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Abstract. We discuss the minimum of Willmore functional of torus in a
Riemannian manifold N, especially for the case that N is a product manifold. We
show that when N = S2 × S1, the minimum of W (T2) is 0, and when N = R2 × S1,
there exists no torus having least Willmore functional. When N = H2(−c) × S1, and
x = γ × S1, the minimum of W (x) is 2π2√c.
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1. Introduction. There are many interesting and important results and
conjectures on the global properties of surfaces in a Riemannian manifold. The classical
Willmore conjecture is one of famous open problems in this direction, concerning the
minimum of Willmore functional of a torus in S3. Willmore functional is known as an
important conformal invariant in the conformal geometry of submanifolds and there
have been many works on the global geometry of Willmore surfaces in space forms, see
[11, 13, 22], etc. There have been many classical results as to the Willmore conjecture,
i.e. the minimum of Willmore functional of a torus in Sn and its relation with the
conformal structure of the torus, see [11, 13], etc.

Till now there are few results on the global properties of Willmore surfaces in
generic Riemannian manifolds. And the influence of the conformal structure of Sn or
the Riemannian manifold on the infimum is also not clear. As to this problem, some
relevant works can be found in [3, 5, 10, 16]. We also note that there are several works
on the Willmore functionals via PDE, see [14, 15].

In [3], similar to Pinkall’s idea [19], Barros considered the behaviour of Willmore
functional of torus in S3 with different conformal metrics. By use of Hopf map, he
considered a kind of metrics gt on S3 which are not conformal to each other. Note
that when t = 1, g1 is just the standard metric on S3, and when t �= 1, (S3, gt) is known
as the Berger sphere. He showed that under such metrics, the minimum of Willmore
functional of tori derived by closed curves via the Hopf map is 2π2t2. So, different
from the Willmore conjecture, when t < 1, the minimum is less than 2π2. His result
gives an interesting description on the behaviour of Willmore functional of torus in
Sn with different conformal metrics. There are few further research. Here, we will
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discuss furthermore the behaviour of Willmore functional of a torus in a Riemannian
manifold.

As to this problem, we find that there are two different cases. In the first case, there
exist tori attaining the minimum of Willmore functional in the Riemannian manifold,
for example, the Riemanniani space forms, and some kind of product manifolds as
below. In the second case, there exist Riemannian manifolds without tori in them with
least Willmore functional.

To be concrete, on the one hand, we show that, for an immersed torus in
S2 × S1, W (T2) ≥ 0 and W (T2) = 0 if and only if it is congruent to the Clifford
torus x(u, v) = (cos u, sin u, 0, cos v, sin v) ⊂ S2 × S1. Furthermore, for a product
Riemannian manifold M × S1, if M has closed geodesics, there exist tori with
W (T2) = 0. For example, when M = Tn or Sn × Tm, etc, there are totally geodesic
(and hence totally umbilic) T2 in M × S1 with W (T2) = 0. On the other hand, we
prove that all tori in R2 × S1 satisfy W (T2) > 0. And there exist a kind of tori xt,
limt→∞ W (xt) = 0, showing that there exists no torus with least Willmore functional
in R2 × S1. We also show that if we change the metric on R2, we can get a metric such
that R2 × S1 has totally geodesic torus.

For the case M = H2(−c), we show that for torus x = γ × S1 ⊂ H2(−c) × S1,
W (x) ≥ 2π

√
c, where γ is an immersed closed curve of H2(−c). And W (x) = 2π

√
c if

and only if γ is congruent with a geodesic circle of radius sinh−1 1√−c . In this case the torus

is a Willmore torus in H2(−c) × S1.
This paper is organized as follows. In Section 2, we review the general theory of

submanifolds in a Riemannian manifold and the notion of Willmore functional. Then
we discuss an estimate of Willmore functional of Willmore surfaces in a Riemannian
manifold in Section 3. In Section 4, we consider the minimum of Willmore functional
of tori in M × S1, mainly for the case M = S2, R2 and H2(−c).

