
bN

′
, ∀ a, b � 0, ∀ ε > 0. (3.3)

By (3.3), we have

|u(x)|N ′
� (1 + ε) |v(x)|N ′

+
1 + ε(

(1 + ε)
1

N′−1 − 1
)N ′−1

|u(e1)|N
′
, ∀ x ∈ R

N , |x| < 1,

where v is given by (2.7). Thus,∫
|x|<1

eα e|u|
N′

dx

�
∫
|x|<1

exp

⎛⎜⎝α exp

⎛⎜⎝ 1 + ε(
(1 + ε)

1
N′−1 − 1

)N ′−1
|u(e1)|N

′

⎞⎟⎠ e(1+ε)|v|N′

⎞⎟⎠dx

=
∫
|x|<1

exp

(
α exp

(
|u(e1)|N

′

(1 − (1 + ε)1−N )
1

N−1

)
e(1+ε)|v|N′

)
dx. (3.4)

Clearly, v ∈W 1,N
0,rad(B, σ1). By (1.3) and (3.4), it follows∫

|x|<1

eαe|u|
N′

dx < +∞. (3.5)

https://doi.org/10.1017/prm.2023.86 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.86


A weighted Trudinger–Moser inequalities and applications 21

Combining (3.5) and (3.2), we easily see that (1.18) holds.
The next step in the proof of theorem 1.2 consists of proving (1.19). First, observe

that by (3.2), we have

sup
u∈Eq,1, ‖u‖Eq,1�1

∫
|x|�1

⎛⎜⎜⎝e
α

⎛⎝e
ω

1
N−1
N−1 |u|N′

−1

⎞⎠
− Sj1−1

(
α(eω

1
N−1
N−1 |u|N′

− 1)
)⎞⎟⎟⎠ dx

� C ′′ exp
(
α

(
eC

N′
q,Nω

1
N−1
N−1 − 1

))
. (3.6)

Let u ∈ Eq,1 be such that ‖u‖Eq,1 � 1. Note that if
∫
|x|<1

|∇u|N w1(x) dx = 1,

then
∫

RN

|∇u|q dx = 0 which implies that u = 0. If
∫
|x|<1

|∇u|N w1(x) dx = 0, then

v = 0 (where v is given by (2.7)) and by consequence u(x) = u(e1), ∀ x ∈ R
N , 0 <

|x| < 1. Hence, by (2.3), we get

∫
|x|<1

eα e
ω

1
N−1
N−1 |u(x)|N′

dx=
∫
|x|<1

eα e
ω

1
N−1
N−1 |u(e1)|N′

dx� ωN−1

N
eα e

ω

1
N−1
N−1 CN

′
q,N

, ∀ α>0.

Thus, without loss of generality, we can assume that

0 <
∫
|x|<1

|∇u|N w1(x) dx < 1.

Choose ε > 0 such that

1
(1 + ε)N−1

=
∫
|x|<1

|∇u|N w1(x) dx.

Using again (2.3), it yields

|u(e1)|N � CNq,N |∇u|NLq(RN )

= CNq,N

(
1 −

∫
RN

|∇u|N w1(x) dx
)

� CNq,N

(
1 −

∫
|x|<1

|∇u|N w1(x) dx

)

= CNq,N

(
1 − 1

(1 + ε)N−1

)
.

Thus,

|u(e1)|N
′
� CN

′
q,N

(
1 − 1

(1 + ε)N−1

) 1
N−1

. (3.7)
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In view of (3.7) and (3.4), we infer

∫
|x|<1

eα e
ω

1
N−1
N−1 |u|N′

dx

�
∫
|x|<1

exp

⎛⎝α exp

⎛⎝ ω
1

N−1
N−1 |u(e1)|N

′

(1 − (1 + ε)1−N )
1

N−1

⎞⎠ eω
1

N−1
N−1 (1+ε)|v|N′

⎞⎠dx

�
∫
|x|<1

exp

⎛⎝α exp

⎛⎝ω
1

N−1
N−1C

N ′
q,N

(
1 − (1 + ε)1−N

) 1
N−1

(1 − (1 + ε)1−N )
1

N−1

⎞⎠ eω
1

N−1
N−1 (1+ε)|v|N′

⎞⎠dx.

=
∫
|x|<1

exp
(
α eω

1
N−1
N−1 C

N′
q,N eω

1
N−1
N−1 (1+ε)|v|N′

)
dx

=
∫
|x|<1

exp
(
α eω

1
N−1
N−1 C

N′
q,N eω

1
N−1
N−1 |ṽ|N′

)
dx, (3.8)

where ṽ = (1 + ε)
1
N′ v. Assume that α eω

1
N−1
N−1 C

N′
q,N � N. Taking into account that

ṽ ∈W 1,N
0,rad(B, σ1) and

∫
|x|<1

|∇ṽ|N w1(x) dx = 1,

then we deduce from (1.4) that

sup
u∈Eq,1, ‖u‖Eq,1�1

∫
|x|<1

eα e
ω

1
N−1
N−1 |u|N′

dx < +∞. (3.9)

Plainly, (1.19) immediately follows from (3.9) and (3.6).
The end of the proof of theorem 1.2 consists of showing (1.20). For that aim,

we make a change of variable similar to the case 0 < β < 1. More precisely, for
u ∈ Eq,1, set ψ(t) = ω

1
N

N−1u(x) with |x| = e−t, t ∈ R. We have

∫
|x|<1

|∇u|N w1(x) dx =
∫ +∞

0

(1 + t)N−1 |ψ′(t)|N dt,

∫
|x|�1

|∇u|N w1(x) dx =
∫ 0

−∞
χ(e−t) |ψ′(t)|N dt,

∫
RN

|∇u|q dx = ω
1− q

N

N−1

∫ +∞

−∞
|ψ′(t)|q e(q−N)t dt,

https://doi.org/10.1017/prm.2023.86 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.86


A weighted Trudinger–Moser inequalities and applications 23

and

∫
RN

⎛⎜⎜⎝e
α

⎛⎝e
ω

1
N−1
N−1 |u|N′

−1

⎞⎠
− Sj1−1

(
α

(
eω

1
N−1
N−1 |u|N′

− 1
))⎞⎟⎟⎠dx

= ωN−1

∫ +∞

−∞

(
e
α

(
e|ψ(t)|N′

−1

)
− Sj1−1

(
α
(
e|ψ(t)|N′

− 1
)))

e−Nt dt.

For k � 0, consider the family of test functions:

ψk(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

log(1 + t)

(log(k + 1))
1
N

, 0 � t � k,

(log(k + 1))
1
N ′ , t � k,

0, t � 0,

(3.10)

and define uk ∈ Eq,1 by ψk(t) = ω
1
N

N−1uk(x). We have∫
RN

|∇uk|N w1(x) dx = 1,

and ∫
RN

|∇uk|q dx =
ω

1− q
N

N−1

(log(k + 1))
q
N

∫ k

0

e(q−N)t

(1 + t)q
dt→ 0, k → +∞.

Observe that,

lim
k→+∞

log(k+1)

(
1− 1

‖uk‖N ′
Eq,1

)
= lim
k→+∞

log(k+1)

⎛⎜⎝1− 1(
1+|∇uk|NLq(RN )

) 1
N−1

⎞⎟⎠
= lim
k→+∞

log(k + 1)
(

1
N − 1

|∇uk|NLq(RN )

)
.

