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FUNCTION-THEORETIC METRICS AND BOUNDARY
BEHAVIOUR OF FUNCTIONS MEROMORPHIC OR
HOLOMORPHIC IN THE UNIT DISK

SHINJI YAMASHITA

§1. Introduction. The metrics to which the title of the present paper
refers are expressed in the form of elements of arc length as follows:

(1) |dw| in the finite w-plane W, : |w| < co.

(ii) T!q_d—’lvt%[—z in the Riemann w-sphere W, : |w| £ .
(i) T'_i’f_;? in the open unit disk W, : w] < 1.

Let D : |z] <1 be the open unit disk and let I" : |z] = 1 be the unit circle
in the z-plane. We fix a constant p, 1/2< p <1, once and for all and we
denote by = (¢) the open disk {z; [z — p{| <1 — p} for {eI'. By a segment
X at {eI' we mean an open rectilinear segment connecting ¢ and a point of
D. Let w= f(2) be a function from D into W;(j =1, 2, 3), being meromor-
phic or holomorphic in D, and set for z = re”’eD,

8i(r, 0) = | f'(re”)];

__fre)
52(7” ‘9) - 1 +_ lf(reiﬂ)lg b
oy, ) = AL re)

1— | f(re”)|*’

corresponding respectively to j =1, 2 and 3. The word “capacity” always
means ‘“‘logarithmic capacity”. Then our result is stated in the following

TueoOREM. Let M be a subset of I' which is a Borel set in the plane and set

e= U ).

{eM
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Let w= f(z) be a meromorphic or holomorphic function from D into W ; such that
) ([ 10,0, onrraran <o (=1, 2, 9.

Then there exists a subset E; of M, being of capacity zero®, such that for any &M
— E; and for any segment X at ¢ we have

@) Sxaj(r, 0)ldz] <co (2 =re’eX)
according as j =1,2,3.

The condition (2) for j =1,2,3 implies the existence of a limiting value
f&)eW,; of f(z) as X5z — ¢ according as j =1,2,3. Then by the theorem of
Lindelsf-Iversen-Gross [1, p. 5] combined with our condition (1), the function
f has the angular limit f(§) at &, in other words, ¢ is a Fatou point [1, p. 59]
of f. It should therefore be noted that our theorem in the case j = 1,2 gives
“localization” of Beurling-Tsuji’s theorem ([3, Theorems 3 and 4], [4, p. 344]).

An application of the theorem for j =3 is the following. Let GcW,
be a Jordan domain whose non-Euclidean area is finite and let w = @(z) be
a one-to-one conformal map from D onto G in the w-plane. Furthermore,
let 9(&) be the Carathéodory extension of @ to I'. Then we have [9(f)] <1
except perhaps for a set of {&I' of capacity zero. Therefore, the boundary
of G touches the circle |w| =1 at a “thin” set in this sense.

§2. Threelemmas. let0<a<z2andletd= {re;0<r =<1,10] < a}.
We let 4*>4 be an open disc whose boundary contains the origin and we
use the same notation 4,(r, §) as in §1 for a function f defined in 4%(j =1,
2,3). We begin with two lemmas [4, p. 342, Theorem VIIL 47 and p. 343,
Theorem VIII. 48] expressed in one.

LemMa j(7 =1,2). Let w= f(2) be a function from 4% into W ;, being mero-
morphic or holomorphic in 4%. Assume that f does not take three distinct points of
W, in 4* and set

4,0) = S;aj(r, 0)dr

Jor 16] = a.  Assume furthermore that both A;(—a) and Aj(e) are finite. Then A,(6)
s bounded for (0] £ a.

*  In other words, the outer logarithmic capacity of E; is zero.
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The following lemma needs a proof.

LEmMMA 3. Let w= f(z) be a holomorphic function from 4% into W, Set
1
4,0) = {3, 0)ar

Jor 6] £ @ and assume that both Ay(—ea) and As(e) are finite. Then A3(6) is bounded
Sor 6] £ a.

Proof. As f is bounded in 4* by the same argument as in the next
paragraph to the theorem in §1 the origin is a Fatou point of f at which f
has the angular limit f(0) with |f(0)] <1. This implies that we have a
positive constant B such that (1 — | f(re”)|2"'* < B on 4. On the other hand,
both 4;(—a) and 4,(a) are finite because of &(r, ) = 5,(r, ) for 10| = a.
Lemma 3 follows from Lemma 1 combined with 4;(0) < B4,(6) for [0] = a.

§3. Proof of Theorem. In the following z =7e” and e are always
points of D and M respectively. To avoid unnecessary complexity we drop
the suffix j of 4,;(r, 6) if the argument is true for j =1, 2, 3. We remark
that 6(r, 6) is not defined at the poles of f; but this is not essential in the
following proof.

We set

o(r, 6) for zeo,
hir, ) =
0 for zeD —o.

