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The research on elasto-inertial turbulence (EIT), a new type of turbulent flow, has reached
the stage of identifying the minimal flow unit (MFU). On this issue, direct numerical
simulations of FENE-P fluid flow in two-dimensional channels with variable sizes are
conducted in this study. We demonstrate with the increase of channel length that the
simulated flow experiences several different flow patterns, and there exists an MFU for EIT
to be self-sustained. At Weissenberg number (Wi) higher than the one required to excite
EIT, when the channel length is relatively small, a steady arrowhead regime (SAR) flow
structure and a laminar-like friction coefficient is achieved. However, as the channel length
increases, the flow can fully develop into EIT characterized with high flow drag. Close to
the size of the MFU, the simulated flow behaves intermittently between the SAR state with
low drag and EIT state with high drag. The flow falling back to ‘laminar flow’ is caused
by the insufficient channel size below the MFU. Furthermore, we give the relationship
between the value of the MFU and the effective Wi, and explain its physical reasons.
Moreover, the intermittent flow regime obtained based on the MFU gives us an opportunity
to look into the origin and exciting process of EIT. Through capturing the onset process of
EIT, we observed that EIT originates from the sheet-like extension structure located near
the wall, which is maybe related to the wall mode rather than the centre mode. The fracture
and regeneration of this sheet-like structure is the key mechanism for the self-sustaining
of EIT.

Key words: viscoelasticity, turbulence simulation, turbulence theory

1. Introduction

Viscoelastic fluids widely exist in nature, and their unique rheological properties give rise
to different flow behaviours comparing with Newtonian fluids, such as the drag-reducing
turbulence (DRT) (Toms 1949; White & Mungal 2008; Li et al. 2012) at a moderate or high
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Reynolds number (Re), and elastic turbulence (ET) (Groisman & Steinberg 2000, 2004;
Steinberg 2021) at an extremely low Re. The recent discovery of a new type of turbulent
state (elasto-inertial turbulence, EIT) by Samanta et al. (2013) opened up new avenues for
viscoelastic turbulence. Unlike Newtonian inertial turbulence (IT) and ET, EIT arises from
the combined effects of nonlinear elasticity and flow inertia. Its distinctive characteristics
are trains of spanwise cylindrical vortex structures of alternating sign around sheets of high
polymer extension (Dubief, Terrapon & Julio 2013; Choueiri, Lopez & Hof 2018; Shekar
et al. 2019). The understanding of EIT has provided valuable insights into the maximum
drag reduction state of DRT as well as the early turbulence of viscoelastic fluids (Dubief,
Terrapon & Hof 2023).

The origin and self-sustaining mechanisms of EIT are hot topics, with the investigations
focusing on whether it originates from wall-mode (Tollmien–Schlichting (TS) mode) or
centre-mode instability, as well as arising from a subcritical or supercritical transition
(Sánchez et al. 2022; Dubief et al. 2023). Here, the wall mode and centre mode
are characterized as propagating at a phase speed close to the critical-layer velocity
near the channel wall, and the base state maximum velocity at the channel centre,
respectively. On the one hand, through linear stability analysis, Garg et al. (2018) and
Khalid et al. (2021) discovered the linear instability of centre mode under high Wi
in pipe and channel flow, respectively. The existence of centre-mode instability can
provide a dynamic origin of EIT Beneitez et al. (2024). Weakly nonlinear analysis
by Wan, Sun & Zhang (2021) indicated that the transition to EIT is subcritical
at low polymer concentrations, and supercritical at high polymer concentrations.
Numerical simulations revealed that the subcritical nonlinear evolution of the centre
mode can induce saturated ‘arrowhead’ travelling waves (Page, Dubief & Kerswell
2020), which exhibits the arrowhead structure (the landmark of centre mode) and can
become a stable attractor for EIT dynamics at sufficiently large Wi. Four coexistent
attractors – e.g. steady arrowhead regime (SAR) and chaotic arrowhead regime –
were identified by Dubief et al. (2022) and Beneitez et al. (2024), supporting the idea of
linear instability. In the experiments of viscoelastic pipe flow (Choueiri et al. 2021), similar
arrowhead structures of centre mode were observed at low Re, suggesting the significance
of centre-mode instability in the origin of EIT. On the other hand, some researchers argued
that the mechanism of EIT induced by the wall-mode instability is closely related to the
excitation of TS waves. The Graham group proposed the critical layer theory and the
nonlinear routine to EIT induced by TS mode (wall mode) in plane Poiseuille flow for low
Wi (Shekar et al. 2019, 2020, 2021). They found two kinds of TS attractors linked to EIT:
a viscoelastic nonlinear TS attractor (VNTSA) and a Newtonian TS attractor. At moderate
Re, although similar to the stable Newtonian TS mode, a VNTSA can be connected to
two-dimensional (2-D) EIT through an unstable solution branch (Shekar et al. 2020). At
high Re, the unstable Newtonian TS attractor can evolve continuously into an EIT state as
Wi increases (Shekar et al. 2021). Therefore, they argued that the wall mode (or TS mode)
and critical layer play a key role in the onset process of EIT. A similar viewpoint is also
obtained by Beneitez et al. (2024), who pointed out that the chaotic dynamics of EIT is a
wall-focused phenomenon.

