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Non-uniform Randomized Sampling
for Multivariate Approximation by
High Order Parzen Windows

Xiang-Jun Zhou, Lei Shi, and Ding-Xuan Zhou

Abstract. 'We consider approximation of multivariate functions in Sobolev spaces by high order Parzen
windows in a non-uniform sampling setting. Sampling points are neither i.i.d. nor regular, but are
noised from regular grids by non-uniform shifts of a probability density function. Sample function
values at sampling points are drawn according to probability measures with expected values being
values of the approximated function. The approximation orders are estimated by means of regularity of
the approximated function, the density function, and the order of the Parzen windows, under suitable
choices of the scaling parameter.

1 Introduction and Formal Setting

We will consider approximation of functions on R” from samples of type z =
{(x, ¥i) }iewr. If f* is a function to be approximated, then in our setting described
below, the sample function value y; at the sampling point x; satisfies y; ~ f*(x;).
In randomized sampling, the sampling points {x; } are governed by some probability
distributions.

In this paper we continue our study [11] on randomized sampling of functions on
IR” by means of high order Parzen windows

fro(0) = yi® (x xi) . xER".

-, —
e/ g

Here ®: R" x R” — R is a window function and ¢ > 0 is a window width. Under
some conditions on the approximated function f*, window function ®, and noise
controlling y; — f*(x;), the error in L*(R") between f* and f,, (with normalization)
is analyzed in [11] when {x; };c7+ is drawn randomly from a sequence of probability
densities { p(- — hi) };ez» for some fixed density function p on R" and some grid size
h > 0. In that setting, {x;} is uniform in expectation: E(x;) = hi + E(p) for each
ie/Z"

The purpose of this paper is to establish improvements of the above result in two
directions. First, we consider a non-uniform setting in the sense that the sampling
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points {x; };cz» are drawn according to the probability density functions {p(- —t;)}
with non-uniform nodes {;} satisfying sup;.,. |t; — hi| < A. The quantity A > 0
measures the degree of non-uniformality as in the literature of non-uniform sam-
pling [1]. Secondly, we estimate bounds for the error in Sobolev spaces H*(R") by
allowing s > 0, not only in the space L2(R") with s = 0. To this end, the basic win-
dow function @ is defined in terms of the index s. Throughout this paper, 0 < s < J
are two integers. For a = (a,...,q,) € 7" and x = (x',...,x") € R", we denote
X =T, ()Y, af = oy + -+ + ay, and D*®(x, 1) = F2(B(-, u))(x).

Definition 1.1 A function ®: R" x R" — R is called a basic window function of
type (], s) if it satisfies

1) Ju @, u)du = 1and [, P(x, u)(u —x)* du=0for0 < |a| < J;

(ii) forsomegq > n+ Jandc, > 0,

C
1.1 D*® <1 v R"0 < |a| <s.
(1.1) | (x,u)|_(1+|x_u|)q x,u € R",0<|a| <s

Condition (i) above is called the vanishing moment condition in the literature of
multivariate approximation [3] or wavelets [4].

As in the literature of Shannon sampling [8] or online learning [9], we shall as-
sume throughout this paper that the sample z = {(x;, y;) }iez» is drawn indepen-
dently from a sampling sequence {p"};c7: of probability measures on Z := R" x R
associated with (M, h, A, p).

Definition 1.2 LetM,A > 0,0 < h < 1and p be a probability density function on
R". Each x € R” is assigned a Borel probability measure p, supported on [—M, M],
and {t;}icz» C R" is a sequence satisfying |t; — hi] < A for each i € 7". We call
{p"}iczn a sampling sequence associated with (M, h, A, p) if for each i, the marginal
distribution p§;) of p¥ on R" has density p(- — t;) and the conditional distribution
of p'” at each x € R" equals p,.