Let ¢=¢(r, 0) =a—arg(re” —1), where 0<r<1, |8 =z and =/2<arg
(re? —1) <3z/2. Then by tan ¢ = r sin0/(1 —» cos#) we have

oy _ _ 3 0
(3) -0 = " % arg (rve 1)

- 3 0
=2 Im log {1/(re 1)}
= r(cos @ — 7)/(1 — 27 cos O + »?).

We next consider the function

(4) H(w; 7, 0) = hir, 0+ 0)-0%.,

Then H(w; 7, 0), for a fixed w, is Lebesgue measurable for 0 <» <1 and |6]
<r; and H(w; 7, ) 20 in the disk
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S = {re"; cos b >r}
and further H(w;7, ) £0in D — S by (3). Therefore we may consider two
integrals:
Ti(w) = SSSH(w; v, 0)drdd = 0

and

Tolw) = — SS H(o; 7, 0)drdd 2 0

D-
for e>e M. We first assert that
@) Jio) <+ oo for any €M, so that H(w; r, 0) possesses a definite integral on
D [2, p. 20] and that

) J@ = ([ Hos 7, 0)drdo = J(w) = Jo).

We let, for the proof, C, be the circle |z] =7, 0<r<1. Then

_g_g’:7(r—c050)/(1—21’c050+y2)gr/(r+l)<r

for re’eC, —S. This can be proved by considering — %g— as a function of
cos f (cf. [4, p. 346]). Therefore by (3) and (4) we have
(6) — H(w; 7, 0) £ rh(r, 0 + ), re’eC, — S.

We estimate Jy(w) upwards by (6) and by Schwarz’s inequality as follows:

o) = = [Lar{ _ Hsr, 000 < (\ar{ _rue, 0+ w)do

0

I

“D_Sh(r, 0 + w)yrdrdd < “Dh(r, 0 + o)rdrdo

= SSDh(r, 0)rdrdo < 1:‘/2[SSD{h(1’, 0)}2rdrdo]”2

= @UIE < + o0,

where
@ U= SSD{h(r, 0))2rdrdo = Ssa{a(r, 0)}erdrdo < + oo

by our assumption (1) in the theorem. This completes the proof of (I).
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Let ~ (0, ¢) be the chord of the circle |z — pe™| =1 — p, with one end-
point e, making the directed angle ¢, |¢| <=/2, with the radius of D at e*.
We shall use the notation ~# (0, ¢) though =1 may not be in M. The
chord ¢/ (o, ¢) has the length

8 Ap) = (2 —2p) cos ¢,

being independent of w. We then set for —=z/2 < ¢ <z/2,

©) Lo, ¢) = S 3, 0)|dz| (2 =re’cs (o, 0)

Z(w, @)

and we consider the function Z(w) on M defined by

(10) o) = S"” Lo, ¢) cos ¢dop.

-n/2
(1) The function X(w) ts Borel measurable on M.

We shall prove this for a,(», 6)®. In other cases the proofs are simpler
and hence are omitted.

Let 7, k=1,2,+--+) be the circle |z| =7, 20 —1 =<7, <1, such that
7. /'1 and the set ktzlrk contains all the poles of f in the half-open ring
{z; 20 —1=|2] <1}. LetR,(v=1,2, - -) bethe open set, being o the form
of a summation of ring domains whose boundaries are concentric circles
with the centre z = 0, such that

RIDRzD' + ¢ D ﬂR,,= UTk.
y=1 k=1

Let 20 —1<Bi<+++ <Bp<-++ <1, B, 1 and let D, be the closed ring
{z;20 —1 =< |2| £8.}. We then set D,,,=D, — R, for m, v=1,2---. We
note first that

(11) Lo, ¢) =S 5,7, 0)|dz| = S 07, 0 + o) dz]

Z(w, ¢) 200, ¢

(z =7re’c/(0, ¢) in the last expression)
and we then consider

Lo, )= o, 0+ o)l dz

Z(0, @) N Dy

(Z = re”e((O, w)anv)

* d, may be extended continuously to the poles of f and our proof will be rather
simplified (Added in proof).
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We shall show that for any e’ M we have L,,(@, ¢) = Ln, (0, ¢) as o = a,
uniformly for —z/2 < ¢ <=z/2, so that

/2

Xm(@) ES Lo, ¢)cos ode

~-r/2

is continuous on M. Indeed,

lev((t), SD) - Lmv(Q’O, SD)l

<

S/(o, ©)NDn, [05(r, 0 + @) — 85(r, 0 + wo)lldz]

= {max sevep,,|6:(r, 0 + ©) — 82(r, 6 + wo)]} X

X {sup m<n/zS |dz]},

Z(0, ¢)NDp,y
so that our assertion follows from the uniform continuity of the function

y(r, 6) on the compact set D,,. Set

o(r, 0 + )| dz|

Lo, ¢) = S/(o,wmbma

and further set

/2

Xn(0) = S L, (o, ¢) cos pde.