So far, researches on the origin and mechanism of EIT have yielded many insightful
findings, but the picture is still incomplete and numerous questions remain open.
Direct numerical simulations (DNS) can shed crucial light on these questions. However,
the numerical criterion that is well-documented for Newtonian IT has not yet been
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established for EIT. The well-known high Weissenberg number problem (HWNP) has
long bottlenecks in the simulations of high-Wi viscoelastic fluid flows, especially EIT and
ET. Although great efforts have been made in dealing with the HWNP over the past two
decades, it has not been completely solved (Alves, Oliveira & Pinho 2021). Many of the
numerical studies on EIT adopt some artificial diffusion to alleviate the hyperbolicity of
the constitutive model at high Wi, which is often considered as one of the main causes
of the HWNP. The addition of an artificial diffusion term can stabilize the numerical
simulations of high-Wi viscoelastic fluid flows in a way, but at the cost of numerical
accuracy. Moreover, recently it was demonstrated that the presence of non-zero diffusivity
of the polymer stress can change the flow stability of Oldroyd-B and FENE-P fluid by
inducing a new mechanism of linear instability, i.e. polymer diffusive instability (PDI)
(Beneitez, Page & Kerswell 2023); this can also lead to a self-sustaining chaotic state, and
the inertia can enhance its prevalence comparing with the cases in the inertialess limit
(Couchman et al. 2024). These important findings indicate that in numerical simulations,
PDI could also be a possible trigger of ET and EIT for Oldroyd-B and FENE-P fluids,
which, however, is non-physical. Therefore, avoiding the PDI by suitable numerical
methods is also a necessity to establish the numerical criterion for EIT as well as ET.

In addition to the numerical methods, the size of the computational domain is also a
key factor to excite and sustain turbulence, which also lacks of systematic investigation for
EIT. The improper choice of computational domain sometimes leads to a different picture
of dominant dynamics. For example, as reported in Dubief et al. (2022), the simulated
flow states are related to the computational domain, and an increase in the streamwise
length can change the SAR state to the EIT state under the same parameters. Zhu & Xi
(2021) obtained slightly higher friction factors after enlarging the computational domain,
explained as spatial intermittency and correlation on longer length scales. In our previous
studies on EIT of Oldroyd-B fluids (Zhang et al. 2022), we found that a longer channel is
required to excite EIT as Wi increases. Therefore, a standard numerical criterion for DNS
of EIT after solving the HWNP is a prior and plays a crucial role in drawing a complete
picture of EIT dynamics.

To establish this criterion, it is worth emphasizing the importance of finding the
minimal flow unit (MFU) that can ensure the occurrence and continuous self-sustenance
of turbulence (Jiménez & Moin 1991). In numerical simulations of turbulence, it is
commonly required to ensure that the computational domain is sufficiently long to allow
for adequate turbulence development, and that the streamwise correlation reaches zero
within half of the domain length (Dubief et al. 2023). The statistical results based on
the MFU agree with those obtained from significantly larger flow units. The use of the
MFU provides reliable guidance for selecting the computational domain size in numerical
simulations, ensuring that the results contain complete and accurate physical information
while reducing the computational cost associated with large domains. It has played an
important role in understanding the self-sustaining mechanisms of turbulent structures
therein, and has remained widely employed in studies related to Newtonian wall-bounded
turbulence (Yin, Huang & Xu 2018). However, few studies are conducted on the MFU of
viscoelastic turbulence, particularly EIT. Xi & Graham (2010) explored the MFU for DRT
in three-dimensional channel flow. Later, Graham (2014) mentioned that the Newtonian
fluid MFU cannot sustain turbulence at high Wi. Like Newtonian IT, the MFU is also
a necessity to further promote the understanding of EIT, including the self-sustaining
process of coherent structures, exact coherent structures, and so on.
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Against the above backdrop, this paper aims to find the size of MFU that is able to
sustain EIT, thereby discussing its origin. To this end, a comprehensive investigation on
the computational domain effects on the flow characteristics in a wide range of parameters
is required, based on reliable numerical methods. In our recent work, we identified the
improper interpolation of the tensor field when solving the constitutive equations as the
main cause of the HWNP (Zhang et al. 2023). Instead of component-based interpolation,
we proposed a tensor-based interpolation method for the conformation tensor field, and
have demonstrated the effectiveness of the tensor-based interpolation method in resolving
the challenges of the HWNP with no need for an artificial diffusion term. This efficient
and stable numerical method offers us the ability to access the numerical criterion of EIT
today. Moreover, the 2-D nature of EIT demonstrated by Sid, Terrapon & Dubief (2018)
implies that the MFU of EIT in a channel is determined mainly by the streamwise length of
the computational domain. Therefore, we conduct a series of numerical simulations on 2-D
plane Poiseuille flow to find the MFU suitable for EIT, and thereby explore its origin. The
remaining sections are organized as follows. Section 2 introduces the governing equations
of viscoelastic fluid flow, numerical methods and conditions. Section 3 discusses the
computational domain effects on flow characteristics and explores the origin of EIT based
on its MFU. Section 4 gives the conclusions.