2. Variational equation for Willmore submanifolds and a first application. In this
section, using moving frames, we review the structure equations of submanifolds in a
Riemannian manifold first. Then, we give the description of Willmore functional and
the variational equation of Willmore functional. For more details, we refer to [9, 10].
Then, as a special case, we see that totally umbilic submanifolds give the simplest
examples of Willmore submanifolds.

Let x : M → N be an immersed submanifold into a Riemannian manifold (N, g)
with dimM = m, dimN = n. Let {θA} be a local orthonormal frame of N such that

x∗θα = 0, m + 1 ≤ α ≤ n.

We assume the region of the index as below:

1 ≤ i, j, k, · · · ,≤ m, m + 1 ≤ α, β, γ, · · · ,≤ n, 1 ≤ A, B, C, · · · ,≤ n.

For simplicity, we still denote x∗θA = θA and etc. So, we have the first fundamental
form I of x as

I = x∗g =
∑

i

(θi)2.
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Suppose that the structure equations and integrability equations of N are as
follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dθA =
∑

B

θAB ∧ θB, θAB + θBA = 0,

dθAB =
∑

C

θAC ∧ θCB − 1
2

∑
CD

R̃ABCDθC ∧ θD, R̃ABCD + R̃ABDC = 0.

(1)

Here, θAB and R̃ABCD denote respectively the connection and Riemannian curvature.
Restricting to M, we have

dθi =
∑

j

θij ∧ θj, θij + θji = 0, (2)

and ∑
i

θiα ∧ θi = 0. (3)

So, {θij} is the connection of x. And together with Cartan lamma, we have

θiα =
∑

j

hα
ij θj, hα

ij = hα
ji. (4)

Let {e1, e2, · · · , en} be the dual orthonormal basis of {θA} in N, i.e. θA(eB) = δAB. Then,
we can write down the second fundamental form II and the mean curvature vector �H
of x as

II =
∑

α

∑
ij

hα
ij θi ⊗ θjeα, �H = 1

m

∑
α

(
∑

i

hα
ii)eα =

∑
α

Hαeα. (5)

Recall that a point p ∈ M is called an umbilic point, if II(p) = �H(p)I(p). M is called a
totally umbilic submanifold if the second fundamental form

II = �HI (6)

on M. And furthermore M is called a totally geodesic submanifold if II ≡ 0, which is
the simplest case of totally umbilic submanifolds.

We define the Riemannian curvature Rijkl, the normal curvature Rαβkl, and the
covariant derivative hα

ij,k by

dθij −
∑

k

θik ∧ θkj = −1
2

∑
kl

Rijklθk ∧ θl, Rijkl + Rijlk = 0, (7)

dθαβ −
∑

γ

θαγ ∧ θγβ = −1
2

∑
kl

Rαβklθk ∧ θl, Rαβkl + Rαβlk = 0. (8)

∑
k

hα
ij,kθk = dhα

ij +
∑

k

hα
kjθki +

∑
k

hα
kiθkj +

∑
β

hβ

ij θβα. (9)
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By (1), we derive the integrability equations of x as⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Gauss equations: Rijkl = R̃ijkl +
∑

α

(hα
ikhα

jl − hα
ilh

α
jk),

Codazzi equations: hα
ij,k − hα

ik,j = R̃αikj,

Ricci equations: Rαβij = R̃αβij +
∑

k

(hα
ikhβ

kj − hα
jkhβ

ki).