~x/2

Then Z,,(@) 7 In(w) as v /o and Z,(w) ~%(w) as m S co. This proves our
proposition (II).

(L)  The inequality Ji(o) Z (2p — 1)2(w) holds for any ¢*“c M.

We remember that (1) is the disk [z — p|] <1— p and we let
Jt@) = {§ o Hlws 7, 0)drds.

Then J,(0) = J%(w) since SO <2(1) and H(w; 7, 6) =0 in S. To estimate J¥(w)
downwards, we set for re’e <7 (1),

t =|re’ —1| and ¢ ==z — arg (re"’ — 1) for
/2 < arg (re'’ — 1) < 3z/2.

Then 1>7=(1—2tcos¢ + ¢32, and on the chord ~(0, ¢), for a fixed ¢,
1¢] < /2, we have

dr = (t — cos ¢)(1 — 2¢ cos ¢ + t2)~12d¢

= (cos ¢ — t)(— dt) (for dt £ 0).

https://doi.org/10.1017/5S0027763000014689 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000014689

BOUNDARY BEHAVIOUR OF FUNCTIONS 115

We note that » decreases as # increases on ~(0, ¢) and cos ¢ = ¢ since re'’e
1)cS. Furthermore, on the circle C, : [z] =7, 0 <7 <1, we have

H(w; 7, 0)d0 = hir, 0 + 0)dd

by (4). We therefore obtain

n 2p—1drSC,n,@(1)H(m; r, 6)do

c,n,@(l)h(r’ 0+ w)d¢

—n/2d¢g (0, ¢)h(r, 0+ w)dr

J
S
= {{ o, 27, 0+ @)ardg
)
)

()
d¢So 3(r, 0+ o)(cos ¢ — £)dt

—-n/2

(where 1(¢) is defined in (8); we note that i(r, 6 + o) = é(r, 6 + o) for re”’c
(1) since ¢D (™))

z/ A(¢)
- 0

> (20 — 1)5 ? d¢§ 3(r, 6 + o) cos pdt
/2
(because of cos¢ — = (20 — 1) cos ¢ for 0 = ¢ < 2(¢))
=20 =1|" Liw, ¢)cos ¢dy
—-r/2
(cf. (11); the formula (11) is true for §)
= (20 — 1)U w).

(IV) The set E = {e’°eM; x(w) = + o} is of capacity zero.

By (II) the set E is a Borel set in the plane, so that E is capacitable
by the celebrated Choquet theorem. Therefore we have only to prove that
E is of inner capacity zero. Assume on the contrary that E contains a
closed set F of positive capacity and let

w(@) = | log 11z — e*)dpw) 2V < + o

be the conductor potential [4, p. 55] of F, where V is a constant and ¢ is a
Borel measure on F of total mass p(F) =1. Then we have [4, p. 345]
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12 S gD %)2rdrd0 <zVJ2
and
(13) r—g;‘— = — SFT)%‘ arg (re" — e¢")dp(w).

‘We next consider the function

(14) Quw;7,)=H(w;7r, 0 — o)

= — h(r, 0)-337 arg (re'’ — ¢')

= h(r, 0)r{cos (0 — w) — r}/{l — 27 cos (0 — w) + 7%}

for re’eD and e“eF (cf. (3), (4). Then @ is a Borel measurable function
on the product space D X F and by (13) and (14) we have

h(r, 0)7—%:”‘— = SFQ(w; 7, 0)dp(w).

On the other hand, both %(r, §) and —g—:‘— are square summable on D with

respect to the measure rdrdd by (7) and (12). Therefore, we have by
Schwarz’s inequality,

J

i

SSDdrdaSFQ(a); 7, 0)d (o)
= SSDh(r, ﬂ)r%drda # + oo,

By Fubini’s theorem [2, p. 87] applied to the positive and the negative parts
of @ respectively we have

(15) J = an@)[ Qwsr, nardo # = o,
Now, by (3), (4), (5) and (14) we have

J(o) = SSDh(r, b+ @%{— arg (re” — 1)} drds
= SSDh(r, 0)%{— arg (re'’’ — e')}drdo

= SSDQ((» s 7, 0)drdo,
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so that by (15),

J = J@dp@) # + .

However, by (5), (Ill) and the very definition of E we have J(w)= + oo for
e?cFcE. This is a contradiction.

(V) The set E is the exceptional set in the statement of the theorem.

Let e°eM— E. Then (o) < + o, so that by the definition of *(w) (cf.
(10)), the quantity L(w, ¢) (cf. (9)) is finite for a.e., ¢, [¢] <=/2. Consequen-
tly, there are two chords /(o, ;) and /(o, ¢2), —7/2<¢; <@, <=z/2, at
¢ such that L(w, ¢x) <+ o, k=1,2. By Lemma j for j=1,2,3 and by
our assumption (1) we know that L(e, ¢) <<+ o for any ¢, ¢; < ¢ <¢,. Re-

peating this process, we have the required property (2) at the point e'*eM
— E.
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