2. Numerical methodology

2.1. Governing equations
This study focuses on the 2-D plane Poiseuille flows of FENE-P fluid under a constant
flow rate. Channel walls are assumed to be no-slip, and the periodic boundary condition is
applied in the streamwise direction. The channel half-height h, the bulk mean velocity ub,
h/ub, and ρu2

b are chosen as the reference length, velocity, time and pressure, respectively.
Here, ρ is the fluid density, and ub = (1/2h)

∫ 2h
0 ū( y) dy, with ū( y) the locally averaged

velocity in the streamwise direction, and an overline indicates an ensemble-averaged
variable. Then the dimensionless governing equations of FENE-P fluid flow in the form of
the conformation tensor c are as follows:

∇ · u = 0, (2.1)

∂u
∂t

+ u · ∇u = −∇p + β

Re
∇2u + ∇ · τ p, (2.2)

τ p = 1 − β

Re Wi
[ f (r) c − I], (2.3)

∂c
∂t

+ (u · ∇)c − c · (∇u)− (∇u)T · c = − f (r) c − I
Wi

, (2.4)

where u is the velocity vector, with (u, v) denoting the streamwise (x) and normal ( y)
direction velocity components. Here, c is the conformation tensor representing the average
of the end-to-end vector of the polymer molecules taken over all the molecules, p is the
pressure field, τ p is the additional elastic stress tensor, β = ηs/η0 with η0 the solution
dynamic viscosity and ηs the solvent contribution to the viscosity, Re = ρubh/ηs is the
bulk mean Reynolds number, and Wi = λub/h is the Weissenberg number based on the
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relaxation time λ of the viscoelastic fluid. The Peterlin function f (r) is defined as

f (r) = (L2 − 2)/(L2 − r2), (2.5)

where r2 = tr(c) is the trace of the conformation tensor c, and L is the maximum extension
length of FENE-P fluid.

2.2. Numerical schemes
The governing equations are solved based on the finite difference method using a DNS
code developed in our previous work. The numerical code adopts a time-splitting method
to solve the governing equations under a constant flow rate, which is conducted by the
following four steps: (1) update the configuration tensor and calculate the elastic stress
field by (2.3); (2) perform partial time marching of the velocity field containing convection,
diffusion and elastic stress terms in (2.2) to obtain the first intermediate velocity field;
(3) derive the pressure Poisson equation by substituting the first intermediate velocity
field variable into (2.1), and solve it to obtain the second intermediate velocity with
pressure terms; (4) maintain a constant flow rate by imposing an appropriate average
pressure gradient on the second intermediate velocity. The above process solves the
pressure field implicitly, and the time marching of other terms is solved by a second-order
Adams–Bashforth scheme. More numerical details and validation can be found in Zhang
et al. (2022, 2023).

It is worth highlighting our algorithm for handling the HWNP. The origin of the HWNP
is closely related to the loss of the conformation tensor symmetric positive definite (SPD)
property (Alves et al. 2021). Recently, we found that the improper interpolation methods of
the conformation tensor are the main reason for losing its SPD property. Correspondingly,
we proposed a tensor-based interpolation that is physically motivated (Zhang et al. 2023),
instead of a component-based one to deal with the HWNP. The key to this method is to
interpolate the eigenvalues and orientation of the conformation tensor c rather than its
components. Comparing with traditional component-based methods, the accuracy of the
conformation tensor invariants as well as its SPD property can be guaranteed at high Wi
without adding any artificial diffusion. The application procedures are as follows.

(i) Decompose the conformation tensor field c as

c = RΛR, (2.6)

Λ =
⎡
⎣Λ1 0 0

0 Λ2 0
0 0 Λ3

⎤
⎦ , (2.7)

R =

⎡
⎢⎢⎢⎢⎢⎣

cos θ cosϕ sinψ sin θ cosϕ
− cosψ sinϕ

cosψ sin θ cosϕ
+ sinψ sinϕ

cos θ cosϕ sinψ sin θ sinϕ
+ cosψ cosϕ

cosψ sin θ sinϕ
− sinψ cosϕ

− sin θ sinψ cos θ cosψ cos θ

⎤
⎥⎥⎥⎥⎥⎦ , (2.8)

where ψ , θ and ϕ are Euler angles relative to the Cartesian coordinate system.
(ii) Given the known conformation tensor field c, obtain the rotation matrix R and the

diagonal matrix Λ by (2.5), and calculate the Eulerian angles and eigenvalues at the
grid nodes.
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(iii) Obtain the Eulerian angles (ψi+1/2, θi+1/2, ϕi+1/2) and eigenvalues (Λ1,i+1/2,
Λ2,i+1/2, Λ3,i+1/2) at the grid interface through various interpolation schemes.

(iv) Calculate the diagonal matrix Λi+1/2 and rotation matrix Ri+1/2 at the grid interface
by (2.7) and (2.8).

(v) Reconstruct the conformation tensor ci+1/2 at the grid interface by (2.6).