(3.11)

We have

lim
k→+∞

log(k + 1)
(

1
N − 1

|∇uk|NLq(RN )

)
=
ω
N
q −1

N−1

N − 1

(∫ +∞

0

e(q−N)t

(1 + t)q
dt
)N

q

,

which, by (3.11), leads to

lim
k→+∞

log(k + 1)

(
1 − 1

‖uk‖N ′
Eq,1

)
=
ω
N
q −1

N−1

N − 1

(∫ +∞

0

e(q−N)t

(1 + t)q
dt
)N

q

. (3.12)
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Set ũk = uk
‖uk‖Eq,1

. For α > 0, we have

sup
u∈Eq,1, ‖u‖Eq,1�1

∫
RN

⎛⎜⎜⎝e
α

⎛⎝e
ω

1
n−1
n−1 |u|N′

−1

⎞⎠
− Sj1−1

(
α

(
eω

1
N−1
n−1 |u|N′

− 1
))⎞⎟⎟⎠dx

�
∫

RN

⎛⎜⎜⎝e
α

⎛⎝e
ω

1
N−1
n−1 |ũk|N′

−1

⎞⎠
− Sj1−1

(
α

(
eω

1
n−1
n−1 |ũk|N

′
− 1

))⎞⎟⎟⎠ dx

= ωN−1

∫ +∞

−∞

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
e

α

⎛⎜⎜⎜⎜⎝e

∣∣∣∣∣∣∣
ψk(t)

‖uk‖Eq,1

∣∣∣∣∣∣∣
N′

−1

⎞⎟⎟⎟⎟⎠
− Sj1−1

⎛⎜⎝α
⎛⎜⎝e

∣∣∣∣∣ ψk(t)

‖uk‖Eq,1

∣∣∣∣∣
N′

− 1

⎞⎟⎠
⎞⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

e−Nt dt

� ωN−1

∫ +∞

k

⎛⎜⎜⎜⎜⎝e

α

⎛⎜⎜⎝e

log(k+1)

‖uk‖N′
Eq,1 −1

⎞⎟⎟⎠
− Sj1−1

(
α

(
e

log(k+1)

‖uk‖N′
Eq,1 − 1

))⎞⎟⎟⎟⎟⎠ e−Nt dt

= ωN−1
e−Nk

N

⎛⎜⎜⎜⎜⎝e

α

⎛⎜⎜⎝e

log(k+1)

‖uk‖N′
Eq,1 −1

⎞⎟⎟⎠
− Sj1−1

(
α

(
e

log(k+1)

‖uk‖N′
Eq,1 − 1

))⎞⎟⎟⎟⎟⎠ . (3.13)

Taking into account that

−Nk + α

(
e

log(k+1)

‖uk‖N′
Eq,1 − 1

)
= −N(k + 1) + α e

log(k+1)

‖uk‖N′
Eq,1 − α+N

= (k + 1)

(
−N + α e

log(k+1)

‖uk‖N′
Eq,1

−log(k+1)
)

− α+N,

and using (3.12) we obtain that

−Nk + α

(
e

log(k+1)

‖uk‖N′
Eq,1 − 1

)
→ +∞, ∀ α > N exp

⎛⎝ω
N
q −1

N−1

N − 1

(∫ +∞

0

e(q−N)t

(1 + t)q
dt
)N

q

⎞⎠ .
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Finally, by (3.13), we conclude that, if

α > N exp

⎛⎝ω
N
q −1

N−1

N − 1

(∫ +∞

0

e(q−N)t

(1 + t)q
dt
)N

q

⎞⎠ ,

then

sup
u∈Eq,1, ‖u‖Eq,1�1

∫
RN

⎛⎜⎜⎝e
α

⎛⎝e
ω

1
N−1
N−1 |u|N′

−1

⎞⎠
−Sj1−1

(
α

(
eω

1
N−1
N−1 |u|N′

−1
))⎞⎟⎟⎠dx=+∞.

This ends the proof of theorem 1.2.

4. Proof of theorem 1.3

We claim that

sup
u∈Eq,β , ‖u‖q,β�1

∫
RN

(
eαN,β |u|

N′
1−β − Sjβ−1

(
αN,β |u|

N′
1−β

))
dx < +∞. (4.1)

First, observe that arguing exactly as in the proof of (2.11), one can easily show
that

sup
u∈Eq,β , ‖u‖q,β�1

∫
|x|�1

(
eαN,β |u|

N′
1−β − Sjβ−1

(
αN,β |u|

N′
1−β

))
dx < +∞. (4.2)

It remains to prove that

sup
u∈Eq,β , ‖u‖q,β�1

∫
|x|<1

(
eαN,β |u|

N′
1−β − Sjβ−1

(
αN,β |u|

N′
1−β

))
dx < +∞. (4.3)

For that aim, let u ∈ Eq,β be such that ‖u‖q,β � 1. Choose ε > 0 such that

(1 + ε)(1−β)(N−1) =

(∫
|x|<1

|∇u|N wβ(x) dx

)−1

.

Using inequality (2.8), it follows

∫
|x|<1

eαN,β |u|
N′
1−β dx � exp

⎛⎜⎜⎝ αN,β(1 + ε) |u(e1)|
N′
1−β(

(1 + ε)
1−β

N′−1+β − 1
)N′−1+β

1−β

⎞⎟⎟⎠
∫
|x|<1

eαN,β(1+ε)|v|
N′
1−β dx. (4.4)

We have,∫
|x|<1

∣∣∣∇((1 + ε)
1−β
N′ v)

∣∣∣N wβ(x) dx = (1 + ε)(1−β)(N−1)

∫
|x|<1

|∇u|N wβ(x) dx = 1.
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By the virtue of (1.2), we know that there exists a constant Cβ > 0 such that

∫
|x|<1

eαN,β(1+ε)|v|
N′
1−β dx � Cβ .

On the other hand, by (2.3), we have

|u(e1)|
N′
1−β � C

N′
1−β
q,N |∇u|

N′
1−β
Lq(RN )

� C
N′
1−β
q,N

(
1 − |∇u|LNwβ (RN )

) N′
1−β

� C
N′
1−β
q,N

⎛⎝1 −
(∫

|x|<1

|∇u|N wβ(x) dx

) 1
N

⎞⎠
N′
1−β

� C
N′
1−β
q,N

(
1 − (1 + ε)

(1−β)(1−N)
N

) N′
1−β

� C
N′
1−β
q,N (1 + ε)−1

(
(1 + ε)

1−β
N′ − 1

) N′
1−β

.

Putting that last inequality in (4.4), we deduce that

∫
|x|<1

eαN,β |u|
N′
1−β dx � Cβ exp

⎛⎜⎜⎝αN,βC
N′
1−β
q,N

(
(1 + ε)

1−β
N′ − 1

) N′
1−β

(
(1 + ε)

1−β
N′−1+β − 1

)N′−1+β
1−β

⎞⎟⎟⎠ . (4.5)

Since N ′
1−β � N ′−1+β

1−β , then the function defined on ]1,+∞[ by

x 
−→
(
x

1−β
N′ − 1

) N′
1−β

(
x

1−β
N′−1+β − 1

)N′−1+β
1−β

is bounded. In view of (4.5), we can easily conclude that (4.3) follows. Combining
(4.2) and (4.3), we deduce that (4.1) holds. Finally, if α > αN,β , we proceed exactly
as in the proof of theorem (1.1) keeping the same Moser sequence to prove that

sup
u∈Eq,β , ‖u‖q,β�1

∫
|x|<1

(
eα|u|

N′
1−β − Sjβ−1

(
α |u| N

′
1−β

))
dx = +∞.
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5. Proof of theorem 1.4

We claim that

sup
u∈Eq,1, ‖u‖q,1�1

∫
RN

⎛⎜⎜⎝e
N

⎛⎝e
ω

1
N−1
N−1 |u|N′

−1

⎞⎠
−Sj1−1

(
N(eω

1
N−1
N−1 |u|N′

−1)
)⎞⎟⎟⎠ dx<+∞.

(5.1)
First, proceeding as in the proof of (3.6), one can easily see that

sup
u∈Eq,1, ‖u‖q,1�1

∫
|x|�1

⎛⎜⎜⎝e
N

⎛⎝e
ω

1
N−1
N−1 |u|N′

−1

⎞⎠
−Sj1−1

(
N(eω

1
N−1
N−1 |u|N′

− 1)
)⎞⎟⎟⎠dx<+∞.

(5.2)
Now, let u ∈ Eq,1 be such that ‖u‖q,1 � 1. Without loss of generality, we can assume
that

0 <
∫
|x|<1

|∇u|N w1(x) dx < 1.

Using the convexity of the function defined on [0,+∞[ by x 
−→ ex
N′
, we can easily

get the following inequality

e(a+b)N
′
� ε

1 + ε
e(

1+ε
ε )N

′
aN

′
+

1
1 + ε

e(1+ε)N
′
bN

′
, ∀ a, b � 0, ∀ ε > 0.

For v defined as in (2.7), it yields

e|u(x)|N′
� ε

1 + ε
e(

1+ε
ε )N

′
|u(e1)|N′

+
1

1 + ε
e(1+ε)N

′ |v(x)|N′
, ∀ x ∈ R

N , |x| < 1.

