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Ellipsoid embeddings and symplectic

packing stability

O. Buse and R. Hind

Abstract

We prove packing stability for rational symplectic manifolds. This will rely on a general
symplectic embedding result for ellipsoids which assumes only that there is no volume
obstruction and that the domain is sufficiently thin relative to the target. We also
obtain easily computable bounds for the Embedded Contact Homology capacities which
are sufficient to imply the existence of some symplectic volume filling embeddings in
dimension 4.

1. Introduction

We will study symplectic embeddings, that is, embeddings f : (N, σ)→ (M, ω) between
symplectic manifolds such that f∗ω = σ.

We will be particularly interested in symplectic ellipsoids. Let E(a1, . . . , an)⊂ R2n be the
open ellipsoid

E(a1, . . . , an) =
{ n∑
i=1

π(x2
i + y2

i )
ai

< 1
}
.

Ellipsoids inherit a symplectic structure from the standard form ω0 =
∑n

i=1 dxi ∧ dyi on
R2n. In our notation, the ball of capacity c is written B2n(c) = E(c, . . . , c) and we define
λE(a1, . . . , an) = E(λa1, . . . , λan). Any given ellipsoid is symplectomorphic to the same ellipsoid
with its factors permuted. Unless otherwise stated, when describing an ellipsoid we will list the
factors in increasing order. Our main theorem is the following.

Theorem 1.1. There exists a constant S(b1, . . . , bn) such that if an/a1 > S and a1 · · · an 6
b1 · · · bn, there exists a symplectic embedding

E(a1, . . . , an)−→ E(b1, . . . , bn).

This will be established using a technique from Buse–Hind [BH11] which generates
higher-dimensional embeddings from lower-dimensional ones, together with some new ellipsoid
embeddings in dimension 4.

Remark 1.2. Some special cases of Theorem 1.1 are contained in our earlier paper [BH11] which
avoided the use of Embedded Contact Homology (ECH). However, the paper [BH11] only claimed
the existence of embeddings of arbitrarily large compact subsets of our ellipsoids. It was pointed
out to us by E. Opshtein that in fact all of our embeddings exist between the open ellipsoids,
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see Proposition 3.4 and [Ops07, Lemma 2.1]. In the case of our four-dimensional embeddings we
rely on work of McDuff, see [McD09, Corollary 1.6] and [McD91]. This says that the existence of
embeddings of arbitrarily large compact subsets of a four-dimensional ellipsoid E into an ellipsoid
E′ implies that the full open ellipsoid E embeds into E′. The higher-dimensional analogue of
this statement remains unknown.

Combining with work of Biran [Bir01] and Opshtein [Ops09], we also have a full filling result
valid for general rational symplectic manifolds. Recall that the manifold (M, ω) is rational if
[ω] ∈H2(M,Q)⊂H2(M, R).

Theorem 1.3. If (M2n, ω) (or (M2n, λω) for any λ > 0) is rational, then there exists a constant
S(M)> 0 such that for all ellipsoids E(a1, . . . , an) with an/a1 > S(M) there exists a γ > 0 and
a volume filling embedding γE(a1, . . . , an)−→ (M, ω).

We use the terms volume filling and full filling throughout to denote symplectic embeddings
between manifolds of equal volume.

In the paper [CHLS07, § 3], Cieliebak et al. define generalized symplectic capacities in terms
of a fixed symplectic manifold (M, ω). If M has dimension 2n then we get a capacity on the
space of 2n-dimensional ellipsoids defined by

c(M,ω)E(a1, . . . , an) := inf{c | E(a1, . . . , an)−→ (M, cω)}.

Our result can be interpreted as saying that c(M,ω)E(a1, . . . , an) coincides with the
normalized volume capacity

v(M,ω)E(a1, . . . , an) := n

√
vol(E(a1, . . . , an))

vol(M, ω)

whenever M is rational and an/a1 > S(M), that is, whenever the ellipsoid is sufficiently thin.
The existence of an embedding between four-dimensional ellipsoids is determined by the ECH

capacities of Hutchings, see [Hut11]. Namely, there is a sequence of numbers N (a, b)(k), k > 0,
associated to a pair (a, b) and according to McDuff, [McD11], we have E(a1, a2) ↪→ E(b1, b2)
if and only if N (a1, a2)(k) 6N (b1, b2)(k) for all k > 0. Although in principle this solves the
problem of ellipsoid embeddings in dimension 4, it remains a difficult question to determine if a
particular embedding exists since the N (a, b)(k) are given by quite complicated combinatorial
formulas, [Hut11]. We will give quadratic bounds on a related piecewise linear function, see
Proposition 2.5. One consequence is the following.