Moreover, to further improve the numerical accuracy, the above method can be
combined with the high-order total variation diminishing schemes, such as the weighted
essentially non-oscillatory (WENO) scheme used in this study. Taking the second-order
WENO scheme (Shu 1998) as an example, the flux Hi+1/2 on the interface i + 1/2 can be
calculated as

Hi+1/2 = ui+1/2 fi+1/2, fi+1/2 = q1 × P1 + q2 × P2, (2.9)

where fi+1/2 is the interpolated variable on the interface (i + 1/2) for Λi,i+1/2 and
θi,i+1/2, P1 and P2 are the results based on the second-order central and upwind
interpolation templates, i.e. P1 = 1.5fC − 0.5fU and P2 = 0.5fC + 0.5fD, and q1 and q2

are the smoothing factor of the two templates, i.e. q1 = 0.25/(10−6 + ( fU − fC)2) and
q2 = 0.75/(10−6 + ( fU − fC)2). The subscripts U, C and D are the variables at the
neighbour upstream, central and downstream nodes, respectively.

2.3. Numerical conditions
A series of simulations of the EIT state are conducted in a 2-D channel with varying
dimensionless channel length SX, where SX = 5n, with n = 0.5, 1.0, 1.6, 2.0 and 4.0,
respectively. In the existing studies (e.g. Dubief et al. 2022; Beneitez et al. 2024), a
dimensionless channel length SX of 2π is frequently used, but there is no discussion on
whether it can satisfy the MFU criterion. A wide range of Wi is covered, from 10 to 800,
while keeping Re = 2000, β = 0.9 and L2 = 10 000. Linear stability analysis for FENE-P
channel flow at the same condition indicates that centre mode instability occurs when Wi
exceeds 150. However, despite the linear stability analysis predicting linear stability, DNS
conducted by Shekar et al. (2020, 2021) demonstrate that EIT can indeed be excited at
Wi ≥ 10. Here, due to the use of different characteristic velocities to define Wi, the case
Wi = 10 in our study corresponds to Wi = 15 in Shekar et al. (2020).

During the simulation, the grid is set to be non-uniform in the normal direction, and
uniform in the streamwise direction. The grid in the normal direction is much denser near
the wall and distributed as

yj = 1
a

tanh
(

1
2
δj ln

(
1 + a
1 − a

))
, (2.10)

where yj is the location of the jth grid node, and δj = −1 + 2j/Ny, with Ny the total grid
number in the normal direction. After grid independence validation, the grid resolution is
set to be 256n × 304, and the detailed validation is shown in the Appendix. The time step
δt is set to be 5 × 10−4h/ub or even smaller to achieve stable simulations. All the following
simulations maintain for a sufficiently long duration to ensure statistical convergence and
stability.
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Figure 1. Temporally averaged and instantaneous Cf of viscoelastic fluid flow at different Wi obtained by
different computational domains. The two insets are the instantaneous Cf at two typical Wi, 40 and 100,
respectively. The red open and closed circles represent the temporally averaged Cf for different stable stages
at SX = 8 under the same Wi value; LD indicates low-drag, and HD indicates high-drag. The dashed line
corresponds to Cf in the laminar regime of FENE-P fluid at different Wi.

3. Results and analysis

3.1. Computational domain effects on flow states
First, the effects of the computational domain on flow states are evaluated through the
statistical property, specifically the flow drag. Figure 1 illustrates the temporally averaged
and instantaneous drag coefficient (Cf ) of viscoelastic flows over a wide range of Wi
obtained by different channel lengths. The two insets display the temporal evolution of the
spatially averaged drag coefficient at two representative Wi values, 40 and 100. Therein,
the symbols a–e in inset 2 are the typical moments of different channel length simulation
cases, where a and b represent the low-drag states obtained by SX = 5 and 8, and c,
d and e represent the high-drag states obtained by SX = 8, 10 and 20, respectively. It
is evident that the choice of computational domain plays a crucial role in determining
the numerically achieved flow states, particularly for cases of large Wi (e.g. above 40).
When longer channels (e.g. SX = 10 and 20) are employed, the temporal evolution of Cf
and flow structures demonstrate continuous occurrence of EIT, reaching a self-sustained
state at Wi > 10. In these cases, the statistical drag coefficients converge as the channel
length increases from SX = 10 to SX = 20. This indicates that a computation domain with
SX > 10 is sufficient to capture the EIT state of FENE-P fluid for all presently considered
Wi at Re = 2000, β = 0.9 and L2 = 10 000.