Hence, ∫
|x|<1

eα e
ω

1
N−1
N−1 |u|N′

dx � eα
ε

1+ε e(
1+ε
ε )N

′
ω

1
N−1
N−1 |u(e1)|N′

∫
|x|<1

e
α

1+ε e
(1+ε)N

′
ω

1
N−1
N−1 |v(x)|N′

dx. (5.3)

Choose ε > 0 such that

(1 + ε)N
∫
|x|<1

|∇u|N w1(x) dx = 1.

Clearly, ṽ = (1 + ε)v ∈W 1,N
0,rad(B, σ1). We have∫

|x|<1

e
α

1+ε e
(1+ε)N

′
ω

1
N−1
N−1 |v(x)|N′

dx =
∫
|x|<1

e
α

1+ε e
ω

1
N−1
N−1 |ṽ(x)|N′

dx

�
∫
|x|<1

eα e
ω

1
N−1
N−1 |ṽ(x)|N′

dx.
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For α � N, by (1.4) we get

∫
|x|<1

e
α

1+ε e
ω

1
N−1
N−1 |ṽ(x)|N′

dx

�
∫
|x|<1

eN e
ω

1
N−1
N−1 |ṽ(x)|N′

dx

� sup

{∫
|x|<1

eN e
ω

1
N−1
N−1 |z(x)|N′

dx, z ∈W 1,N
0,rad(B, σ1), ‖z‖σ1

� 1

}
< +∞. (5.4)

On the other hand, by looking at the proof of (2.3) in [37], we can easily see that
we have a more precise inequality, that is

|u(x)| � Cq,N |x|−N−q
q

(∫
|z|�|x|

|∇u(z)|q dz

) 1
q

, ∀ x �= 0.

It follows,

|u(e1)| � Cq,N

(∫
|x|�1

|∇u|q dx

) 1
q

� Cq,N

(
1 − |∇u|LNw1

(RN )

)
� Cq,N

⎛⎝1 −
(∫

|x|<1

|∇u|N w1(x) dx

) 1
N

⎞⎠
= Cq,N

(
1 − 1

1 + ε

)
.

Hence,

eα
ε

1+ε e(
1+ε
ε )N

′
ω

1
N−1
N−1 |u(e1)|N′

� eα e
ω

1
N−1
N−1 CN

′
q,N

. (5.5)

Combining (5.5) and (5.4), we deduce from (5.3) that

sup
u∈Eq,1, ‖u‖q,1�1

∫
|x|<1

eNe
ω

1
N−1
N−1 |u|N′

dx < +∞. (5.6)

In view of (5.6) and (5.2), we can conclude that (5.1) holds. The end of the proof
gives a clear idea about the real reason of taking only the integral of |∇u|q over
the set

{
x ∈ R

N , |x| � 1
}

in the definition of the norm ‖u‖q,1 . In fact, we take
the family of test functions given by (3.10) and we define as usual uk ∈ Eq,1 by

uk(x) = ω
− 1
N

N−1ψk(t), |x| = e−t, t ∈ R. Observing that uk(x) = 0, ∀ x ∈ R
N , |x| �
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1, we immediately get

‖uk‖q,1 =
(∫

RN

|∇uk|N w1 dx
) 1
N

=

(∫
|x|<1

|∇uk|N w1 dx

) 1
N

= 1, ∀ k � 0.

Consequently, we are returning to the case of a sequence lying in W 1,N
0,rad(B, σ1).

Therefore, the conclusion follows.

6. Proof of theorem 1.5

1. Case 0 < β < 1 : Sub-case 0 < ‖u‖Eq,β < 1 :

Assume by contradiction that for some 0 < p1 < ( 1
1−‖u‖NEq,β

)
1

(1−β)(N−1) we

have

sup
n

∫
RN

(
ep1αN,β |un|

N′
1−β − Sjβ−1

(
p1αN,β |un|

N′
1−β

))
dx = +∞. (6.1)

For L ∈]0,+∞[ and v ∈ Eq,β , set

GL(v) =

⎧⎨⎩
L, if v > L,

−L, if v < −L,
v, if |v| � L,

and TL(v) = v −GL(v). (6.2)

Plainly, there exists ε > 0 such that

(p1(1 + ε))(1−β)(N−1)
<

1

1 − ‖u‖NEq,β
.

Since ‖GL(u)‖Eq,β → ‖u‖Eq,β as L→ +∞, then one can choose L large
enough such that

(p1(1 + ε))(1−β)(N−1)
<

1

1 − ‖GL(u)‖NEq,β
. (6.3)

We claim that

lim sup
n→+∞

(∫
RN

|∇TL(un)|N wβ(x) dx+
(∫

RN

|∇TL(un)|q dx
)N

q

)

<

(
1

p1(1 + ε)

)(1−β)(N−1)

. (6.4)

Suppose that this does not hold. Then, there exists a subsequence of (un)n
that we still denote by (un)n such that∫

RN

|∇TL(un)|N wβ(x) dx+
(∫

RN

|∇TL(un)|q dx
)N

q

�
(

1
p1(1 + ε)

)(1−β)(N−1)

, ∀ n � 0. (6.5)
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Using (6.5), it yields

1 =
∫

RN

|∇un|N wβ(x) dx+
(∫

RN

|∇un|q dx
)N

q

=
∫

RN

|∇TL(un)|N wβ(x) dx+
∫

RN

|∇GL(un)|N wβ(x) dx

+
(∫

RN

|∇TL(un)|q dx+
∫

RN

|∇GL(un)|q dx
)N

q

�
∫

RN

|∇TL(un)|N wβ(x) dx+
∫

RN

|∇GL(un)|N wβ(x) dx

+
(∫

RN

|∇TL(un)|q dx
)N

q

+
(∫

RN

|∇GL(un)|q dx
)N

q

�
(

1
p1(1 + ε)

)(1−β)(N−1)

+ ‖GL(un)‖NEq,β . (6.6)

Clearly GL(un) ⇀ GL(u) weakly in Eq,β . Consequently, passing to the lower
limit as n tends to +∞ in (6.6), we obtain

1 � ‖GL(u)‖NEq,β +
(

1
p1(1 + ε)

)(1−β)(N−1)

.

Thus,

(p1(1 + ε))(1−β)(N−1) � 1

1 − ‖GL(u)‖NEq,β
,

which is in contradiction with (6.3). Therefore, our claim (6.4) is true. Set

Ωn,L =
{
x ∈ R

N , |un(x)| � L
}
.

By (6.4), up to a subsequence,∥∥∥(p1(1 + ε))
(1−β)
N′ TL(un)

∥∥∥
Eq,β

< 1, ∀ n � 0.

We have∫
Ωn,L

(
eαN,βp1|un|

N′
1−β − Sjβ−1

(
αN,βp1 |un|

N′
1−β

))
dx

=
∫

Ωn,L∩B

(
eαN,βp1|un|

N′
1−β − Sjβ−1

(
αN,βp1 |un|

N′
1−β

))
dx

+
∫

Ωn,L∩Bc

(
eαN,βp1|un|

N′
1−β − Sjβ−1

(
αN,βp1 |un|

N′
1−β

))
dx. (6.7)
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On the one hand, by (2.8), we get∫
Ωn,L∩B

(
eαN,βp1|un|

N′
1−β − Sjβ−1

(
αN,βp1 |un|

N′
1−β

))
dx

�
∫

Ωn,L∩B
eαN,βp1|un|

N′
1−β dx

�
∫

Ωn,L∩B
ep1αN,β(1+ε)|un−L|

N′
1−β ep1αN,βA(ε)L

N′
1−β dx

� ep1αN,βA(ε)L
N′
1−β

∫
Ωn,L∩B

ep1αN,β(1+ε)|TL(un)|
N′
1−β dx

� ep1αN,βA(ε)L
N′
1−β

∫
B

ep1αN,β(1+ε)|TL(un)|
N′
1−β dx, (6.8)

where A(ε) = 1+ε

((1+ε)
1−β

N′−1+β −1)
N′−1+β

1−β
. Having in mind that |un(x)| =

|un(e1)| � Cq,N , ∀ x ∈ R
N , |x| = 1, then

TL(un(x)) = 0, ∀ x ∈ R
N , |x| = 1, ∀ L > Cq,N .