Theorem 1.4. Let β > 1 and α> (5β + 16)2/16β. Then there exists a full filling E(1, α)−→√
α/βE(1, β).

Finally we discuss packing stability. The kth packing number of a compact, 2n-dimensional,
symplectic manifold (M, ω) is

pk(M, ω) =
supc Vol(

⊔
k B(c))

Vol(M, ω)
,

where the supremum is taken over all c for which there exist a symplectic embedding of
⊔
k B(c),

the disjoint union of k balls of capacity c, into (M, ω). Naturally, pk(M, ω) 6 1. The identity
pk(M, ω) = 1 is equivalent to saying that (M, ω) admits a full filling by k identical balls, otherwise
we say that there is a packing obstruction.

The symplectic manifold (M, ω) has packing stability if there exists an integer Nstab(M, ω)
such that pi(M, ω) = 1 for all i>Nstab(M, ω).
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Ellipsoid embeddings and symplectic packing stability

Theorem 1.5. If (M2n, ω) (or (M2n, λω) for any λ > 0) is rational, then it has packing stability.

This is due to Biran, [Bir99], in the case that M is a closed four-dimensional symplectic
manifold with a rational cohomology class.

Bounds on Nstab(M, ω) can be derived from Theorem 1.1, although in specific examples we
can obtain much sharper estimates.

Let CPn be equipped with its Fubini–Study symplectic form, and denote by Hn
d a smooth

hypersurface of degree d in CPn+1 with the induced symplectic form.

Theorem 1.6. (i) Nstab(CPn) 6 d(8 1
36)n/2e.

(ii) Nstab(Hn
d ) 6 d(25

16d
2/n + 10d−(n−2)/n + 16d−2(n−1)/n)n/2e.

Of course, statement (i) here is just a refined estimate of statement (ii) valid for hyperplanes.
Lower bounds for the stability numbers Nstab(M, ω) come from embedding obstructions. For

example, a consequence of the first inequality in [Gro85, § 0.3.B] is the estimate pi(CPn) 6 i/2n,
and so Nstab(CPn) > 2n. (A construction, given for example in [Tra95], shows that CPn can be
fully filled by 2n identical balls. Taking any i of these shows that in fact pi(CPn) = i/2n, see
also the discussion in [MP94], § 1.6.B.) In Proposition 5.1 we are able to slightly improve the
estimate of Theorem 1.6(i) in dimension 6. Putting the two bounds together gives the following.

Corollary 1.7. 8 6Nstab(CP 3) 6 21.

One can also consider packing with other symplectic manifolds, typically replacing the ball
by other open subsets of (R2n, ω0). Fixing a symplectic (D, ω0) of dimension 2n we define the
kth packing number with respect to D of a 2n-dimensional symplectic manifold (M, ω) by

pDk (M, ω) =
supc Vol(

⊔
k(D, cω0))

Vol(M, ω)
,

where the supremum is taken over all c for which there exist a symplectic embedding of⊔
k(D, cω0) into (M, ω). Similarly to the above, we say that (M, ω) has packing stability with

respect to (D, ω0) if pDk (M, ω) = 1 for all k sufficiently large. Taking D to be an ellipsoid, we can
generalize Theorem 1.5 as follows.

Theorem 1.8. If (M2n, ω) (or (M2n, λω) for any λ > 0) is rational, then it has packing stability
with respect to any symplectic ellipsoid.

We know of no manifolds which have packing stability with respect to other domains in R2n,
for example polydisks.

Outline of the paper
In § 2 we discuss the ECH capacities, deriving our quadratic bounds and in particular
proving Theorem 1.4. Section 3 gives the proof of Theorem 1.1. In § 4.1 we describe how to
obtain Theorem 1.3 and packing stability, Theorems 1.5 and 1.8, from Theorem 1.1 together with
a construction of Opshtein, [Ops07]. In § 5 we compute some examples and prove Theorem 1.6.

2. Ellipsoid embeddings in dimension 4

In this section we consider the embedding capacity function

fβ(α) := inf{c | E(1, α)−→ cE(1, β)}
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which is a natural extension of the function f1 considered by McDuff and Schlenk in the
paper [MS12, Theorem 1.1.2].

