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Morphological classifications of natural materials are used in a wide variety of applications. Visual 

classification of some natural materials such as minerals, characterized by their wide morphological 

variations, are challenging. In some instances, differences between categories are subtle or forming 

continuum, causing high misclassification rates. Supervised machine learning (ML) is a powerful tool to 

automate and improve classification. However, most image classification algorithms require a large 

labeled dataset in which the quality of the initial labeling is critical. Since visual labeling of hundreds of 

thousands of images is a tedious and biased process, a specific learning strategy is proposed to circumvent 

such issues. This paper describes the classification procedure for gold grain morphologies obtained from 

backscattered electron images. 

 

Determining the morphology of gold grains is routinely used in gold deposit exploration in glacial tills. 

Gold grains are eroded and scattered from their source rocks by the  movement of glaciers. Due to its 

malleability, shapes and surface characteristics such grains contains crucial information on their 

geological setting and transport history. However, an accurate classification is a prerequisite in order to 

ensure realistic interpretation. Three shapes were first proposed [1] assumed to reflect the distance of 

transport, from “pristine” to “modified” to “reshaped”. However, the morphology and surface 

characteristics of very minute gold grains (< 30 µm) are hardly perceptible by optical microscopy 

commonly used for such. Moreover, this method is highly user-dependent. To circumvent those 

limitations, the use of an automated SEM-based routine was developed to detect and acquire a high 

magnification BSE image of gold grains from heavy mineral concentrates. This method greatly increases 

the resolution of surface characteristics and morphology of gold grains. Since minute gold grains have a 

lower probability of being deformed during transport, the likelihood of their original morphology 

preservation is higher than larger ones (˃ 30 µm). To better understand their geological settings, the 

definition of “pristine” ought to be further subdivided into four morphological classes based imprints 

related to their relation to adjacent mineral (Fig. 1): A) “Remobilized” grains are interpreted as crack-

filling flakes, which are very fragile due to their minimal thickness; B) “Crystalline” grains crystallized 

according to their cubic crystal system. Their edges are sharp with constant face angles and show minimal 

signs of deformation. C) “Mutual” grains are those who co-crystallized with minerals of similar 

crystallization habits. Their edges are curvy and convex. D) “Intergranular” grains are those with 

discernible sharp edges, but with concave faces, suggesting gold filled the boundaries of host minerals.   

 

Since early 2016, a total of 8 591 BSE images of gold grains were sorted by a trained geologist. Multiple 

automated classification algorithms have been tested on those images, with yield a maximal classification 

success of 64% when used upon the validation population. Such classification rate is four times higher 

than a random classifier, but still sufficient for decisional application. Variations of accuracy between 

different classification algorithms are not significant, suggesting issues from the learning dataset. The 

proposed strategy to improve the learning dataset is divided in three steps.  
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1) Subsets of the learning dataset were generated using the 100 best candidates in each category. The 

selection, based on preservation of discriminating features, was performed by trained geologist and 

validated by two others. 

2) The resulting subsets were used as training sets by the classification algorithm. Transfer learning, 

performing properly while using small datasets [2], was applied on the Google’s Convolutional Neural 

Network (CNN) architecture Inception-V3 [3] using TensorFlow [4]. In a high-level perspective, a 

CNN takes an image as the input, finds discriminating features and, on the last layer, classifies the 

images based on their features. Transfer learning on a CNN keeps the lower layers and retrains only 

the last layer with new categories. The accuracy of the learning on the best candidate subset reached 

99,3% on the validation set (25% of the dataset), meaning that categories are unambiguous enough to 

be distinguished with ML and that the chosen model has a similar feature space than our training 

images. 

3) Morphologies of grains from the initial dataset were classified using algorithms from step 2. Predictions 

were validated by a trained geologist and globally rechecked by another professional. During the 

validation process, the geologist had to decide if the grains were correctly classified, and if not, 

manually reclassified. The accuracy of the machine classification was proofed at 87%. The 

reclassification by the geologist in step 3 is kept in preference over the machine prediction model. 

 

Improving the classification algorithm is performed by iterating the learning process presented in step 2 

on the entire classified population. A final accuracy of 92% is achieved, which is adequate for this type of 

application. Compared to the initial classification, this suggests that 49.7% of grains were misclassified 

using visual interpretation, reinforcing the need of automated classification. 
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Figure 1.  Morphologies of pristine grains. A) Remobilized, B) Crystalline, C) Mutual D) Intergranular.  
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