Consequently, TL(un) ∈W 1,N
0,rad(B, σβ), ∀ L > Cq,N . Since∫

B

∣∣∣∇(p1(1 + ε))
1−β
N′ TL(un)

∣∣∣N wβ(x) dx < 1,

then by (1.2), we infer

sup
n

∫
B

ep1αN,β(1+ε)|TL(un)|
N′
1−β dx < +∞, ∀ L > Cq,N .

Putting that result in (6.8), we obtain

sup
n

∫
Ωn,L∩B

(
eαN,βp1|un|

N′
1−β − Sjβ−1

(
αN,βp1 |un|

N′
1−β

))
dx

< +∞, ∀ L > Cq,N . (6.9)

On the other hand, in view of (2.3), we know that

|un(x)| � Cq,N |∇un|Lq(RN ) � Cq,N , ∀ x ∈ R
N , |x| � 1.

Hence,

Ωn,L ∩ Bc = ∅, ∀ L > Cq,N .

We deduce from (6.9) and (6.7) that

sup
n

∫
Ωn,L

(
eαN,βp1|un|

N′
1−β −Sjβ−1

(
αN,βp1 |un|

N′
1−β

))
dx<+∞, ∀ L>Cq,N .

(6.10)
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Next, observe that

∫
Ωcn,L

(
ep1αN,β |un|

N′
1−β − Sjβ−1

(
αN,βp1 |un|

N′
1−β

))
dx

=
∫
|un|<L

+∞∑
j=jβ

(p1αN,β)j

j!
|un|

jN′
1−β dx

=
∫
|un|<L

+∞∑
j=jβ

(p1αN,β)j

j!

∣∣∣un
L

∣∣∣ jN′
1−β

L
jN′
1−β dx

� c4

+∞∑
j=jβ

(p1αN,βL
N′
1−β )j

j!

∫
|un|<L

∣∣∣un
L

∣∣∣jβ N′
1−β

dx

� c4

+∞∑
j=jβ

(p1αN,βL
N′
1−β )j

j!

∫
|un|<L

∣∣∣un
L

∣∣∣q∗ dx

� c4
ep1αN,βL

N′
1−β

Lq∗

∫
RN

|un|q
∗

dx

� c5
ep1αN,βL

N′
1−β

Lq∗
,

where we used the fact that jβ � (1−β)q∗

N ′ together with the boundedness of
the sequence (un)n in Lq

∗
(RN ). Therefore,

sup
n

∫
Ωcn,L

(
ep1αN,β |un|

N′
1−β − Sjβ−1

(
αN,βp1 |un|

N′
1−β

))
dx < +∞. (6.11)

Combining (6.11) and (6.10), we conclude that

sup
n

∫
RN

(
ep1αN,β |un|

N′
1−β − Sjβ−1

(
αN,βp1 |un|

N′
1−β

))
dx < +∞,

which, in view of (6.1), leads to the expected contradiction. Case ‖u‖Eq,β = 1 :
Since un ⇀ u weakly in Eq,β which is uniformly convex, then un → u strongly
in Eq,β (see [12, proposition 3.32]). We can easily adapt the arguments used
in the proof of [23, proposition1] to deduce that there exists v ∈ Eq,β such
that, up to a subsequence, |un(x)| � v(x) a.e. x ∈ R

N , ∀ n. Let 0 < p < +∞.
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We have

sup
n

∫
RN

(
epαN,β |un|

N′
1−β − Sjβ−1

(
pαN,β |un|

N′
1−β

))
dx

= sup
n

+∞∑
j=jβ

∫
RN

(pαN,β |un|
N′
1−β )j

j!
dx

�
+∞∑
j=jβ

∫
RN

(pαN,β |v|
N′
1−β )j

j!
dx

=
∫

RN

(
epαN,β |v|

N′
1−β − Sjβ−1

(
pαN,β |v|

N′
1−β

))
dx < +∞.

Now, we exhibit a sequence (ξk)k ⊂ Eq,β and a function ξ ∈ Eq,β\{0} such
that ‖ξk‖Eq,β = 1, ξk ⇀ ξ weakly in Eq,β , ‖ξ‖Eq,β < 1, and∫

RN

(
eαN,βp|ξk|

N′
1−β − Sjβ−1

(
αN,βp |ξk|

N′
1−β

))
dx

→ +∞, k → +∞, ∀ p > PN,β(ξ).

For k ∈ N\{0} and λ ∈]0,+∞[ to be fixed later, we define the function ψk :
R → R by

ψk(t) = λ

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

t1−β − (1/2)1−β

(k1−β − (1/2)1−β)
1
N

, 1/2 � t � k,

(
k1−β − (1/2)1−β

) 1
N ′ , t � k,

0, t � 1/2.

We also define the function ψ : [0,+∞[→ [0,+∞[ by

ψ(t) = a

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, t � 1/4,
t1−β − (1/4)1−β

((1/2)1−β − (1/4)1−β)
1
N

, 1/4 � t � 1/2,

(
(1/2)1−β − (1/4)1−β

) 1
N ′ , t � 1/2,

where a > 0. Set uk(x) = ω
− 1
N

N−1ψk(t), u(x) = ω
− 1
N

N−1ψ(t), |x| = e−t, t ∈ R. We
have ∫

RN

|∇uk|N wβ(x) dx =
∫ +∞

0

tβ(N−1) |ψ′
k(t)|N dt

= λN
∫ k

1/2

tβ(N−1)(1 − β)N t−βN

k1−β − (1/2)1−β
dt

= λN (1 − β)N−1.
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Furthermore,

∫
RN

|∇uk|q dx = ω
1− q

N

N−1

∫ k

1/2

|ψ′
k(t)|q e(q−N)t dt

=
λqω

1− q
N

N−1 (1 − β)q

(k1−β − (1/2)1−β)
q
N

∫ k

1/2

e(q−N)t

tqβ
dt.

Clearly, ∫
RN

|∇uk|q dx→ 0, k → +∞.

Set vk = u+ uk. It yields,

‖vk‖NEq,β =
∫

RN

|∇uk|N wβ(x) dx+
∫

RN

|∇u|N wβ(x) dx

+
(∫

RN

|∇uk|q dx+
∫

RN

|∇u|q dx
)N

q

= (1 − β)N−1(aN + λN ) +
(∫

RN

|∇uk|q dx+
∫

RN

|∇u|q dx
)N

q

.

Consequently,

‖vk‖NEq,β → (1 − β)N−1(aN + λN ) +
(∫

RN

|∇u|q dx
)N

q

= (1 − β)N−1λN + ‖u‖NEq,β , k → +∞,

where we used the fact that

‖u‖NEq,β =
∫

RN

|∇u|N wβ(x) dx+
(∫

RN

|∇u|q dx
)N

q

= (1 − β)N−1aN +
(∫

RN

|∇u|q dx
)N

q

.

Choose λ > 0 and a > 0 such that

(1 − β)N−1λN + ‖u‖NEq,β = 1. (6.12)

One can easily see that uk ⇀ 0 weakly in Eq,β . By (6.12), we derive that
vk

‖vk‖Eq,β
⇀ u weakly in Eq,β . Let p > PN,β(u). Then, there exists ε > 0 such
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that p = (1 + ε)PN,β(u). We have

∫
RN

⎛⎜⎜⎝e
αN,βp

∣∣∣∣∣ vk

‖vk‖Eq,β

∣∣∣∣∣
N′
1−β

− Sjβ−1

⎛⎜⎝αN,βp
∣∣∣∣∣ vk
‖vk‖Eq,β

∣∣∣∣∣
N′
1−β

⎞⎟⎠
⎞⎟⎟⎠dx

� ωN−1

∫ +∞

k

exp

⎛⎜⎝αN,βpω
− 1

(N−1)(1−β)

N−1 |ψ(t) + ψk(t)|
N′
1−β

‖vk‖
N′
1−β
Eq,β

⎞⎟⎠ e−Nt dt

−
jβ−1∑
j=0

(αN,βp)j

j!
1

‖vk‖
jN′
1−β
Eqβ

∫
RN

|vk|
jN′
1−β dx

= ωN−1
e−Nk

N
exp

(
θk

(
a
(
(1/2)1−β − (1/4)1−β

) 1
N′

+λ
(
k1−β − (1/2)1−β

) 1
N′
) N′

1−β
)

−
jβ−1∑
j=0

(αN,βp)j

j!
1

‖vk‖
jN′
1−β
Eq,β

∫
RN

|vk|
jN′
1−β dx, (6.13)

where

θk =
αN,βpω

− 1
(N−1)(1−β)

N−1

‖vk‖
N′
1−β
Eq,β

→ N(1 − β)
1

1−β p

= N(1 − β)
1

1−β (1 + ε)PN,β(u), k → +∞.