Define a function f* to be approximated by

f*(x) = / ydpy, x e R"
R

2 Main Result

Our main result provides bounds for the approximation of the function f* on R" by
(normalized) f,, in the Sobolev space H*(R") with norm

I fllan = > 11D fllza-

la]<s

Denote the variance of p, by o2.
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Theorem 2.1 Let ® be a basic window function of type (], s). Assume f* € CTH(R"),
p € C*(R"), and that for some n > 2n and c, > 0, each of the functions D f*, D“p
with |o| < J + s and o satisfies the decay condition

o

IfA < ' then by taking o = hwa1, for any 0 < § < 1, with confidence 1 — 8, we
have

~ nJ—s) 2
H®) < CymJs {(1 +M)cy + cq(:,z7 + Can*HHS(]Rn)} kw7 log 5

2n]

H hil fo o — f°

where C~q,n,7;,],s is the constant depending only on q,n,n, ], s.

Theorem2.Tlwill be proved in Section[d]with the constant éqm,ﬁ 1. given explicitly.

The idea of approximation in Sobolev spaces can be used to learn norms of gradi-
ents %{C - for variable selection and inner products <%{C - %
[2,5]. We shall discuss details somewhere else.

It would be interesting to study the randomized sampling for dependent sam-

ples [10].

) for studying covariances

3 Sample Error and Approximation Error

The sample error refers to the difference between f,, and its data-free limit defined
by

X u £3 n
(3.1) £ (x) = Ancb (;,;) f (u)ie%p(u—ti)du, x € R

It can be bounded by the following probability inequality for random variables with
values in a Hilbert space (see [7] or [6]).

Lemma 3.1 Let H be a Hilbert space, and let {&;}iczn be ind@endent random vari-
ables on Z with values in H. Assume that for each i, ||&;]] < M < oo almost surely.
Denote 5 =, . E(||&i||*). Then for any 0 < § < 1, with confidence 1 — 6,

| 16— B < 2010g2/0) + /257 Tog(2/0).
i€/

In our setting, we take {&; };czn to be the random variable on Z with values in the
Hilbert space H*(R") given by

-tz )= [ (D

S (5 2) - [0 (2 oo

Then we can apply Lemma [3.1] to obtain bounds for sample error. To this end, we
need the Sobolev space norm of the function ® (; ~ )

Yo
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Lemma 3.2 Let 0 < o < 1. If (1) holds, then for any x € R", we have

o (2], <
g o

< )
H®Y) — 4/(2q — n)T'(n/2)

where I'(t) is the Gamma function defined by T'(t) = [ r'~'e~"dr fort > 0.

Proof Forany a € 7! with 0 < |a| < s, we have
2

. 2 .
|2 (2 (G o))y = 2 (5:5)
o' o L2(Rn) o o/ HL2Rm)

2 27r"/2c§

< 5—2lol / L T S Y e T
- R (14 |u—x| ) 97" = (2g — m)['(n/2)

a

Since 0 < o < 1, we have 0—21%l < =2 and the desired bound follows. ]

Proposition 3.3 Let ® be a basic window function of type (], s), and let z be a sample.
Forany 0 < 6 < 1, with confidence 1 — §, we have

| fro = follmsmn <
8cy(s + 1)ir/Ag s 2 / 2 * |2 1
log < —tydx) Y
24— M(n/2) og{ M+ ( [ o+ 2l ol ]ie%p(x rdx) )

Proof Since p, is supported on [—M, M], | f*(x)| < M for each x. By Lemma[3.2
the random variable §; = y;® (;, x;) - fuv P (;, ?) plx — t;) f*(x)dx with values

in H*(R") satisfies

X
wan <Mfle (2 2)] 0t |
o’ o/ llmmny g

P ( . x) HHS(R") plx — )| f*(x)|dx

- =
g o

1141
- 4Mcy(s + 1)"m"/4 i
V(29 —n)'(n/2)
Write &; as

&= (ri—fx)® (; x;) +f(x)® (; x;) —/M ® (; g) ple—1;) f* (x)dx.