For the shorter channel lengths, such as SX = 5 and 8, the numerical results align
with those of the longer channels at lower Wi (e.g. Wi < 40 for SX = 5, and Wi < 60 for
SX = 8). However, as Wi is increased further, the flow alternates between a turbulent state
with fluctuating high drag and a laminar-like state with stable low drag across a wide range
of parameters. It is notable that the stable low-drag state (e.g. SAR state) discussed in this
paper is not a turbulent state, different from active and hibernating turbulence proposed
by Graham groups (Xi & Graham 2011; Xi & Bai 2016). Consequently, the statistical Cf
decreases significantly, approaching levels seen in laminar flow (e.g. Wi > 60). In figure 1,
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R2 = 0.99

(a) (b)

Figure 2. Relations of Wir with (a) Wi and (b) Cf .

red open and closed circles distinguish the drag coefficients of these two states at the same
Wi. Interestingly, the averaged Cf in the high-drag state follows the scaling of EIT obtained
from the longer channels, while the averaged Cf in the low-drag state approaches laminar
flow. Through evaluating the detailed flow field, it is discovered that the low-drag state in
these cases corresponds to the SAR state identified by Dubief et al. (2022), as illustrated
in figure 4(c) later. Moreover, in the cases with SX = 8, both states exist intermittently
for a certain duration (as shown in inset 2 of figure 1), while for SX = 5, the high-drag
state immediately transitions to the low-drag state with increase of Wi. This suggests that
the high-drag state cannot sustain continuously in a short channel, and a long channel is
required to capture the EIT state.

It is worth noting that the intermittent flow state observed in the case with SX = 8 bears
resemblance to the intermittent maintenance of laminar and turbulent states reported by
Shekar et al. (2021). The influence of the computational domain on flow states mimics
the effects of Wi. Here, the channel length SX = 8 is close to the critical length or
the MFU to excite a continuous EIT state at Wi > 60. What is more, these findings
obtained by changing the channel length at fixed L2 also show great similarity to the
effects of L2 obtained by Dubief et al. (2022) at fixed channel length. Therein, they
discovered that drag increase rises with increasing Wi under small L2 conditions, then
reaches a maximum value and subsequently decreases to zero (laminar flow) under large
L2 conditions. According to the above results, the effect observed in Dubief et al. (2022)
can be explained as: large L2 implies the existence of longer characteristic structures in
EIT, which cannot be captured adequately by the shorter channel length. In other words,
the decrease of drag increase or Cf with increasing Wi is caused by the insufficient channel
length used in numerical simulations.

In our previous work, it was demonstrated that the nonlinear extension of the FENE-P
model can affect the nature of the maximum drag reduction state, and the effective
elasticity of FENE-P fluid related to L2 is proposed to describe the coupling effect of
nonlinear extension and local shear instead of Wi (Wang et al. 2021). Similarly, Wir is
defined to characterize the average effective elastic effect on the flow as

Wir =
∫ 2

0

Wi
f (r)

∂u
∂y

dy. (3.1)

An interesting observation is that if we take into account the nonlinear extension effect
of the FENE-P model, then the scaling of Cf with effective elasticity becomes simpler.
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Figure 3. Phase diagram of flow states at different Wi obtained by different computational domains. Here,
SSW means steady sheets near the wall; SW-EIT means EIT occurrence near a single wall; ‘+’ indicates the
alternative occurrence of different states.

Figure 2 shows the relations of Wir with Wi and Cf , respectively. As is shown, Wir exhibits
a behaviour similar to Cf in figure 1, and a linear function between Cf and Wir can be
observed as shown in figure 2(b): Cf ∝ Wir. This indicates that Wir is more suitable to
describe the elastic effect in EIT, and the drag of EIT depends linearly on the effective
elastic effect. Moreover, by evaluating this linear function, we can obtain an approximate
scaling of Cf as Cf ≈ 2.5(1 − β)(Wir − 10)/Re + 9/Re ≈ 8.42 × 10−5 × Wir + 0.0022.
The first term is related with the drag induced by EIT, and the second term is the drag of
Newtonian laminar flow. This linear function agrees very well with the numerical data in
the currently investigated parameter range of Wi (10 ≤ Wi ≤ 200, or 13 � Wir � 40). It is
certain that the scaling still needs further validation based on a large amount of numerical
simulations under various conditions of varying Re and β in future work.

3.2. The MFU of EIT
According to the obtained drag coefficients and flow fields, figure 3 presents a
phase diagram summarizing various viscoelastic flow states obtained from different
computational domain sizes in a wide range of Wi (Wi > 10). The flow states depicted
in the diagram are stable ones that can be sustained for sufficient periods. In figure 3,
we supplement several cases of SX = 2.5 and 2π near the critical line to obtain the
corresponding critical SX that can ensure stable EIT. Moreover, to have an intuitive image,
the typical structures of different flow states are presented by the snapshots of polymer
extension in figure 4. As mentioned above, the cases at all Wi considered in this paper are
capable of reaching EIT if the channel is long enough. However, it is observed that with
the increase of the channel length, the flow can experience several typical states, such as
the SSW state with steady sheets near the wall, the SW-EIT state with EIT occurring near
a single wall, the SAR state with steady arrowhead structure and EIT state. Except for EIT,
these states may also be the solutions of governing equations or the attractors of FENE-P
fluid channel flow, which are somehow unstable or appear only in a narrow parameter
space.