On the other hand, by (6.12), we have

PN,β(u) =
1(

1 − ‖u‖NEq,β
) 1

(N−1)(1−β)
=

1

((1 − β)N−1λN )
1

(N−1)(1−β)

=
1

(1 − β)
1

1−β λ
N′
1−β

.

Thus,

θk

(
a
(
(1/2)1−β−(1/4)1−β

) 1
N′ +λ

(
k1−β−(1/2)1−β

) 1
N′
) N′

1−β ∼
k→+∞

(1+ε)Nk.

For 0 � j � jβ − 1, we have∫
RN

|vk|
jN′
1−β dx = ω

1− j
(N−1)(1−β)

N−1

∫ +∞

1/4

|ψ(t) + ψk(t)|
jN′
1−β e−Nt dt.
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Hence,

sup
k�1

1

‖vk‖
jN′
1−β
Eq,β

∫
RN

|vk|
jN′
1−β dx < +∞.

We finally deduce from (6.13) that

∫
RN

⎛⎜⎜⎝e
αN,βp

∣∣∣∣∣ vk

‖vk‖Eq,β

∣∣∣∣∣
N′
1−β

− Sjβ−1

⎛⎜⎝αN,βp
∣∣∣∣∣ vk
‖vk‖Eq,β

∣∣∣∣∣
N′
1−β

⎞⎟⎠
⎞⎟⎟⎠dx

→ +∞, k → +∞.

2. Now, we treat the case β = 1. For the first part of the proof (i.e., inequality
(1.27)), we can adapt the contradiction argument used for the case β < 1. But,
due to the existence of some essential technical difference, we give the proof
with a minimum of details. Observing that, as previously, the case ‖u‖Eq,1 = 1
can be easily studied using the uniform convexity of the functional space Eq,1,
we can assume that 0 < ‖u‖Eq,1 < 1. Assume by contradiction that there

exists 0 < p1 <

(
1

1−‖u‖NEq,1

) 1
N−1

such that

sup
n

∫
RN

⎛⎜⎜⎝e
N

⎛⎝e
ω

1
N−1
N−1 p1|un|N′

−1

⎞⎠
− Sj1−1

(
N

(
eω

1
N−1
N−1 p1|un|N

′
− 1

))⎞⎟⎟⎠dx

= +∞.

Arguing as for the case 0 < β < 1, we can easily find ε > 0 small enough and
L large enough such that

lim sup
n→+∞

(∫
RN

|∇TL(un)|N w1(x) dx+
(∫

RN

|∇TL(un)|q dx
)N

q

)

<

(
1

p1(1 + ε)2

)N−1

. (6.14)
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Here, the function TL is defined by (6.2). Set again Ωn,L =
{
x ∈ R

N , |un(x)|
� L} . Using (3.3) and Young’s inequality, it yields

∫
Ωn,L∩B

⎛⎜⎜⎜⎝e

N

⎛⎜⎝e
ω

1
N−1
N−1 p1|un|N′

−1

⎞⎟⎠
− Sj1−1

(
N

(
eω

1
N−1
N−1 p1|un|N

′
− 1

))⎞⎟⎟⎟⎠ dx

�
∫

Ωn,L∩B
e

N

⎛⎜⎝e
ω

1
N−1
N−1 p1|un|N′

−1

⎞⎟⎠
dx

� e−N

∫
Ωn,L∩B

eNe
ω

1
N−1
N−1 (1+ε)p1|un−L|N′

e
ω

1
N−1
N−1 p1A1(ε)LN

′

dx

�
∫

Ωn,L∩B
exp

⎛⎜⎝N

⎡⎢⎣ eω
1

N−1
N−1 p1(1+ε)2|TL(un)|N′

1 + ε
+

ε

1 + ε
eω

1
N−1
N−1 p1

1+ε
ε

A1(ε)LN
′

⎤⎥⎦
⎞⎟⎠ dx

� eN e
ω

1
N−1
N−1 p1

1+ε
ε
A1(ε)LN

′ ∫
B

eN e
ω

1
N−1
N−1 p1(1+ε)2|TL(un)|N′

dx, (6.15)

where A1(ε) = 1+ε

((1+ε)
1

N−1 −1)N−1
. By (6.14), we know that

∫
B

∣∣∣∇(p1(1 + ε)2)
1
N′ TL(un)

∣∣∣N w1(x) dx < 1.

Using (1.4), we get

sup
n

∫
B

eN e
ω

1
N−1
N−1 p1(1+ε)2|TL(un)|N′

dx < +∞.

By (6.15), we obtain

sup
n

∫
Ωn,L∩B

⎛⎜⎜⎝e
N

⎛⎝e
ω

1
N−1
N−1 p1|un|N′

−1

⎞⎠

−Sj1−1

(
N

(
eω

1
N−1
N−1 p1|un|N

′
− 1

))⎞⎟⎟⎠dx < +∞.

The boundedness of the sequence

∫
Ωcn,L

⎛⎜⎜⎝e
N

⎛⎝e
ω

1
N−1
N−1 p1|un|N′

−1

⎞⎠
− Sj1−1

(
N

(
eω

1
N−1
N−1 p1|un|N

′
− 1

))⎞⎟⎟⎠dx,
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can be established by proceeding as for the case 0 < β < 1 and the details
are omitted. In order to prove (1.28), we consider the sequence of functions
ψk : R → R defined by

ψk(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

log(t+ 1) − log(3/2)

(log(k + 1) − log(3/2))
1
N

, 1/2 � t � k,

(log(k + 1) − log(3/2))
1
N ′ , t � k,

0, t � 1/2.

(6.16)

We also define the function ψ : R → R by

ψ(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, t � 1/4,
log(t+ 1) − log(5/4)

(log(3/2) − log(5/4))
1
N

, 1/4 � t � 1/2,

(log(3/2) − log(5/4))
1
N ′ , t � 1/2.

Set, as for the first case, uk(x) = ω
− 1
N

N−1ψk(t) and u(x) = ω
− 1
N

N−1ψ(t), |x| = e−t.
Observe that ∫

RN

|∇uk|q dx→ 0, k → +∞.

Set, vk = u+ uk. We have,

‖vk‖NEq,1 = ‖uk + u‖NEq,1 = 2 +
(∫

RN

|∇uk|q dx+
∫

RN

|∇u|q dx
)N

q

.

Thus,

‖vk‖NEq,1 → 2 +
(∫

RN

|∇u|q dx
)N

q

= 1 + ‖u‖NEq,1 .

Since uk ⇀ 0 weakly in Eq,1, then

vk
‖vk‖Eq,1

⇀ ũ =
u(

1 + ‖u‖NEq,1
) 1
N

.
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Let α > 0 and p > PN,1(ũ) = (1 + ‖u‖NEq,1)
1

N−1 . We have

∫
RN

⎛⎜⎜⎜⎜⎜⎜⎜⎝
e

α

⎛⎜⎜⎜⎜⎝e

ω

1
N−1
N−1 p

∣∣∣∣∣∣∣
vk(x)

‖vk‖Eq,1

∣∣∣∣∣∣∣
N′

−1

⎞⎟⎟⎟⎟⎠
− Sj1−1

⎛⎜⎝α

⎛⎜⎝e
ω

1
N−1
N−1 p

∣∣∣∣∣ vk(x)
‖vk‖Eq,1

∣∣∣∣∣
N′

− 1

⎞⎟⎠
⎞⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎠

dx

� ωN−1

∫ +∞

k

e

α

⎛⎜⎜⎜⎜⎜⎜⎜⎝
e

p
log(k+1)−log(3/2)⎛⎜⎝2+

(
|∇u|q

Lq(RN )
+|∇uk|qLq(RN )