(10)

Let

S = |II|2 =
∑
αij

(hα
ij )

2 (11)

denote the norm square of II . Set

ρ2 = S − m| �H|2 = |II − �HI|2 =
∑

1≤i<j≤m

(
1
m

(hα
ii − hα

jj )
2 + 2(hα

ij )
2
)

. (12)

It is direct to see that ρ ≡ 0 if and only if x is totally umbilic.
From the Gauss equations in (10), we have

R =
∑

ij

R̃ijij + m2| �H|2 − S, (13)

where R is the scalar curvature of M. So,

ρ2 = S − m| �H|2 = m(m − 1)| �H|2 − R +
∑

ij

R̃ijij. (14)

We define the Willmore functional as

W (x) : =
∫

M

⎛
⎝|H|2 − R

m(m − 1)
+ 1

m(m − 1)

∑
ij

R̃ijij

⎞
⎠

m
2

dM

=
(

1
m(m − 1)

) m
2
∫

M
ρmdM =

(
1

m(m − 1)

) m
2
∫

M
(S − m| �H|2)

m
2 dM.

(15)

It is well known (of [7, 8, 10, 22] ) that W (x) is invariant under conformal transforms
of N. We call a submanifold x a Willmore submanifold if it is a critical point of the
Willmore functional W (x).

To see the variational equation, we recall the definition of Laplacian of �H. Let∑
i

Hα
,iθi := dHα +

∑
β

Hβθβα,
∑

j

Hα
,ijθj := dHα

,i +
∑

k

Hα
,kθki +

∑
β

Hβ
,i θβα.

Then, we define the Laplacian of �H as

�⊥Hα :=
∑

i

Hα
,ii. (16)
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Similar, for a smooth function f on M, the Laplacian is defined as

�f :=
∑

i

fi,i, with
∑

i

f θi := df,
∑

j

fi,jθj := dfi +
∑

k

fkθki.

In [10], Hu and Li gave the variational equation for Willmore submanifolds:

THEOREM 2.1. (Hu-Li, [10]) Let x : M → N be an immersed submanifold as above.
It is a Willmore submanifold if and only if

0 =ρm−2

⎡
⎣ ∑

i,j,k,β

hβ

ij hβ

ikhα
kj +

∑
i,j,β

R̃βiαjh
β

ij −
∑
i,j,β

Hβhβ

ij hα
ij −

∑
i,β

HβR̃βiαı − ρ2Hα

⎤
⎦

+
∑

i,j

{
2
(
ρm−2)

i hα
ijj + (

ρm−2)
i,j hα

ij + ρn−2hα
ijij

}
− Hα�(ρm−2)

− ρm−2�⊥Hα − 2
∑

i

(
ρm−2)

i Hα
i , for m + 1 ≤ α ≤ n.

(17)

COROLLARY 2.2. (Hu-Li, [10]) Let x : M2 → N be an immersed surface. It is
Willmore if and only if

0 =
∑

i,j

hα
ij,ij − �⊥Hα − 2H2Hα +

∑
i,j,β

R̃βiαjh
β

ij −
∑
i,β

HβR̃βiαi

+
∑
i,j,k

R̃ikjkhα
ij +

∑
i,j,k

Hβhβ

ij hα
ij −

∑
i,j

R̃ijijHα, for m + 1 ≤ α ≤ n.
(18)

COROLLARY 2.3. Let x : M → N be an immersed submanifold as above. Then,
W (M) ≥ 0. It is a Willmore submanifold with W (M) ≡ 0 if and only if it is a totally
umbilic submanifold of N.

Proof. The inequality W (M) ≥ 0 is direct from the definition of W (M). Then, we
have that W (M) = 0 if and only if ρ = 0 if and only if x is totally umbilic.

To show that totally umbilic submanifolds are Willmore1, now we have that ρ = 0
when m > 2 and hα

11 = hα
22, hα

12 = 0, for all 3 ≤ α ≤ n when m = 2. So, from (17), x is
Willmore when m > 2. When m = 2, by use of Hα = hα

11 = hα
22, hα

12 = 0, we see that
Willmore equation (18) holds. �

For more detailed description of totally umbilic submanifolds, we refer to the
books by B.Y. Chen [7, 8].