Moreover, the phase diagram illustrated figure 3 allows us to identify the MFU required
to produce the EIT state for different Wi. It is evident from the diagram that the size of the
MFU increases with Wi and saturates when Wi exceeds a critical value (e.g. 60). Given the
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Figure 4. Features of different flow states: (a) SSW and (b) SW-EIT obtained at Wi = 30, SX = 2.5; (c) SAR
and (d) EIT obtained at Wi = 100, SX = 8.

case of Wi above the critical value to excite EIT, if the computational domain is slightly
shorter than the size of the MFU, then a switching phenomenon of EIT and SAR appears.
Otherwise, EIT cannot be excited, and only SAR structures appear if the computational
domain is too short. For example, when Wi < 40, a flow unit with size SX > 5 can achieve
a self-sustained EIT state. However, for Wi > 40, a flow unit with SX = 5 is no longer able
to sustain the EIT state, and instead exhibits a coexistence of SAR and EIT, or even a pure
SAR state. Further increasing Wi above 60, a flow unit with SX = 8 also loses its ability to
sustain the EIT state, and shows a coexistence of SAR and EIT. Notably, the flow unit with
SX = 10 is sufficient to sustain EIT states for Wi ranging from 10 to 200 or even larger Wi,
indicating a saturation of the effective elastic effect of FENE-P fluid at high Wi. Collecting
the critical SX for different Wi, we give an approximate size of MFU required to sustain
the EIT state in numerical simulations as SX > f (Wi) for the parameters investigated in
this study. This criterion can also be expressed as SX > (0.65 Wir − 10.66) in terms of
Wir. Therefore, an appropriate size of the flow unit satisfying this criterion is suggested
for the numerical simulation of EIT.

The above results clearly demonstrate the existence of an MFU for EIT to be
self-sustained. This naturally raises the following questions. Why is a long channel
required to produce EIT? What determines the MFU of EIT in numerical simulations?
Answering these questions can give more insights into the origin and self-sustaining
mechanism of EIT. Through evaluating the flow fields, it is observed the evolution process
of sheet-like structures of polymer extension plays a crucial role in the generation and
self-sustaining of EIT (see supplementary movies available at https://doi.org/10.1017/
jfm.2024.977), which is in line with the findings in Shekar et al. (2021). Therefore, we
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Figure 5. (a) Spectra of the conformation tensor component cxx at y ≈ 0.25 at SX = 20 and different Wi,
where the solid dots with different colours represent the peaks of the spectra. (b) Characteristic scales Ls of the
cxx and the critical computational domain at different Wi, where Ls = 20/kp, and kp is the peak wavenumber
obtained from Ecxx (k). The stars and triangles represent the same flow patterns mentioned in figure 3, and the
error bars represent ±10 %.

postulate that proper channel length to capture the evolution process of these structures is
essential to sustain the EIT state. To test this hypothesis, we focus on the numerical results
of cases obtained from a sufficiently large computational domain, SX = 20. Figure 5(a)
illustrates the spectral characteristics of the conformation tensor component cxx at different
Wi. A peak in the low wavenumber can be observed near the wall at various Wi,
corresponding to the number of the sheet-like structures in the channel of SX = 20. For
example, when Wi = 10, the peak value kp = 7 indicates that the characteristic length
of the sheet-like extension structures or the spacing between two sheets is SX/kp ≈ 3.
Additionally, figure 5(b) summarizes the relationship between the characteristic length of
the sheets and Wi, which exhibits a consistent pattern with the critical MFU determined in
figure 3. Based on these observations, we argue that the size of the MFU required for EIT
is determined by the characteristic scale of the sheet-like structures.

3.3. Dynamics of different flow states
Based on the above results, this subsection explores the dynamics of different flow states.
Figure 6 draws the dynamical and structural evolution of typical flow cases. Here, Cf and
τxx characterize the energy dissipation and the energy stored in the polymers of channel
flow, respectively. For the cases at SX = 20, it can be seen from the phase diagram that
there are elliptical envelopes during the dynamical evolution of EIT, and the principal
axes of the elliptical envelopes almost overlap under these conditions, which implies that
the selected physical quantity can well describe the dynamics of EIT. For the channels
with SX = 8, the envelope of dynamical evolution also has overlapping principal axes
under low Wi conditions (Wi < 40). However, at high Wi, the flow shuttles back and forth
between SAR and EIT. Starting from SAR, at first, Cf shows only a small increase, while
τxx is significantly enhanced; subsequently, Cf shows a rapid increase and falls back to
the EIT envelope line, while τxx is no longer significantly increased; finally, the flow
falls back to SAR from the envelope line along the principal axis, and repeats the above
process. Figure 6(b) focuses on the channel flows at Wi = 100. As SX increases, the flow
undergoes the evolution process of pure SAR, intermittent flow regime between SAR and
EIT, and fully developed EIT, respectively. The flow envelopes almost coincide under the
conditions SX = 10 and SX = 20. This clearly demonstrates that the flow states obtained
by insufficient channel length follow different dynamics from EIT.
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Figure 6. Dynamical and structural evolution cycles of Cf with τxx (a) for different Wi at SX = 8 and 20, (b)
for different SX at Wi = 100 (the insets present the snapshots of streamwise extension fields cxx for different
SX, corresponding to the moments a–e in inset 2 of figure 1).