Then we see from Lemma[3.2] that for each i € 7",

Ry <

[1€:1
2¢,(s + 1)”7?”/4 ois

{|yi — )|+ ()| + /{R{” |f*(x)|px — ti)dx} 24 -T2
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It follows from ( f,,, | f*(x)|p(x — t,-)dx)2 < Jp ;)dx that
Z E (ll&ll ) <
iezn
12¢2(s + 1)2n/2
B ol +2|f*(x)|? (x — £;)dx » o™=,
(2q — W (n/2) A{ vl @i 2
Then our conclusion follows from Lemma[3.1] [ |

Now we turn to the approximation error. We show that in the space H*(R"), f,
tendsto f* Zie'/é" p(- —t;) as o becomes small.

Proposition 3.4 Let @ be a basic window function of type (],s) defined as Defini-
tion[LT) Define f, by B.). If the function f*3. ., p(- — t;) lies in H**(R"), then
forany o < 1, we have

fr= oY (=10

(3.2) ‘
e

Hs(R") —

2. 3”5cq7r”/25'

(q—J—n)r(n/é)];”f*ZP(‘ —1)

ez

0_711’]75'
HI*s(R")

Proof Denote g(x) = f*(x) >y p(x — t;). We apply a Taylor expansion to the

function
x u
f,(x) = /R (%Y gtwydu

Let u, x € R". Define a univariate function 4 : [0,1] — R as
h(t) = glx + t(u — x)), t €[0,1].

Then we have

&2 hO(0) 1 :
=h(l) = 1—v)/ ' (v)dv.
st =) =32 = [ A=y

Since h'O(t) = Z|a\:£(” —x)*D%(x + t(u — x)), we see

fiw = [ o 55 LS gt

=0 " Ja|=¢

X u o J—1 o a o o
+A{n <I>(U . (] 1)'/ 1—-w) ;}(u x)*D(x + v(u — x))dvdu.
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Since fW ®(Z, 2)du = 0", we know from property (i) of the basic window function
® that

_ n 1 ! )/l
Fols) = 0"+ gy [ =)

Z {/ @(;,g)(ux)aDag(x-kv(ux))du} dv.
]Yl

laf=7

To compute the H*(R")-norm of f, — o”g, we take 3 € 7" satisfying |5] < s. We
have

DS{/(I)x,u — x)ep~ — d}_
. (U U)(u x) glx+v(u—x))du Z

JKIET j+k+I=0

al
(a0 —k)!

B U—\J'\Dj(p(f E)
]!k!l! R” O', g

(=DM (u—x)* Q=) D g (etv(u—2x) ) du.

Thus HDﬁ (fo —o"g) || L@ 18 bounded by

al Bl 1 ! T
2. 2 (a— Kl jkn’ m(]—l)!/o =) o i)y,

la|=] jtk+1=03

where for v € (0, 1),

]cy,j,k,l(v) =

/ Di® ( f, E) (u — %) * D g (x + v(u — x))du
] n

g O

L2(R™)

We need to estimate J, jx(v). By the Schwarz inequality

(Jojaa)” < / {/]
I

Decay condition (1)) of @ tells us that

Dj<1><§, g) ‘ ’(u —x)“*k| du

Dj<I>(§, g) ‘ ’(u — x)“_k| ‘D“”g(x +v(u — x))|2 du} dx.

|a—k|
: X U ' CglU
/ D]<I><f,f)“(ufx)“*k|du§0”+“‘*k| L u <
R? g o R" (1+|M|)q
chwn/20n+]7|k|

(q+ |kl = J—mI(n/2)’
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Make a variable change w = x + v(u — x). We see that

/]n

Dj<1><§, g) ’ ’(ufx)“*k| |D“+lg(x+v(ufx))|2du <

Lo
re (L4225

It follows from the Schwarz inequality that

w

(

|Da+lg(w) |2 v "dw.