We will show that fβ(α) coincides with the normalized volume capacity of the ellipsoid E(1, β)
for sufficiently large values of α.

2.1 Description of ECH and some new estimates
The key ingredients for our study are results of Hutchings [Hut11] and McDuff [McD11] on
ECH which together give necessary and sufficient conditions for a four-dimensional ellipsoid
embedding.

A four-dimensional Liouville domain is a compact exact symplectic manifold (X, ω) such that
there exists a contact form on ∂X which is a primitive of ω|∂X . Hutchings associates to such
(X, ω) an increasing sequence of real numbers ck(X, ω) for k > 0 called the ECH capacities. The
term capacity is justified by the following.

Theorem 2.1 (Hutchings [Hut11]). Let (X, ω) and (X ′, ω′) be two Liouville domains as above.
If there exists a symplectic embedding φ : (X, ω)−→ (X̊ ′, ω′) then ck(X, ω) 6 ck(X ′, ω′) for all
integers k > 0.

In the same paper, Hutchings proceeds to compute the capacities of ellipsoids E(a, b) as given
in the following proposition.

Proposition 2.2. Given 0< a6 b consider the sequence N (a, b)(k) obtained by arranging in
increasing order, with repetitions, all the numbers of the type a`+ bp with `, p any nonnegative
integers. Then ck(E(a, b)) =N (a, b)(k − 1).

Following this, McDuff showed that the necessary condition for ellipsoid embeddings coming
from Theorem 2.1 is also sufficient.

Theorem 2.3 (McDuff [McD11]). There exists a symplectic embedding E̊(a, b)−→ E(a′, b′) if
and only if N (a, b)(k) 6N (a′, b′)(k) for all natural numbers k.

Comparing Theorems 2.1 and 2.3 we remark that E̊(a, b)→ E(a′, b′) if and only if E(a, b)→
E̊(λa′, λb′) for all λ > 1, see [McD11, Remark 1.3].

We will refer to N (a, b)(x) as being the piecewise linear function built by joining by line
segments the points of N (a, b)(k). It is clearly sufficient to compare two such piecewise functions
and moreover, if one defines, for any y > 0

Ra,b(y) = sup{k | N (a, b)(k) 6 y} (1)

then we have the following corollary.

Corollary 2.4 (See Hutchings [Hut11], Bauer [Bau11]). E(a, b) ↪→ E(a′, b′) if and only if

Ra,b(y) >Ra′,b′(y) (2)

for all y > 0.

To prove Theorem 1.4 by using this corollary, we will first need the following estimates.

Proposition 2.5. For any y > 0, and a < b we have that

y2

2ab
+

y

2a
6Ra,b(y) 6

y2

2ab
+

y

2a
+
y

b
+

b

8a
+ 1. (3)
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Figure 1. Triangles Tk and the region S.

Figure 2. Added squares covering S.

Proof. As pointed out in [Hut11], Ra,b(y) is interpreted geometrically as the number of non-
negative integer vectors (m, n) in the closed triangle bounded by m= 0, n= 0, and the diagonal
am+ bn= y. Equivalently, this represents the area of the union of unit squares with lower-left
corners (m, n) such that am+ bn6 y. The triangular area y2/2ab under the diagonal is then an
obvious lower estimate for Ra,b(y), but it omits the sizable area of the staircase-shaped region S
above the diagonal. Let {y/b}= y/b− by/bc denote the fractional part of y/b.

To estimate the area of S, let p0 = (0, y/b), and let p1, . . . , pdy/be be the points of integer
height along the diagonal, indexed from left to right. For every k with 1 6 k 6 dy/be, let Tk be
the triangle formed by pk−1, pk, and the point one unit above pk. Every triangle Tk ⊂ S rests
atop the diagonal, these are the darkest triangles in Figure 1. They all have (vertical) base of
length 1, and their (horizontal) heights add up to y/a; thus, the total area of the triangles is
y/2a, and

y2

2ab
+

y

2a
6Ra,b(y).

For the upper estimate, add unit squares to the right of T1, . . . , Tdy/be, see Figure 2. These
have total area dy/be, and cover the remainder of S, except (sometimes) for a thin triangle above
T1 sitting at the top left of Figure 2. The (vertical) base of this triangle has length 1− {y/b}.
Its (horizontal) height is the first coordinate of p1, that is, (b/a){y/b}. Therefore we get

Ra,b(y) 6
y2

2ab
+

y

2a
+
⌈
y

b

⌉
+

b

2a
{y/b}(1− {y/b}) 6

y2

2ab
+

y

2a
+
y

b
+

b

8a
+ 1,

where for the final inequality we note that {y/b}(1− {y/b}) 6 1
4 since 0 6 {y/b}< 1. 2
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Figure 3. Graphs of the ECH capacity functions.