In [21], Souamand and Toubiana classified totally unbilic surfaces in homogeneous
3-manifolds �2(κ) × �, �3(κ, τ )(with κ, τ constants), and Sol3. Recall from [21] that
�2(κ) is a complete, simply connected surface with constant curvature κ ∈ �. �3(κ, τ )
is a fibration over �2(κ) with geodesic fibers. The unit vector field ξ ∈ �(T�3(κ, τ ))
tangent to the fibers is a Killing field and satisfies:

∇̄Xξ = τ · (X × ξ ), ∀X ∈ �(T�3(κ, τ )).

1One can also prove this in another way. Since totally umbilic submanifold attains the minimum of Willmore
functional, it is a stationary submanifold with respect to Willmore functional, i.e. Willmore submanifold.
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Here ∇̄ denotes the connection on T�3(κ, τ ) and × denotes the cross product. Note
that ξ defines the vertical direction of the Riemannian submersion �3(κ, τ ) → �2(κ).

When τ = 0, �3(κ, τ ) is just the product �2(κ) × �. When κ − 4τ 2 = 0, one get
the space forms. For the other cases with κ(κ − 4τ 2) �= 0, when κ > 0, �3(κ, τ ) is
a Berger sphere; when κ = 0, it is the Heisenberg space, Nil3; when κ < 0, it is the
universal covering of PSL(2, �).

The Sol3 geometry is a 3-dimension Lie group with a left-invariant metric, which
is isometric to (�3, g̃) with g̃ = e2zdx2 + e−2zdy2 + dz2. The group product is given by

(x̃, ỹ, z̃) 
 (x, y, z) := (e−z̃x + x̃, ez̃y + ỹ, z + z̃).

For more details on homogeneous 3-manifolds we refer to [6, 21].
From Corollary 2.3, and Theorem 1, Theorem 9, Proposition 11, Theorem 16 and

Theorem 19 in [21], we derive that

COROLLARY 2.4. ([21])
(i) For any immersed surface M in the 3-manifold �3(κ, τ ), with τ (κ − 4τ 2) �= 0,

the Willmore functional W (M) > 0.
(ii) Let M be a closed surface, and �2(κ) be the 2-dimensional space form with

constant curvature κ. Then, for any immersion x : M → �2(κ) × �, W (M) ≥ 0. And
W (M) = 0 if and only if M = S2 and x is totally umbilic.

(iii) Let M be a closed surface. For any immersion x : M → Sol3, W (M) > 0.

3. Willmore functional of tori in Riemannian manifolds. Now let us focus on the
case that M is a 2-dimensional torus. Then, m = 2 and the Willmore functional of
x : M2 → Nn is just

W (x) =
∫

M
(| �H|2 − K + K̃)dM =

∫
M

∑
α

(
1
4

(hα
11 − hα

22)2 + (hα
12)2

)
dM, (19)

which also coincides with the definition in [3]. Here, K is the Gauss curvature of M
and K̃ = K̃(TM) is the sectional curvature of N as to the tangent plane TM.

For the minimum of W (T2) in a Riemannian manifold, first we have that

THEOREM 3.1. Let x : T2 → N be an immersed torus in a n-dimensional Riemannian
manifold N (n ≥ 3).

(i). W (T2) ≥ 0. And W (T2) = 0 if and only if x(T2) is a totally umbilic torus in N.
(ii). Assume that N is of positive sectional curvature. Then, N admits no totally

umbilic closed surface with positive genus. As a special case, for any immersion x : T2 →
N, W (T2) > 0.

(iii) Assume that N is of non-negative sectional curvature. Then, any totally umbilic
torus x : T2 → N (if exist) must be flat, totally geodesic in N.

Proof. (i) is direct.
For (ii), let M2 be a compact Riemann surface with genus g > 0. Suppose that

x : M2 → is an immersed totally umbilic surface. Then,

hα
11 = hα

22, hα
12 = 0, α = 3, · · · , n.
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The Gauss equation becomes

K = K̃ +
∑

α

(hα
11)2.

Thus, K > 0 on M2, leading to
∫

M2 KdM > 0. This contradicts with the Gauss-Bonnet
formula

∫
M2 KdM = 2π (2 − 2g) = 0.