— Xia—k
—)

(]a,j,k,l(v))z <

chﬂn/20n+lf|k| ) c |u||afk\
Da+l (W) O,n+|a7k| / qidudw,
(q+ 1kl = J=m)T(n/2) Jp | 8 | re (1+ [u])d
. . 2,2 1K 2 "
which is bounded by (m) |ID°*g]|2, ) Therefore,
6] n
||D (fo—0o"g) ||L2(R”)
al B 1 1 2¢,m"2 gt ll= Ik "
< , D¢l 2o
- (ﬂz—]ﬁ;ﬂ (a =R RN (=1 T+ (g+ k| — ] —n)T(n/2) H gHL (")
2. 3]+sc 7T"/25!0'”+]_5
< q D(!+l .
~(@—J-ml(n/2)] El_:”; 127l

Hence, bound (B2 for || f, — o"g]

= i< P’ (fr = 0"8) | follow:

4 Deriving Convergence Rates
Combining Propositions[33]and[3.4] we obtain bounds for the total error.

Proposition 4.1 Under the assumption of Theorem 21l for 0 < o,h < 1 we have
with confidence 1 — 6,

hn z,0 * 2 noo_n_
(4.1) ’fn’—f gC(1+A)"log3h20 278
o

Hs(R")
n,_n n _n n _n n n
max{l, o hT Ao thT AT e i T 2,02+5h2+1}
where C is a constant independent of 6, o, h, or A.

Proof Let us first refine the bound in Proposition3.3l Since o2 and p satisfy decay
condition (2.1]), we have for i € 7",
Cn Cn d
X

/ crip(x —t))dx <
]n
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We divide R” into two domains, one with |x — hi| > 2A and the other with |x — hi| <
2A.

When |[x—hi| > 2A, we have |x—t;| > |x—hi|—|t;—hi| > |x—hi|—A > 1|x—hi.
It follows that

/ S 7 e < S 2] dx
l—hij>2a (L+[x))7 (14 |x —; |)’ = e (LX) (1 + 3 — i)

_ ] ] dx / S S
+ —dx
/|x>lh|| (1+|x|)77 (1+2|X—h1|)77 || < L]l (1+|_x|)"] (1+%|x—h1|)’7

< S / S Gy / S dx
T+ LR Jpe A+ L x— hz|)’7 (1 + Lhli))1 Jpe (14 |x])

< znﬂcrz”n/z(l + 1h|'|) e (14— h\ ).
= —mTm\ 2" (n — )T (n/2)

When |x — hi| < 2A, we have |x| > hli| — 2A. Thusif |i| > %2, we have |x| > 1h]i|
and

/ Gy Gy o < G S
—nij<2a (14 [x[)7 (1 + [x — fz|)" = (L4 3hliD7 Jpe (1 |x = fz|)"

267r

is bounded by m(1+ Lhli)—.
If i| < 4A,we see that

c 2 22/
/ n n dx S n dx g
l—hij<2a (L4 X7 (1 + [x — £]) re (1 [x[)7 (n —mI(n/2)

is bounded by W(l + 1 h| |) 77(1 + ZA)U
Applying the above estimates together with the following bound from [11]

27.rn/2

Z(l"' h| 7" < (f+1)"+(4/h)”Tm/2),

i€z
we see that ), . [, 0 p(x — t;)dx is bounded by

n/2 2

n/2
(n —mI'(n/2) } '

F*(x)]>p(x —t;)dx is bounded by the above same expres-

2
2cn7r

U]TF(H/Z){ZH*—Z’H— 1 +(1+2A)”} {(\/ﬁ+ 1)”+(8/h)"

In the same way, > i fRn
sion with ¢ , replaced by ¢; c.