2.2 A volume filling ellipsoid embedding in dimension 4
We can now give a proof of Theorem 1.4 as follows.

Proof. Let us call c :=
√
α/β > 1 by hypothesis. Assuming α> (5β + 16)2/16β and β > 1 it is

required to show that we have a volume filling embedding E(1, α) ↪→ E(c, cβ). By Corollary 2.4
this is equivalent to showing

R1,α(y) >Rc,cβ(y) (4)

for all y > 0.
As α > β it is easy to see that for 0 6 y < cbβc< α we have R1,α(y) = byc+ 1 and Rc,cβ(y) =

by/cc+ 1. Therefore the inequality (4) holds for values of y 6 cbβc. Our hypothesis also implies
that bβc+ 1 6 bαc and so the graphs of N (1, α)(x) and N (c, cβ)(x) are as shown in Figure 3
for small values of x. Hence we can also observe directly that inequality (4) holds in the range
cbβc6 y 6 cβ.

It remains to show that (4) holds for the remaining values y > cβ. Using the inequality (3)
from Proposition 2.5 twice, once for R1,α(y) and again for Rc,cβ(y), it is sufficient to show

y2

2α
+
y

2
>

y2

2c2β
+

y

2c
+

y

cβ
+
cβ

8c
+ 1 (5)

for y > cβ. Using the fact that α= c2β, this reduces to showing that

y

2

(
cβ − β − 2

cβ

)
>
β

8
+ 1 (6)

for all y > cβ. But this is equivalent to our hypothesis α> (5β + 16)2/16β. 2

3. Volume filling embeddings

Theorem 3.1. Define a constant S by S1/(n−1) = 6n20(n−2)/2 maxk 20k(k−1)/2(b1 · · · bn)/bnk .
Then if an/a1 > S and a1 · · · an = b1 · · · bn, there exists a volume preserving embedding

E(a1, . . . , an)−→ E(b1, . . . , bn).
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Proof. We will apply a series of volume preserving embeddings to the ellipsoid E(a1, . . . , an).
The factors of our ellipsoids will always be in increasing order. First recall our key tools.

Let m(x) = (5x+ 16)2/16x. Then m is decreasing on the interval {1 6 x < 16/5}, increasing
on {x > 16/5} and m(16/5) = 20. Theorem 1.4 gives the following.

Theorem 3.2. If b/a >m(d/c) and ab= cd, then E(a, b)−→ E(c, d).

Corollary 3.3. Let b/a > 36 and 6a < d <
√
ab. Then E(a, b)−→ E(d, ab/d).

Proof. The upper bound on d guarantees that the factors of our image ellipsoid are in increasing
order. Therefore by Theorem 3.2 we just need to check that b/a >m(ab/d2). We compute

b

a
−m

(
ab

d2

)
=
b

a
− 25

16
ab

d2
− 10− 16d2

ab
>
b

a
− 25

16
b

36a
− 26 > 36− 25

16
− 26> 0

as required. 2

We will also utilize the following.

Proposition 3.4 ([Ops07, Lemma 2.1], [BH11, Proposition 2.1]). If E(a, b)−→ E(c, d) then

E(a, b, a3, . . . , an)−→ E(c, d, a3, . . . , an)

for any a3, . . . , an.

Note here that as the order of the factors is irrelevant, analogous statements hold for all other
pairs of factors.

As mentioned in Remark 1.2 the paper [BH11] only established embeddings between
arbitrarily large compact subsets of the ellipsoids. We thank E. Opshtein for remarking that the
stronger version of Proposition 3.4 in fact follows from [Ops07] as we explain now. Proposition 3.4
is clearly a consequence of the following.

Proposition 3.5. Suppose that⊔
i

E
(
ai1, . . . , ain

)
−→ E

(
b1, . . . , bn

)
is a symplectic embedding of a disjoint union of ellipsoids. Then for any c > 0 there exists a
symplectic embedding ⊔

i

E(ai1, . . . , ain, c)−→ E(b1, . . . , bn, c).