The above phenomenon can also be confirmed from the perspective of the stress balance,
budgets of turbulent kinetic energy and elastic energy. The stress balance equation is
obtained by the ensemble averaging of the momentum transport equation (2.2) as

−u′ν′︸ ︷︷ ︸
τR

+ 1 − β

Re Wi
( f (r) cxy − 1)︸ ︷︷ ︸
τE

+ β

Re
dū
dy︸ ︷︷ ︸

τV

= − dp
dx

(
1 − y

h

)
︸ ︷︷ ︸

τT

, (3.2)

where (·) represents the ensemble-averaged variable, (·)′ is the fluctuating variable, and
(·)′ = (·)− (·). Here, τR, τE, τV and τT are the instantaneous Reynolds stress, elastic stress,
viscous shear stress and total stress locally averaged along the streamwise, respectively.
Similarly, the elastic energy budget equation can be obtained based on the elastic energy
transport equation as

∫ 2

0
τE
∂ ū
∂y︸ ︷︷ ︸

PE

dy −
∫ 2

0

f (r) τii

2 Wi︸ ︷︷ ︸
εE

dy +
∫ 2

0
τ ′

ij
∂u′

i
∂xj︸ ︷︷ ︸
R̄

dy = 0, (3.3)
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Figure 7. Statistical properties for different periods and channel lengths: (a,b) stress distributions in the normal
direction based on inner scale; (c,d) turbulent kinetic energy budgets in the normal direction for different
channels. Here, 8-SAR and 8-EIT correspond to the results obtained by SX = 8 in the SAR and EIT stages,
respectively.

where PE, εE and R are the instantaneous terms of the energy production by the elastic
stress, the elastic dissipation, and energy exchange between elastic energy and turbulent
kinetic energy locally averaged along the streamwise, respectively. Likewise, the budget
of turbulent kinetic energy can be obtained as

∫ 2

0
−1

2
u′ν′ ∂ ū

∂y
dy︸ ︷︷ ︸

PK

−
∫ 2

0

β

Re
∂u′

i
∂xj

∂u′
i

∂xj
dy

︸ ︷︷ ︸
εK

−
∫ 2

0
τ ′

ij
∂u′

i
∂xj︸ ︷︷ ︸
R̄

dy = 0, (3.4)

where PK and εK are the terms of the energy production by the Reynolds stress and the
turbulent dissipation locally averaged along the streamwise direction, respectively.

Figure 7 illustrates the averaged budgets of shear stress and turbulent kinetic energy
based on the results obtained by different channel lengths. Here, for the intermittent flow
regime, the time averaging is performed for the different stages separately. As is shown,
different flow patterns present completely different dynamical behaviour. The stage of
SAR induced by the centre mode exhibits significant characteristics around the channel
centre. For instance, the elastic nonlinear shear stress is lifted up with the peak close to
the channel centre (see figure 7a). Although additional nonlinear shear stress is formed
relative to laminar flow, it cannot cause a significant increase in flow drag due to the low
shear strain rate therein. Compared to negative PK , turbulent kinetic energy comes from
energy conversion term R̄, which is also tightly supported near the channel centre (see
figure 7d). However, unlike that of the SAR stage, the stage of EIT exhibits significant
near-wall characteristics. For example, the peak of elastic nonlinear shear stress locates
much closer to the wall compared to the SAR state (see figure 7b), which can induce
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high flow drag weighted by high shear strain rate there. The formation of turbulent kinetic
energy also relies mainly on energy conversion term R̄, but the peak of R̄ is very close
to the wall. The above phenomena indicate that there exist completely different dynamic
mechanisms for EIT from the flow pattern induced by the centre mode.

3.4. Origin and self-sustaining process of EIT
The intermittent flow regime between the SAR and EIT states provides a fabulous
opportunity for exploring the origin and self-sustaining mechanism of EIT. To this end, this
subsection investigates the structural and dynamical evolution processes of intermittent
flow regime obtained at Wi = 100 with SX = 8, and Wi = 40 with SX = 5, respectively.
The structural evolution is characterized by the polymer extension structures, and the
dynamical evolution process is also evaluated using the the instantaneous budgets of
turbulent kinetic energy and elastic energy, as well as shear stress balance analysis,
respectively. For the two cases at Wi = 100 and 40, figures 8 and 9 show several typical
moments of EIT from burst to disappearance. The detailed evolution can be found in the
supplementary movies. As illustrated in figures 8 and 9 as well as the supplementary
movies, the excitation process of EIT can be described as follows.

In the intermittent flow regime of SX = 8 and Wi = 100, starting from the flow with the
SAR structure, several near-wall sheet-like streamwise extension structures first appear at
y ≈ 0.5 in the flow (see state 1). These structures gradually grow and extend towards the
channel centre (see states 1 and 2). Then they begin to split and modulate the SAR structure
(see states 3 and 4), until the SAR structure integrates into the sheet-like extension
structures. Subsequently, frequent splitting leads to a rapid increase in Cf as shown in
figure 6(a), then the flow develops into the EIT state without the SAR structure (see
state 5). The detailed splitting process can be clearly identified in the supplementary movie
of Case B from 21 s to 24 s. Due to the above demonstrated computational domain effects
on flow states, EIT could not be maintained continuously for a long time as the near-wall
extension structures gradually decline (see state 6). Finally, the flow returns to the SAR
regime dominated by the centre mode (see state 7). After a long duration of the SAR state,
the intervention of wall mode triggers the above process again.