) N
q

⎞⎟⎠
1

N−1

−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
e−Nt dt

−
∫

RN

Sj1−1

⎛⎜⎝α

⎛⎜⎝e
ω

1
N−1
N−1 p

∣∣∣∣∣ vk(x)
‖vk‖Eq,1

∣∣∣∣∣
N′

− 1

⎞⎟⎠
⎞⎟⎠ dx

= ωN−1 e

α

⎛⎜⎜⎜⎜⎜⎜⎜⎝
e

p
log(k+1)−log(3/2)⎛⎜⎝2+

(
|∇u|q

Lq(RN )
+|∇uk|qLq(RN )

) N
q

⎞⎟⎠
1

N−1

−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
e−Nk

N

−
∫

RN

Sj1−1

⎛⎜⎝α

⎛⎜⎝e
ω

1
N−1
N−1 p

∣∣∣∣∣ vk(x)
‖vk‖Eq,1

∣∣∣∣∣
N′

− 1

⎞⎟⎠
⎞⎟⎠ dx. (6.17)

Since p > (1 + ‖u‖NEq,1)
1

N−1 , then

lim
k→+∞

⎛⎜⎜⎜⎝p log(k + 1) − log(3/2)(
2 +

(
|∇u|qLq(RN ) + |∇uk|qLq(RN )

)N
q

) 1
N−1

− log k

⎞⎟⎟⎟⎠ = +∞.

It follows,

α

⎛⎜⎜⎝e

p
log(k+1)−log(3/2)⎛⎝2+

(
|∇u|q

Lq(RN )
+|∇uk|qLq(RN )

) N
q

⎞⎠ 1
N−1

− 1

⎞⎟⎟⎠−Nk → +∞, k → +∞.

Finally, one can easily show that

sup
k�1

∫
RN

Sj1−1

⎛⎜⎝α
⎛⎜⎝e

ω
1

N−1
N−1 p

∣∣∣∣∣ vk(x)

‖vk‖Eq,1

∣∣∣∣∣
N′

− 1

⎞⎟⎠
⎞⎟⎠dx < +∞.
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In view of (6.17), we deduce that (1.28) holds. This ends the proof of theorem
1.5.

7. Proof of theorem 1.6

We start with the case 0 < β < 1. As in the proof of theorem 1.5, we argue by

contradiction. So, assume that there exists 0 < p1 < ( 1
1−‖u‖q,β )

N′
q(1−β) such that

sup
n

∫
RN

(
ep1αN,β |un|

N′
1−β − Sjβ−1

(
p1αN,β |un|

N′
1−β

))
dx = +∞.

The function TL and GL being defined by (6.2), it is easy to see that there exist
0 < ε < 1 small enough and L > 0 large enough such that

(p1(1 + ε))
1−β
N′ <

(
1 − ‖GL(u)‖qq,β

)− 1
q

. (7.1)

The keystone of the proof is to establish the inequality

lim sup
n→+∞

‖TL(un)‖q,β <
(

1
p1(1 + ε)

) 1−β
N′

. (7.2)

For that aim, we argue once again by contradiction. So, we assume that there
exists a subsequence of (un)n, still denoted by (un)n, such that

‖TL(un)‖q,β �
(

1
p1(1 + ε)

) 1−β
N′

, ∀ n � 0. (7.3)

First, observe that the general form of (2.8) is given by the following inequality

(a+ b)t � (1 + δ)at +Dt(δ)bt, ∀ t > 1, ∀ a, b � 0, ∀ δ > 0,

where Dt(δ) = 1+δ

((1+δ)
1
t−1 −1)t−1

. From that last inequality, we can easily deduce

another useful inequality, that is

(at + bt)
1
t � (1 + δ)−

1
t a+ (Dt(δ))−

1
t b, ∀ t > 1, ∀ a, b � 0, ∀ δ > 0. (7.4)

Let δ > 0. Applying (7.4), we obtain

|∇un|LNwβ (RN ) =
(∫

RN

|∇un|N wβ dx
) 1
N

=
(∫

RN

|∇TL(un)|N wβ dx+
∫

RN

|∇GL(un)|N wβ dx
) 1
N

=
(
|∇TL(un)|NLNwβ (RN ) + |∇GL(un)|NLNwβ (RN )

) 1
N

� (1 + δ)−
1
N |∇TL(un)|LNwβ (RN ) + (DN (δ))−

1
N |∇GL(un)|LNwβ (RN ) .

(7.5)

https://doi.org/10.1017/prm.2023.86 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.86


A weighted Trudinger–Moser inequalities and applications 41

In a similar way, we have

|∇un|Lq(RN ) =
(∫

RN

|∇un|q dx
) 1
q

=
(∫

RN

|∇TL(un)|q dx+
∫

RN

|∇GL(un)|q dx
) 1
q

=
(
|∇TL(un)|qLq(RN ) + |∇GL(un)|qLq(RN )

) 1
q

� (1 + δ)−
1
q |∇TL(un)|Lq(RN ) + (Dq(δ))−

1
q |∇GL(un)|Lq(RN ) . (7.6)

A simple analysis shows that the function defined on ]1,+∞[ by

t 
−→
(

z

(z
1
t−1 − 1)t−1

)− 1
t

=
(
1 − z

1
1−t

) 1−t
t

,

where z is some fixed real number such that z > 1, is nondecreasing. Thus,

(DN (δ))−
1
N � (Dq(δ))−

1
q .

From (7.5) and (7.6), we get

1 = ‖un‖q,β = |∇un|LNwβ (RN ) + |∇un|Lq(RN )

� (1 + δ)−
1
q

(
|∇TL(un)|LNwβ (RN ) + |∇TL(un)|Lq(RN )

)
+ (Dq(δ))−

1
q

(
|∇GL(un)|LNwβ (RN ) + |∇GL(un)|Lq(RN )

)
� (1 + δ)−

1
q ‖TL(un)‖q,β + (Dq(δ))−

1
q ‖GL(un)‖q,β .

Putting (7.3) in that last inequality and using the fact that

lim inf
n→+∞ ‖GL(un)‖q,β � ‖GL(u)‖q,β ,

we infer

(p1(1 + ε))
1−β
N′ � (1 + δ)−

1
q

1 − ‖GL(u)‖q,β (Dq(δ))−
1
q

. (7.7)

Now, consider the function defined on ]1,+∞[ by

x 
−→ 1

x− ‖GL(u)‖q,β
(
x

q
q−1 − 1

) q−1
q

.

A quick analysis of this function shows that it attains its maximum at the point

x0 =
1(

1 − ‖GL(u)‖qq,β
) q−1

q
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and this maximum is

1(
1 − ‖GL(u)‖qq,β

) 1
q

.

Hence,

max
x>1

x−
1
q

1 − ‖GL(u)‖q,β
(

x

(x
1
q−1 −1)q−1

)− 1
q

= max
x>1

1

x
1
q − ‖GL(u)‖q,β (x

1
q−1 − 1)

q−1
q

= max
x>1

1

x− ‖GL(u)‖q,β
(
x

q
q−1 − 1

) q−1
q

=
1(

1 − ‖GL(u)‖qq,β
) 1
q

.

Consequently, the function defined on ]0,+∞[ by

δ 
−→ (1 + δ)−
1
q

1 − ‖GL(u)‖q,β (Dq(δ))
−1
q

attains its maximum at the point δ0 > 0 given by the identity

(1 + δ0)
1
q =

1(
1 − ‖GL(u)‖qq,β

) q−1
q

,

and this maximum is

1(
1 − ‖GL(u)‖qq,β

) 1
q

.

Thus, choosing δ = δ0 in (7.7), it comes

(p1(1 + ε))
1−β
N′ � 1(

1 − ‖GL(u)‖qq,β
) 1
q

,

which is in contradiction with (7.1). Therefore, (7.2) holds. The rest of the proof is
similar to what has been done in the proof of theorem 1.5 (with suitable adaptation)
and, in order to avoid redundancy, the details will be omitted. For the case β = 1,
we can easily adapt the same arguments used previously for the case 0 < β < 1 to
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prove that there exists ε > 0 small enough and L > 0 large enough such that

lim sup
n→+∞

‖TL(un)‖q,1 <
(

1
p1(1 + ε)2

) 1
N′
.

The rest of the proof of (1.31) is similar to the proof of (1.27) and will be omitted.
The same can be said concerning (1.32) whose proof is similar to (1.28). This ends
the proof of theorem 1.6.