Proof. Indeed, let (E, ω0) = E(b1, . . . , bn) be a symplectic ellipsoid and D be the unit disk.
Let α be a 1-form on E × (D\{0}) such that dα=−π∗ω0 and α|π−1(x) = c dθ for all x ∈ E,
where π denotes the projection on the E factor and (r, θ) are polar coordinates on the D
factor. Then [Ops07, Lemma 2.1] says that E(b1, . . . , bn, c) is symplectomorphic to (E ×D, ω),
where ω = π∗ω0 + d(r2α). It follows that if φ : E(a1, . . . , an)−→ E(b1, . . . , bn) is a symplectic
embedding then (imφ×D, ω) is symplectomorphic to E(a1, . . . , an, c) and the proposition
follows. 2

Returning to Theorem 1.1, we start with the following lemma. Recall that E(a1, . . . , an) is
the ellipsoid as in Theorem 1.1.
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Lemma 3.6. There exists a symplectic volume filling embedding E(a1, . . . , an) ↪→ E(a′1, . . . , a
′
n)

such that:

(i) a′n = an;

(ii) a′k/a
′
k−1 < 20 for all 1 6 k 6 n− 1;

(iii) a′n/a
′
k > 20−(n−2)/2S1/n−1 for all 1 6 k 6 n− 1.

Proof. We perform a sequence of embeddings fixing throughout the largest factor an of the
ellipsoid.

Theorem 3.2 implies that if ak/ak−1 > 20 then there exists an embedding E(ak−1, ak)−→√
5ak−1ak/16E(1, 16/5).
We will apply the embedding of Proposition 3.4 induced by this four-dimensional embedding

to any consecutive pair of factors ak−1, ak for which k < n and whose ratio is greater than 20.
After such an operation the product of the first k − 1 factors will increase by a factor of at
least

√
100/16, but the product of the first n− 1 factors is fixed throughout. Thus after a finite

number of steps we arrive at an ellipsoid E(a′1, . . . , a
′
n) satisfying condition (ii).

For condition (iii) we estimate(
a′n
a′k

)n−1

>

(
a′n
a′n−1

)n−1

=
(a′n)n−1

20(n−1)(n−2)/2
· 20 · 202 · · · 20n−2

(a′n−1)n−1

>
(a′n)n−1

20(n−1)(n−2)/2 · a′n−1 · a′n−2 · · · a′1
using property (ii). Now, as all our embeddings are volume preserving and fix an, the product
of the first n− 1 terms is also preserved under our sequence of embeddings. Thus we have(

a′n
a′k

)n−1

>
an−1
n

20(n−1)(n−2)/2 · an−1 · an−2 · · · a1

> 20−(n−1)(n−2)/2S,

where for the final inequality we used simply that ak 6 an for all k < n and that by hypothesis
an > Sa1. Our lemma follows. 2

Now we drop the primes from the ellipsoid resulting from Lemma 3.6 and write simply
E(a1, . . . , an) for our new range.

Lemma 3.7. bk > 6ak for all 1 6 k 6 n− 1.

Proof. For any k we have

1 =
a1 · · · an
b1 · · · bn

>
a1 · · · ak−1a

n−k
k an

b1 · · · bn

>
an−kk

b1 · · · bn
ak

20k−1
· · · ak

20
20−(n−2)/2S1/n−1ak

using properties (ii) and (iii) from Lemma 3.6

=
(
ak
bk

)n 20−(n−2)/2S1/n−1(bk)n

20k(k−1)/2b1 · · · bn
>

(
ak
bk

)n
6n

and our lemma follows. 2
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Now we complete the proof of Theorem 3.1. We will proceed by induction on k = 0, 1, . . . ,
n− 1. After the kth stage we will have found a symplectic volume filling embedding into
an ellipsoid of the form E(b1, . . . , bk, ak+1, . . . , an−1, an,k) where the ai are the factors of
our most recent ellipsoid above and an,k will be a decreasing sequence with an,0 = an and
an,k = (an,k−1ak)/bk. It is decreasing by Lemma 3.7.

For our inductive step, we claim that there exists an embedding

E(ak, an,k−1)−→ E

(
bk,

an,k−1ak
bk

)
= E(bk, an,k)

for all 1 6 k 6 n− 1. Thus by repeated applications of Proposition 3.4 we can conclude by
induction. After the (n− 1)th step we will automatically have an,n−1 = bn by the hypothesis
a1 · · · an = b1 · · · bn and the fact that all of our embeddings are volume preserving.