For (iii), K ≥ 0 and
∫

M2 KdM = 0 force K ≡ 0. And since K̃ ≥ 0, K̃ = ∑
α(hα

11)2 =
0, i.e. II ≡ 0. That is, x is a flat, totally geodesic immersion. �

EXAMPLE 3.2. Consider the special orthogonal group (SO(n), g), n ≥ 4, with g its
natural induced metric, which is a Riemannian manifold with non-negative sectional
curvature. So any 2-torus with W (T2) = 0 in SO(n) is totally geodesic and then is a
2-torus subgroup of some maximal torus subgroup of SO(n).

EXAMPLE 3.3. In [3], Barros gave torus T2 → (S3, gt) with W (T2) = 2π2t2 > 0,
which is also a minimal surface in S3 with respect to the metric gt. He called them
Clifford torus [3]. So, when t → 0, there exist torus in (S3, gt) with W (T2) < 2π2.
Here, we want to show that W (T2) > 0 for any torus in (S3, gt). To see this, we
recall the definition of (S3, gt). The Hopf fibration π : S3 → S2 is also a Riemannian
submersion when S3 and S2 are equipped with the canonical metric respectively. From
the basic notions of Riemannian submersion in [17] (see also [3]), at any point p ∈ S3,
we decompose TpS3 into vertical part Vp = Tp(π−1(p)) and horizontal part Hp =
(Tp(π−1(p)))⊥. So, we have that

TpS3 = Vp ⊕ Hp, π∗(Vp) ≡ 0, π∗(Hp) ∼= Tπ(p)S2.

Now define gt as ⎧⎪⎨
⎪⎩

gt(X, Y )|p := t2g(X, Y )|p, ∀ X, Y ∈ Vp,

gt(Z, W )|p := g(Z, W )|p, ∀ Z, W ∈ Hp,

gt(X, Z)|p := 0, ∀ X ∈ Vp, ∀ Z ∈ Hp.

(20)

Note that g1 = g, and this deformation of metric keeps the horizontal part invariant,
which just derives the Berger sphere. For more details, we refer to [3, 6, 21]. From
the definition of gt, we can see that (S3, gt) has positive sectional curvature as (S3, g).
Then, as a corollary, we derive that

COROLLARY 3.4. Let x : T2 → (S3, gt) be an immersion with (S3, gt) defined as
above. Then, W (T2) > 0.

REMARK 3.5. It is natural for us to ask the existence problem of torus minimizing
Willmore functional in (S3, gt). When t = 1, this reduces to the work of L. Simon
in [20]. And we note that Kuwert etc. proved the existence problem of minimizing
Willmore functional when the closed surface in Sn is of genus n > 1 in [4].

For the general cases, the existence problem will be a more complicated problem.
For example, it is easy to show that even by doing a small change of a Riemannian
manifold, one may obtain a metric with minimizing torus.

PROPOSITION 3.6. Let (N, g) be a 3-dimensional complete smooth Riemannian
manifold. There exists a smooth, complete metric g̃ such that there exists an immersed
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torus x : T2 → (N, g̃) with W (T2) = 0. Here, g̃ = g on N\U with U ⊂ N an ε-geodesic
ball.

Proof. Obviously we just need to prove this for n = 3. Suppose U ⊂ N is an ε-
geodesic ball. Then, let f : D3 → U be a diffeomorphism. Consider a subset T2 ×
[0, 1] ⊂ D3 such that every T2 × t is embedded in D3 for any t ∈ [0, 1]. Let a(t) be a
smooth function satisfying

a(t) =

⎧⎪⎨
⎪⎩

0, 0 ≤ t ≤ 1
5
,

4
5

≤ t ≤ 1,

1,
2
5

≤ t ≤ 3
5
.

Now, we define on f (T2 × (0, 1)) ⊂ U the product metric g1 = gT2 × gt with gT2 the
canonical flat metric on T2 and gt the natural metric on (0, 1).