8. Applications to some elliptic equations

In this section, we deal with the following elliptic equation:

− div
(
w1(x) |∇u|N−2 ∇u

)
− Δqu = f(u), in R

N , N � 2, 1 < q < N, (8.1)

where f : R → R is a continuous function such that f(s) = 0, ∀ s � 0. Here, we
assume that the weight given by (1.13) satisfies

inf
x∈RN

w1(x) > 0.

By this assumption, it yields Eq,1 ↪→ EN,qr with continuous embedding where EN,qr

is defined in [19] as the subspace of radial functions of the completion of C∞
0 (RN )

with respect to the norm

u 
−→
(∫

RN

|∇u|N dx+
(∫

RN

|∇u|q dx
)N

q

) 1
N

, u ∈ EN,qr .

By [19, proposition 2.1], we know that EN,qr is continuously (resp. compactly)
embedded into Lt(RN ), ∀ q∗ � t < +∞ (resp. ∀ q∗ < t < +∞). Consequently, the
embedding Eq,1 ↪→ Lt(RN ) is continuous for q∗ � t < +∞ and compact for q∗ <
t < +∞. We assume that f has a critical double exponential growth at infinity,
that is there exists a constant α0 > 0 such that

lim
s→+∞

f(s)

eNeαsN
′ =

{
0, if α > α0,

+∞, if α < α0.
(8.2)

We also assume that: (F1) There exists θ > N such that

0 < θF (s) = θ

∫ s

0

f(t) dt � f(s)s, ∀ s > 0.

(F2) There exist C > 0, s1 > 0 and p > max {q∗, N} such that

f(s) � Csp−1, ∀ 0 � s � s1.

(F3) There exist A > 0 and r > q such that

F (s) � Asr, ∀ s � 0.
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Example 8.1. An example of a function f satisfying the conditions (F1) − (F3) is
given by: f(s) = F ′(s), where

F (s) = sm

(
e
N

(
eαs

N′
−1

)
− 1

)
, ∀ s � 0, F (s) = 0, ∀ s � 0,

with α > 0, m > max {N, q∗}. A radial weak solution of the equation (8.1) is a
function u ∈ Eq,1 such that

∫
RN

w1(x) |∇u|N−2 ∇u∇v dx+
∫

RN

|∇u|q−2 ∇u∇v dx =
∫

RN

f(u)v dx, ∀ v ∈ Eq,1.

Theorem 8.2. Assume that (F1) − (F3) hold. Then, there exists A0 > 0 such that
the equation (8.1) has at least one nontrivial and nonnegative radial weak solution
for all A > A0.

The energy functional associated to (8.1) is

I(u) =
1
N

∫
RN

|∇u|N w1(x) dx+
1
q

∫
RN

|∇u|q dx−
∫

RN

F (u) dx, u ∈ Eq,1.

Lemma 8.3. Assume that (F1) and (F2) hold. Then, the functional I satisfies the
(PS)c condition for all c <

(
1
N − 1

θ

)
min

{
1, ωN−1

αN−1
0 2N−1

}
.

Proof. For the simplicity in notation, set

Φ1(s) = es − Sj1−1(s), ∀ s � 0.

Let (un)n ⊂ Eq,1 be a (PS) sequence of I at a level c <
(

1
N − 1

θ

)
min

{
1, ωN−1

αN−1
0 2N−1

}
.

It yields

θI(un) − 〈I ′(un), un〉 = θc+ on(1) ‖un‖q,1
�(
θ

N
− 1

)∫
RN

|∇un|N w1(x) dx+
(
θ

q
− 1

)∫
RN

|∇un|q dx

+
∫

RN

(f(un)un − θF (un)) dx = θc+ on(1) ‖un‖q,1 ,

where on(1) stands for any sequence of nonnegative real numbers converging to zero
when n tends to +∞. Since θ > N > q, from (F1) we can immediately deduce that

https://doi.org/10.1017/prm.2023.86 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.86


A weighted Trudinger–Moser inequalities and applications 45

(un)n is bounded. Moreover,

lim sup
n→+∞

(
|∇un|NLNw1

(RN ) + |∇un|qLq(RN )

)
� θc

θ
N − 1

=
Nθc

θ −N
. (8.3)

Taking into account that Nθc
θ−N < 1, we deduce from (8.3) that, up to a subsequence,

|∇un|NLNw1
(RN ) + |∇un|qLq(RN ) < 1.

Thus,

|∇un|NLNw1
(RN ) + |∇un|qLq(RN ) � |∇un|NLNw1

(RN ) + |∇un|NLq(RN )

� 21−N
(
|∇un|LNw1

(RN ) + |∇un|Lq(RN )

)N
� 21−N ‖un‖Nq,1 .

Putting that last inequality in (8.3), we get

lim sup
n→+∞

‖un‖Nq,1 � Nθ2N−1c

θ −N
.

Then, there exist ε0, ε1 > 0 and a subsequence of (un)n, still denoted by (un)n,
such that

‖un‖q,1 <
⎛⎝ ω

1
N−1
N−1

(1 + ε0)(1 + ε1)α0

⎞⎠
1
N′

, ∀ n.

Let u ∈ Eq,1 be the weak limit of (un)n in Eq,1. We claim that, up to a subsequence,
un → u strongly in Eq,1. Let t > q∗ − 1. By (8.2) and (F2), we have∣∣∣∣∫

RN

f(un)(un − u) dx
∣∣∣∣

� c6

∫
RN

|un|p−1 |un − u|dx

+ c6

∫
RN

|un|t−1 |un − u|Φ1

(
N
(
e(1+ε0)α0|un|N′

− 1
))

dx

� c6

(∫
RN

|un|p dx
) p−1

p
(∫

RN

|un − u|p dx
) 1
p

+ c7

(∫
RN

|un|t+1

) t−1
t+1

(∫
RN

|un − u|t+1 dx
) 1
t+1

×
(∫

RN

Φ1

(
(t+ 1)N

(
e(1+ε0)α0|un|N′

− 1
))

dx
) 1
t+1

, ∀ n. (8.4)
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Clearly, there exist c8 > 0 and s2 > 0 such that

Φ1

(
(t+ 1)N

(
e(1+ε0)α0|s|N′

− 1
))

� c8Φ1

(
N
(
e(1+ε0)(1+ε1)α0|s|N′

− 1
))

, ∀ |s| � s2.

Hence, ∫
RN

Φ1

(
(t+ 1)N

(
e(1+ε0)α0|un|N′

− 1
))

dx

=
∫
{|un|�s2}

Φ1

(
(t+ 1)N

(
e(1+ε0)α0|un|N′

− 1
))

dx

+
∫
{|un|<s2}

Φ1

(
(t+ 1)N

(
e(1+ε0)α0|un|N′

− 1
))

dx

� c8

∫
RN

Φ1

(
N
(
e(1+ε0)(1+ε1)α0|un|N′

− 1
))

dx

+
∫
{|un|<s2}

Φ1

(
(t+ 1)N

(
e(1+ε0)α0|un|N′

− 1
))

dx. (8.5)

Plainly, there exists a positive constant κ such that

e(1+ε0)α0s
N′

− 1 � κsN
′
, ∀ 0 � s � s2.

Then, we can derive that∫
{|un|<s2}

Φ1

(
(t+ 1)N

(
e(1+ε0)α0|un|N′

− 1
))

dx

=
+∞∑
j=j1

(t+ 1)jN j

j!

∫
|un|<s2

(
e(1+ε0)α0|un|N′

− 1
)j

dx

�
+∞∑
j=j1

(t+ 1)jN jκj

j!

∫
|un|<s2

|un|N
′j dx. (8.6)

Having in mind that if j � j1, then N ′j � q∗, it follows from (8.6) that∫
{|un|<s2}

Φ1

(
(t+ 1)N

(
e(1+ε0)α0|un|N′

− 1
))

dx

�
+∞∑
j=j1

(t+ 1)jN jκjsN
′j

2

j!

∫
|un|<s2

∣∣∣∣uns2
∣∣∣∣N ′j

dx

�
+∞∑
j=j1

(t+ 1)jN jκjsN
′j

2

j!