To justify the claim, we will apply Corollary 3.3 with a= ak, b= an,k−1 and d= bk. There
are three conditions to check. First

b

a
=
an,k−1

ak
>
an,n−2

an−1
=
ana1a2 · · · an−2

b1 · · · bn−2an−1
=
bn−1bn
a2
n−1

> 36

where the equalities follow from the definitions of the an,k and the fact that our ellipsoids have
equal volume, and the final inequality follows from Lemma 3.7. Secondly, d= bk > 6ak again by
Lemma 3.7. Finally,

d2 = b2k 6 bkbn =
b1 · · · bk−1bkbn
b1 · · · bk−1

<
a1 · · · ak−1akan
b1 · · · bk−1

= · · ·= akan,k−1 = ab

where the inequality holds since our ellipsoids have equal volume but bk > ak for all k < n. 2

4. Full filling by an ellipsoid

In this section we present Opshtein’s result, which is a refinement of Biran’s polarization theorem,
that any rational symplectic manifold can be fully filled by an ellipsoid, that is, we prove the
following.

Theorem 4.1 ([Ops07, Ops09]). Let (M, ω) be rational. Then there exist b1, . . . , bn such that
there exists a full filling E(b1, . . . , bn)−→ (M, ω).

Given Theorem 4.1 we can prove Theorems 1.5 and 1.8. Theorem 1.3 is also a direct
application of Theorems 4.1 and 1.1.

Proof of Theorem 1.5. Given (M, ω) rational, we consider the fully filling ellipsoid E(b1, . . . , bn)
given by Theorem 4.1. By Theorem 1.1 there exists a constant S(b1, . . . , bn) such that there
exists a full filling γE(1, . . . , 1, k)−→ E(b1, . . . , bn) for any k > S. However, the two-dimensional
embedding

⊔
k D(1)−→D(k) combined with Proposition 3.5 implies that there exists a full filling⊔

k

B(1)−→ E(1×(n−1), k)

for any k ∈ N (see also [BH11, Lemma 4.1]). Putting the two maps together, we obtain a full
filling of E(b1, . . . , bn), and hence (M, ω), by k balls of capacity γ. This means that (M, ω) has
packing stability as required. 2
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Proof of Theorem 1.8. Fix an ellipsoid D = E(a1, . . . , an). We follow an identical line of
argument to the proof of Theorem 1.5 above, letting E(b1, . . . , bn) be the filling ellipsoid for
(M, ω) from Theorem 4.1.

Lemma 4.2. There exists a full filling⊔
k

E(a1, . . . , an−1, an)−→ E(a1, . . . , an−1, kan)

for any k ∈ N.

This follows immediately from Proposition 3.5 given the two-dimensional embedding⊔
k D(an)−→D(kan) (see [Sch05, Lemma 5.3.1(i)] for a different approach).

But by Theorem 1.1 there exists a constant S(b1, . . . , bn) such that there exists a full filling
γE(a1, . . . , an−1, kan)−→ E(b1, . . . , bn) for any k > Sa1/an. This map and the embedding from
our lemma together give packing stability for (M, ω) with respect to D. 2

Now we proceed to prove Theorem 4.1 by induction on the dimension of the manifold M .
Observe that Moser’s theorem implies that a surface can be fully filled by any number of balls,
so we assume that the theorem holds for all manifolds of dimension 2(n− 1) and let (M, ω) be
rational of dimension 2n.

Using the rationality assumption, a theorem of Donaldson, [Don96], says that (M, ω) can be
polarized in the sense that there exists a connected symplectic codimension 2 submanifold N
which is Poincaré dual to m[ω] for a suitable multiple m. Let τ = ω|N .

Let SDB(N, τ, m) be a standard symplectic disk bundle overN . This is a symplectic manifold
whose underlying smooth manifold is the disk bundle over N with Euler class [mτ ] ∈H2(N, Z)
and which has a symplectic form restricting to τ on N and with fibers of area 1/m. As
a symplectic manifold, SDB(N, τ, m) is well defined up to isotopy. For more details see
[Bir01, § 2], or [Ops09, § 1]. Given the above, we can now state the Biran decomposition.

Theorem 4.3 ([Ops09, Theorem 1], [Bir01]). There exists a full filling SDB(N, τ, m)−→
(M, ω).

By our induction hypothesis, there exists b1, . . . , bn−1 and a full filling E(b1, . . . , bn−1)−→
(N, τ). Now we apply the construction of Opshtein.