We define the new metric g̃ on N as follows:

g̃ =
{

g, on N\f (T2 × (0, 1)),

(1 − a(t))g + a(t)g1, on f (T2 × (0, 1)).
(21)

�
REMARK 3.7. Notice that the truncation function a(t) used in our proof is smooth

and not real analytic and that Willmore surfaces in space forms are in general real
analytic because of the ellipticity of Willmore equation, we have the question as follows:

Question: Let M2 be an oriented closed surface. Does there exist a complete
real analytic Riemannian metric g on Rn such that there exists an embedding
x : M2 → (Rn, g) with W (M2) = 0 if M2 is not diffeomorphic to S2 ?

For the case that M2 = T2 and n = 4, the answer is positive.

PROPOSITION 3.8. Let (R4, gλ,µ) be a complete Riemannian manifold with

gλ,µ = eλ(x2
1+x2

2)(dx2
1 + dx2

2)

(1 + x2
1 + x2

2)2
+ eµ(x2

3+x2
4)(dx2

3 + dx2
4)

(1 + x2
3 + x2

4)2
, 0 < λ,µ ≤ 3 − 2

√
2.

Then, the torus

x : T2 → (R4, gλ,µ), x(u, v) = (rλ cos u, rλ sin u, rµ cos v, rµ sin v),

with

rλ =
√

1 − λ ± √
λ2 − 6λ + 1
2λ

, rµ =
√

1 − µ ±
√

µ2 − 6µ + 1
2µ

,

is a totally geodesic torus, i.e. Willmore torus with W (T2) = 0.

4. Torus in product manifolds M2 × S1. In this section, we consider the minimum
of W (T2) in some product Riemannian manifolds M2 × S1.
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First we assume that M = S2 (of constant positive curvature 1).

PROPOSITION 4.1. The Willmore funcitional W (x) = ∫
T2 (H2 − K + K̃)dM of an

immersed torus x : T2 → S2 × S1 is non-negative. And W (x) = 0 if and only if x(T2)
is a totally geodesic torus in S2 × S1. So, it is congruent to the Clifford torus x(u, v) =
(cos u, sin u, 0, cos v, sin v) under isometric transforms of S2 × S1.

Proof. Since S2 × S1 is of non-negative curvature, x is a flat totally geodesic torus
in S2 × S1. We also have that K̃ = 0, showing that it is a product surface. �

From the proof above, noticing the key point is that S2 has closed geodesic and
positive sectional curvature, we have

COROLLARY 4.2. Let M be a compact Riemannian manifold with positive sectional
curvature with at least one closed geodesic γ . Then, the torus γ × S1 ⊂ M × S1 has
W (T2) = 0. And any T2 in M × S1 with W (T2) = 0 must be of such form.

REMARK 4.3. When M = T2, there are infinite non-congruent geodesics in T2,
giving totally geodesic tori with different conformal structures.

Now let us suppose that M = �2. Different from S2 cases, we have

THEOREM 4.4. Let (�2 × S1, gR2 × gS1 ) be the product of Euclidean surface and S1.
(i) For any 2-torus in �2 × S1, W (T2) > 0.
(ii) The Willmore functional of the torus xt = (t cos u, t sin u, cos v, sin v) in �2 × S1

is W (xt) = π2

t , which is tending to 0 when t → ∞.
So, there exists no torus having the least Willmore functional W (T2).

Proof. For (i), first we see that x is a flat totally geodesic torus in M × R1. While
there exists no flat totally geodesic torus in R2 × S1, since flat totally geodesic surface
of R2 × S1 must be of the form γ × S1 with γ being a line in R2, or of R2 × p for some
p ⊂ S1.

For (ii), to calculate W (xt) of xt, let

x : T2 → R2 × S1 ⊂ R2 × R2.

We have,

xu = (−t sin u, t cos u, 0, 0), xv = (0, 0, cos v, sin v).

Set

x̃ = (t cos u, t sin u,− cos v,− sin v), n = (cos u, sin u, 0, 0).