Therefore from Prop051t10n|33|we see that with confidence 1 — 4,

8cq(s + 1)/t

(42) oo = Follwon < —7or—=mrs

Mot 1+ 22 H 808 10g %
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where ¢, , is a constant given by

3/2 n n n
_ @ ey /42””/2{(\/%1)"/%8 o }

Cn,n ('f] — H)F(f’l/z) (’r] — H)F(f’l/z)

In order to use Proposition 3.4} we need to bound the norm

‘f*Zp(-—ti)

e

H’*‘(]R{”)

Applying decay condition (2.I) again, we see that || f* >, _,. p(- — t)||grs(me) is
bounded by

S {2 +5) + 1} a4

“ Jan —mn)2)

It follows from Proposition[3.4] that

An4+77 n 8n7.l,n/2 —n
(1+A)"2 {(\/ﬁ+l)+(n—n)1“(n/2)}h )

na J+s+1 2, 3n/4
f(,fU”f*Zp(. —t) < {2(J +5) +1}"3 slegepm
i B®) ~ (g—J—n)J/(2n—nT(n/2)[(n/2)

(e ayzn ey s 8T\ g
" (—mTm/2)f° '

(4.3) ’

Finally, we must study the difference between ) ;. p(- —t;)and > ;. p(- —hi)
by the restriction sup, |t; — hi] < A. Forx € R",

> plx—hi) = > plx—t)

ez [<y4
<> |px — hi) — plx — hi — (t; — hi))|
<y
1
=> / > (6 — hi)*D? p(x — hi — u(t; — hi))du
iczn! /0 la]=1
! n/Ac
< n .
- %;/o (T = hi— ute; —

For every x € R”, we can find some k € 7" such that x — hk € [—%, %)”. Then
|x — hi| =[x — hk+h(k—i)| > 3|k —i|h. Separate }_,_,, into two parts D emhil>2A

(where |x — hi—u(t; —hi)| > |x—hi]|— A > 1{x—hi| foru € [0,1]) and D x—hil<2A-
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We have

> ple—hi) = plx—t)

iz i€z
> Z nACU , (ﬁ)nnACn
= (1+ Y — hi|)n h
< Z nAcn p (%)H”Acn
= 1+ 4|k i|h)

27rn/28n

—_— W"A + 4" nc,h ™ "A™!
CEEINEYE) } ne, +4"nc,

< {(ﬁ+1)"+

Combining an estimation in [11] for ‘h” Y icm W' plx — , we have

W Zp(x —t) — 1’ < ¢, {c) A+ 4" A" 4 (), + 2" h" Y
i€

where ¢; , is the constant given by

n/2qn
—{(\/ﬁ+1)"+ 2m"’8 }

(n —mI(n/2)

This, in connection with (4.2)) and ([4.3)), tells us that with confidence 1 — J, the total
error || U{, — *||=(rry is bounded by

8cy(s+ 1)/
V(2 —n)T'(n/2)

+ oyl s {c) oA + 4"nA™ + (¢

{2(] +5) + 1313744 sl /4 (1 + A)n2%+

(@—J —m '/ @2y —mT(n/2T(n/2)

., Snﬂ.n/z s
{(\/ﬁ+ 1) +(77n)F(n/2)}0 .

n 2
{M + 61+ )72} hio ™ log =

+ nzn)hn+l}

n.n

So desired bound (4.1]) holds true with the constant C taken to be

C =40c,(s+ )" {M + cyn} + ¢ || f7]
+{2(] + ) + 1337561, 2257 { (Vi + 1)" + 8"} .

HS(R”){ZCZ]ﬁ + I’l4n + n2”}

This proves Proposition 1] [ |

Now we can prove Theorem 2.l easily.
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n(J—s)
2]

Proof of Theorem2.1] Since A < h™»
and Aci*h~7 = 1. So we get

<lando = h#=7, we have o/*3h~3 = 1

n n

n, _n n _n n _n n n
max {1,0/"2h72 AciPhT A" PhTE g hat ) = 1

Then the conclusion of Theorem 2.1l follows from Proposition .1l with the constant

Commrs = 2"{40(s + 1)"{1 + ¢, 0} + 2¢), + nd" + n2"

+ {2(]+ 5) + 1}H3]+s+55126+7/ I:(\/ﬁ+ 1)n + 811] }

The proof of Theorem 2.1]is complete. [ |
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