Lemma 4.4 [Ops07, Lemma 2.1]. A symplectic embedding E(b1, . . . , bn−1)−→ (N, τ) can be
extended to a symplectic embedding E(b1, . . . , bn−1, 1/m)−→ SDB(N, τ, m).

If E(b1, . . . , bn−1)−→ (N, τ) is a full filling then the embedding E(b1, . . . , bn−1, 1/m)−→
SDB(N, τ, m) of Lemma 4.4 is also a full filling. Thus, combining Theorem 4.3 and Lemma 4.4
we have a full filling E(b1, . . . , bn−1, 1/m)−→ (M, ω) and we conclude the proof of Theorem 4.1
by induction.

4.1 Full fillings without ECH
In fact, as was also explained to us by Opshtein, a similar argument can generalize Theorem 4.1
as follows.

Theorem 4.5 (Opshtein). Let (M, ω) be integral, that is, [ω] ∈H2(M, Z), and let V = vol(M).
For all sufficiently large l we can fully fill M by the ellipsoid (1/l)E(1, . . . , 1, n!lnV ).
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Given this, following the same lines as above, to establish packing stability we need only show
that for all large k there exists a γ > 0 and a full filling γE(1, . . . , 1, k)−→ E(1, . . . , 1, n!lnV )
for an l which is also sufficiently large for Theorem 4.5 to hold. But this follows directly from
the methods of [BH11], in particular avoiding ECH. Indeed, assuming n> 3, formulas (19) and
(20) from [BH11] together imply that γE(1, . . . , 1, k) fully fills any E(1, . . . , 1, z) provided
(2/3)n/2(n−1)k(n−2)/2(n−1) < z < k(n−2)/2(n−1) and one can check that there exist numbers z =
n!lnV in this range with l→∞ as k→∞.

Outline of the proof of Theorem 4.5. Let L be a complex line bundle over M with first Chern
class [ω]. Donaldson’s theorem has been generalized by Donaldson [Don99] and Auroux [Aur01,
Theorem 5.1] to show that for all l sufficiently large we can find approximately holomorphic
sections s1, . . . , sn−1 of L⊗l which intersect the zero section transversally in submanifolds
H1, . . . , Hn−1 such that all intersections Ni =H1 ∩ · · · ∩Hi for 1 6 i6 n− 1 are transverse and
Ni gives a polarization of Ni−1.

Now, as Nn−1 is Poincaré dual to ln−1[ω]n−1 it is a symplectic surface of area n!ln−1V and
hence is fully filled by a ball B(n!ln−1V ). Next, each Ni gives a polarization of Ni−1 Poincaré
dual to l[ω]|Ni−1 and so arguing by induction as above we get a full filling of M by an ellipsoid
E(1/l, . . . , 1/l, n!ln−1V ) as required.

5. Examples

5.1 The complex projective space CP n

Complex projective space CPn is fully filled by one ball. Recall also that E(1, . . . , 1, k) can be
fully filled by k balls, see [BH11, Lemma 4.1]. Therefore we can establish our stability bound for
CPn by producing an embedding E(1, . . . , 1, k) ↪→B(k1/n) for all k > (8(1/36))n/2.

We consider the following sequence of n− 1 potential embeddings:

E(1, . . . , 1, k)−→ E(k1/n, 1, . . . , 1, k(n−1)/n)
−→ E(k1/n, k1/n, 1, . . . , 1, k(n−2)/n)−→ · · · −→ E(k1/n, . . . , k1/n, 1, k2/n)

−→ E(k1/n, . . . , k1/n) =B(k1/n).

The first n− 2 embeddings will exist by Theorem 3.2 and Proposition 3.4 provided we have

k(n−i)/n >
(5k(n−i−2)/n + 16)2

16k(n−i−2)/n
=

25
16
k(n−i−2)/n + 10 + 16k−(n−i−2)/n (7)

for all 0 6 i6 n− 3.
For the final embedding, as the target is a ball, we get an improved bound by appealing

directly to [MS12, Theorem 1.1.2(iv)]. This says that E(1, k2/n)−→B(k1/n) whenever k2/n >
8(1/36). Therefore by Proposition 3.4 the final embedding will also exist provided k2/n > 8(1/36).

For the first n− 2 embeddings we require
25
16k
−2/n + 10k−(n−i)/n + 16k−2(n−i−1)/n 6 1 (8)

for all 0 6 i6 n− 3. The left-hand side is an increasing function of i, so it suffices that
25
16k
−2/n + 10k−3/n + 16k−4/n 6 1.