Then,

h11 = 1
t2

〈xuu, n〉 = 1
t
, h12 = 1

t
〈xuv, n〉 = 0, h22 = 〈xvv, n〉 = 0.

So,

W (xt) =
∫

T2

1
4t2

dM =
∫ 2π

0

∫ 2π

0

1
4t2

tdudv = π2

t
.

�
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From the proof, it is direct to derive

COROLLARY 4.5. Let Mn be an n-dimensional Riemannian manifold with positive
sectional curvature. Assume that there exists a closed geodesic γ in Mn. Then the Willmore
funcitional W (x) of an immersed torus x in the product Riemannian manifold R2 ×
Mn is positive. And the Willmore functional of the tori xt = (t cos u, t sin u, γ ) ⊂ R2 ×
Mn W (xt) = π2

t . When t → ∞, W (xt) → 0. So, there exists no torus having the least
Willmore functional W (T2).

REMARK 4.6. (i) We note that the non-existence of tori attaining the minimum of
W (T2) depends on both the manifolds and metrics. If we set a metric g̃ on R2 such that
(R2, g̃) has closed geodesics, then (R2 × S1, g̃ × gS1 ) will have a totally geodesic torus.

(ii) One can see that �2 × S1 can not be conformally compactificated into
any compact Riemannian manifold. This may be a reason of the non-existence of
minimizing torus in �2 × S1. So, it is natural to conjecture that

For a compact Riemannian manifold N, let M be a closed surface. Then, there
exists an immersion x : M → N such that x minimize the Willmore functional among all
immersions from M to N.

(iii) Since the compact property is a topological property, one may also be
interested in some curvature conditions. While noticing that Willmore functional is
a conformal invariant, it is natural to consider the Weyl curvature restriction. Since
space forms and �2 × S1 are all conformal flat, it seems that the Weyl curvature is not
a enough choice.

(iv) Notice that when t → ∞, the conformal structure of T2 is changing too. If
we fix the conformal structure of T2, the proof above does not work. For example, if
we assume that T2 is conformal to S1(1) × S1(a), with a = p

q some positive rational
number, then to get the right torus t must be kq for some k ∈ �. Then, the Willmore
functional should be

W (xt) =
∫

T2

1
4t2

dM =
∫ 2π

0

1
4t2

tdu
∫ 2πta

0
dv = aπ2,

which does not depend on the choice of t. So, we also can conjecture that for all compact
Riemann surfaces conformally immersed into a complete Riemannian manifold, there
exists an immersion minimizing the Willmore functional.

Another interesting case is that M is of constant negative sectional curvature. As
to this case, we obtain

PROPOSITION 4.7. The Willmore funcitional W (x) of an immersed torus x : T2 →
H2(−c) × S1 is positive, where H2(−c) is the space form with constant curvature −c < 0.
Let γ (s) ⊂ H2(−c) be a immersed closed curve with arc length parameter s. Consider the
torus x = (γ, cos t, sin t), we have that W (x) = π

2

∫
γ

k2ds ≥ 2π2√c. The equality holds

if and only if γ is congruent to a geodesic circle of radius sinh−1 1√
c and at this case x is a

Willmore torus in H2(−c) × S1.

Proof. The first result is the same as above. We just need to compute W (x). Suppose
that

γs = α, αs = kβ + 1
c2

γ, βs = −kα.
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Here, k is just the curvature of γ . So, we can obtain that for x, h11 = k, h12 = h22 = 0,
leading to

W (xt) =
∫

T2

k2

4
dM =

∫
γ

∫ 2π

0

k2

4
dtds = π

2

∫
γ

k2ds.

By Theorem 4.1 in [12], for any closed curve in H2(−c),
∫
γ

k2ds ≥ 4π
√

c and

equality holds if and only if γ is congruent with a geodesic circle of radius sinh−1 1√
c .

Similar to the discussion in [3], in this case, x = (γ, cos t, sin t) is a Willmore torus in
H2(−c) × S1 due to the principle of symmetric criticality in [18] (see also [1, 2]). �
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