∫
|un|<s2

∣∣∣∣uns2
∣∣∣∣q

∗

dx

� e(t+1)NκsN
′

2

sq
∗

2

∫
RN

|un|q
∗

dx.
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Hence, there exists a positive constant c9 > 0 such that∫
{|un|<s2}

Φ1

(
(t+ 1)N

(
e(1+ε0)α0|un|N′

− 1
))

dx � c9

∫
RN

|un|q
∗

dx.

Putting that last inequality in (8.5), we get∫
RN

Φ1

(
(t+ 1)N

(
e(1+ε0)α0|un|N′

− 1
))

dx

� c8

∫
RN

Φ1

(
N
(
e(1+ε0)(1+ε1)α0|un|N′

− 1
))

dx+ c9

∫
RN

|un|q
∗

dx

= c8

∫
RN

Φ1

(
N

(
e
(1+ε0)(1+ε1)α0‖un‖N′

q,1

∣∣∣ un
‖un‖q,1

∣∣∣N′

− 1

))
dx+ c9

∫
RN

|un|q
∗

dx

� c8

∫
RN

Φ1

(
N

(
e
ω

1
N−1
N−1

∣∣∣ un
‖un‖q,1

∣∣∣N′

− 1

))
dx+ c9

∫
RN

|un|q
∗

dx.

Using (1.22), it yields

sup
n

∫
RN

Φ1

(
(t+ 1)N

(
e(1+ε0)α0|un|N′

− 1
))

dx < +∞.

Now, since t+ 1 > q∗ and p > q∗, then the embeddings Eq,1 ↪→ Lt+1(RN ) and
Eq,1 ↪→ Lp(RN ) are compact. It follows from (8.4) that∫

RN

f(un)(un − u) dx→ 0, n→ +∞.

Taking into account that

〈I ′(un), un − u〉 =
∫

RN

|∇un|N−2 ∇un∇(un − u)w1(x) dx

+
∫

RN

|∇un|q−2 ∇un∇(un − u) dx

−
∫

RN

f(un)(un − u) dx

→ 0, n→ +∞,

we infer un → 0 strongly in Eq,1. This ends the proof of lemma 8.2. �

Now, we claim that there exist ρ0 > 0, ρ1 > 0, e0 ∈ Eq,1 such that ‖e0‖q,1 >
ρ0, I(e0) < 0, and

I(u) � ρ1, ∀ u ∈ Eq,1, ‖u‖q,1 = ρ0.
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Given u ∈ Eq,1 and t > p. By (8.2) and (F2), we have∫
RN

|F (u)|dx � c10

∫
RN

|u|p dx+ c10

∫
RN

|u|t Φ1

(
N
(
e2α0|u|N′

− 1
))

dx

� c10

∫
RN

|u|p dx+ c11

(∫
RN

|u|t+1 dx
) t
t+1

∫
RN

Φ1

(
(t+ 1)N

(
e2α0|u|N′

− 1
))

dx

� c12 ‖u‖pq,1 + c12 ‖u‖tq,1
∫

RN

Φ1

(
(t+ 1)N

(
e2α0|u|N′

− 1
))

dx

� c12 ‖u‖pq,1 + c13 ‖u‖tq,1
∫

RN

Φ1

(
N
(
e3α0|u|N′

− 1
))

dx. (8.7)

For u ∈ Eq,1 such that ‖u‖q,1 = ρ0 < min

⎧⎨⎩1,

(
ω

1
N−1
N−1
3α0

) 1
N′
⎫⎬⎭ , by (1.22), there

exists a constant c14 > 0 such that∫
RN

Φ1

(
N
(
e3α0|u|N′

− 1
))

dx �
∫

RN

Φ1

(
N

(
e
ω

1
N−1
N−1

∣∣∣ u
‖u‖q,1

∣∣∣N′

− 1

))
dx � c14.

Putting that inequality in (8.7), for u ∈ Eq,1 such that ‖u‖q,1 = ρ0, it yields

I(u) � 1
N

|∇u|NLNw1
(RN ) +

1
q
|∇u|qLq(RN ) − c15

(
‖u‖pq,1 + ‖u‖tq,1

)
� 1
N

(
|∇u|NLNw1

(RN ) + |∇u|NLq(RN )

)
− c15

(
‖u‖pq,1 + ‖u‖tq,1

)
� 21−N

N

(
|∇u|LNw1

(RN ) + |∇u|Lq(RN )

)N
− c15

(
‖u‖pq,1 + ‖u‖tq,1

)
� 21−N

N
‖u‖Nq,1 − c15

(
‖u‖pq,1 + ‖u‖tq,1

)
� 21−N

N
ρN0 − 2c15ρ

p
0. (8.8)

Plainly, one could choose ρ0 small enough such that ρ0 <
(

21−N
2Nc15

) 1
p−N

. By (8.8),
we deduce that

I(u) � 21−N

N
ρN0 − 2c15ρ

p
0 = ρ1 > 0, ∀ u ∈ Eq,1, ‖u‖q,1 = ρ0.

Now, for a fixed φ ∈ C∞
0,rad(R

N )\{0} such that φ � 0, we have

I(tφ) → −∞, as t→ +∞.

In fact, from the hypothesis (F1), one can see that there exist two positive constants
c16 and c17 such that

F (s) � c16s
θ − c17, ∀ s � 0.

https://doi.org/10.1017/prm.2023.86 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.86


A weighted Trudinger–Moser inequalities and applications 49

Let

c= inf
γ∈Γ

max
0�t�1

I(γ(t))�ρ1>0, where Γ={γ ∈ C([0, 1], Eq,1), γ(0)=0, I(γ(1))<0} ,

the mountain pass level of the functional I. In order to complete the proof of
theorem 8.1, it suffices to show that there exists A0 > 0 such that

c <
θ −N

2N−1Nθ
min

{
2N−1,

ωN−1

αN−1
0

}
, ∀ A > A0. (8.9)

For that aim, fix a function φ0 ∈ C∞
0,rad(R

N ) such that φ0 �= 0 and φ0 � 0. By (F3),
we have

I(φ0) =
|∇φ0|NLNw1

(RN )

N
+

|∇φ0|qLq(RN )

q
−
∫

RN

F (φ0)dx

�
|∇φ0|NLNw1

(RN )

N
+

|∇φ0|qLq(RN )

q
−A |φ0|rLr(RN ) .

We infer,

I(φ0) < 0, ∀ A >

|∇φ0|NLNw1
(RN )

N +
|∇φ0|q

Lq(RN )

q

|φ0|rLr(RN )

.

Hence, for A >

|∇φ0|N
LNw1

(RN )

N +
|∇φ0|q

Lq(RN )
q

|φ0|rLr(RN )
, the function γ0 : [0, 1] → Eq,1 defined by

γ0(t) = tφ0

belongs to Γ. Consequently,

c � max
0�t�1

I(tφ0)

� max
0�t�1

⎛⎝ tN |∇φ0|NLNw1
(RN )

N
+

tq |∇φ0|qLq(RN )

q
− Atr |φ0|rLr(RN )

⎞⎠
� max

0�t�1

⎛⎝⎛⎝ |∇φ0|NLNw1
(RN )

N
+

|∇φ0|qLq(RN )

q

⎞⎠ tq − Atr |φ0|rLr(RN )

⎞⎠

=

⎛⎝ q
N

|∇φ0|NLNw1
(RN ) + |∇φ0|qLq(RN )

Ar |φ0|rLr(RN )

⎞⎠
q
r−q

⎛⎝ |∇φ0|NLNw1
(RN )

N
+

|∇φ0|qLq(RN )

q

⎞⎠(
1 − q

r

)
.

https://doi.org/10.1017/prm.2023.86 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.86


50 S. Aouaoui

Clearly, there exists A0 >

|∇φ0|N
LNw1

(RN )

N +
|∇φ0|q

Lq(RN )
q

|φ0|rLr(RN )
large enough such that

⎛⎝ q
N |∇φ0|NLNw1

(RN ) + |∇φ0|qLq(RN )

Ar |φ0|rLr(RN )

⎞⎠
q
r−q

⎛⎝ |∇φ0|NLNw1
(RN )

N
+

|∇φ0|qLq(RN )

q

⎞⎠(
1 − q

r

)

<
θ −N

2N−1Nθ
min

{
2N−1,

ωN−1

αN−1
0

}
, ∀ A > A0.

This ends the proof of theorem 8.1.
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