A calculation shows that this also holds when k2/n > 8(1/36) and so Theorem 1.6(i) is proved. 2

There is in fact a better bound valid in dimension 6.

Proposition 5.1. Nstab(CP 3) 6 21.
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Proof. Part (i) of Theorem 1.6 already implies that Nstab(CP 3) 6 23. Thus we just need to check
that the same embeddings exist when k = 21 and k = 22. Direct computation shows that the
inequality (8) continues to hold for these k, so we are reduced to showing E(1, k2/3)−→B(k1/3)
when k = 21, 22. We appeal again to McDuff–Schlenk’s results from [MS12], Theorem 5.2.3 and
its corresponding Table 5.2. This says that f1(α) =

√
α on the interval [71

9 , 8] with the exception
of eight intervals that are explicitly provided in their statement. The numbers k2/3 for k = 21, 22
do not lie in these intervals, thus this embedding also exists and hence the whole sequence of
embeddings provided in the proof of Theorem 1.6. 2

5.2 The hypersurface Hn
d

We first make the following observation.
Fact. Hn

d embeds as a polarizing hypersurface in Hn+1
d Poincaré dual to the symplectic form.

Indeed, Hn
d =Hn+1

d ∩ CPn+1 where Hn+1
d ⊂ CPn+2 and we think of CPn+1 as a hyperplane

intersecting Hn+1
d transversally.

Now, H1
d is a curve of degree d and so is fully filled by B2(d), normalizing the Fubini–Study

form on the CPn so that lines have area 1. Hence, combining the above fact with Lemma 4.4
and arguing by induction we see that E(1, . . . , 1, d) fully fills Hn

d .
Therefore, arguing as in case (i) by applying Lemma 4.1 of [BH11], to demonstrate

Theorem 1.6(ii) it suffices to show that

E(1, . . . , 1, k)−→ k1/n

d1/n
E(1, . . . , 1, d)

for all integers k > ((25/16)d+ 10d−(n−2)/n + 16d−2(n−1)/n)n/2.
We now consider the sequence of (n− 1) potential embeddings

E(1, . . . , 1, k)−→ E

(
k1/n

d1/n
, 1, . . . , 1, k(n−1)/nd1/n

)
−→

E

(
k1/n

d1/n
,
k1/n

d1/n
, 1, . . . , 1, k(n−2)/nd2/n

)
−→ · · · −→ E

(
k1/n

d1/n
, . . . ,

k1/n

d1/n
, k1/nd(n−1)/n

)
=
k1/n

d1/n
E(1, . . . , 1, d).

By Proposition 3.4 the (i+ 1)th embedding exists provided there exists an embedding

E(1, k(n−i)/ndi/n)−→ E

(
k1/n

d1/n
, k(n−i−1)/nd(i+1)/n

)
which by Theorem 3.2 exists provided

k(n−i)/ndi/n >
25
16
k(n−i−2)/nd(i+2)/n + 10 +

16
k(n−i−2)/nd(i+2)/n

or equivalently
25
16k
−2/nd2/n + 10k−(n−i)/nd−i/n + 16k−2(n−i−1)/nd−2(i+1)/n 6 1.

For k > d and n fixed, the left-hand side of this last inequality is an increasing function of i.
Therefore it suffices to check it when i= n− 2. In this case we get

25
16k
−2/nd2/n + 10k−2/nd−(n−2)/n + 16k−2/nd−2(n−1)/n 6 1

which is equivalent to

k2/n > 25
16d

2/n + 10d−(n−2)/n + 16d−2(n−1)/n
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and so holds in our range as required.

Remark 5.2. Still following our methods here as well as those from [BH11], the estimates for
the upper bound on the stability numbers presented here may be improved if we can improve,
by a much more complicated number theoretical investigation of the ECH vectors, the four-
dimensional embedding result from Theorem 1.4. However, in the case when the target manifold
is CP 3 the inequality Nstab 6 21 cannot be improved in this way as it relies at the last step on a
sharp estimate from McDuff–Schlenk giving the precise range for volume filling ellipsoids in the
unit ball. It remains a very interesting question to find methods to obstruct symplectic volume
fillings of ellipsoids or disjoint balls into the unit six dimensional ball. As will be shown in [BH], it
appears that obstructions arising from symplectic field theory that have been successful in [HK09]
when targets were cylinders fail here.
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