Regarding the instantaneous dynamic evolution process, during the development
process from pure SAR state to fully developed EIT state in figure 8, τE is significantly
higher than τR, which is responsible for absorbing energy from the average motion and
converting it into elastic energy, manifested as a significant elastic energy generation term
PE. However, the turbulent energy generation PK is weaker, and even has a negative
distribution in some regions. Turbulent velocity fluctuations come mainly from energy
conversion R. The above phenomena indicate that elastic nonlinearity plays a dominant
role in the dynamics of SAR and EIT, responsible for their induction and maintenance.
Therefore, the origin and self-sustaining mechanism of EIT can be further confirmed by
focusing on the elastic nonlinear behaviour in the flow. First, in the pure SAR state (state 7),
the dynamic mechanism exhibits centralized characteristics in spatial distribution, such as
the peak values of τE and PE located at y ≈ 0.75, and they are approximately linearly
distributed at y < 0.6. Therefore, we believe that SAR is induced and maintained by
the centre-mode dynamics. At state 1, with the burst of sheet-like extension structures,
near-wall, wall-mode dynamics get involved in the flow, accompanied by local uplift of
τE and PE at approximately y = 0.5. Subsequently, the wall-mode dynamics gradually
increases, and the modulated centre-mode dynamics becomes difficult to detect at state 2.
In states 3 and 4, the wall-mode dynamics gradually shifts towards the channel wall with
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Figure 8. The structural and dynamical evolution processes of the intermittent flow regime at Wi = 100 and
SX = 8.
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Figure 9. The structural and dynamical evolution processes of the intermittent flow regime at Wi = 40 and
SX = 5.

high shear strain rates, causing a rapid increase in the flow drag. At state 5 with fully
developed EIT, the wall-mode dynamics relatively decreases, and the peak values of τE and
PE are located at y ≈ 0.2. It is interesting that at the moment when EIT decays to state 6,
τE and PE are extremely weak, and energy conversion almost disappears with the decay of
EIT at state 6, which cannot provide energy for the maintenance of turbulent fluctuations,
indicating the disappearance of elastic nonlinear dynamics. The above phenomena fully
demonstrate that EIT originates not from the SAR structure induced by centre-mode
dynamics, but rather from the sheet-like extension structures triggered by a wall mode.
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Moreover, in the intermittent flow regime of SX = 5 and Wi = 40, as shown in figure 9,
it is observed that even starting from the laminar-like flow without SAR structure, the
appearance and evolution of near-wall sheet-like structures still closely mirror the process
of the case at SX = 8, Wi = 100 in figure 8. They trigger the flow to be unstable and EIT
state finally (see state 3). This detailed process can be found in the supplementary movie
of Case A from 18 s to 28 s. Similar processes can also be confirmed through the evolution
of instantaneous dynamics in figure 9 from state 1 to state 4. Here, the non-existence of
peaks near the centreline further corroborates the absence of centre mode.

Therefore, the above results indicate that in the current parameter space, the EIT
originates from the near-wall sheet-like structures induced by some wall modes rather
than the centre mode, no matter whether there exists centre mode instability or not. From
the perspective of dominant structure regeneration, the self-sustaining process of EIT
can be described as: small disturbances near the wall induce high extension sheet-like
structures, which gradually grow and split under the elastic nonlinearity as well as the
fluid inertia, and regenerate new sheet-like structures. The above process continues to
occur, maintaining the turbulent state of the flow. Therefore, different from the process
of large eddies generating small eddies, and small eddies generating mini eddies in IT, we
argue that there exists a different type of structural similarity in EIT: large extension sheets
generate small extension sheets, and small extension sheets continues to regenerate as they
grow.

4. Concluding remarks

In summary, a series of DNS of 2-D channel FENE-P fluid flow is performed to obtain the
MFU of EIT in this paper. Based on the numerical results, the origin and self-sustaining
process of EIT are then investigated, and the following major conclusions can be drawn.

(1) The size of the computational domain can significantly affect the numerically
obtained flow pattern. The improper choice of domain size will lead to different or
inaccurate flow dynamics. If the channel length is long enough, then the flow will sustain
the EIT regime with the increase of Wi; otherwise, the flow will gradually fall back from
the EIT state to the SAR state due to the insufficient channel length. This implies the
existence of an MFU to sustain the EIT state. Moreover, it is found that the MFU is
essentially determined by the characteristic scale of polymer extension structures whose
evolution is crucial to the sustenance of EIT.

(2) Through investigating the dynamics of different flow states, it is found that the flow
states obtained by insufficient channel length follow different dynamics from EIT. The
SAR state exhibits dominant dynamics near the channel centre. Unlike the SAR state, EIT
shows significant near-wall features, with the peak of elastic nonlinear shear stress and the
energy exchange between elastic energy and turbulent kinetic energy located near the wall.

(3) The intermittent flow regime obtained at the critical channel length gives an in-depth
insight on the origin and sustaining process of EIT. It indicates that in the absence of SAR
structures, the sheet-like extension structures near the wall can be induced and gradually
evolve into fully developed EIT. This means that EIT originates not from the centre mode,
but from some wall modes, which induces the sheet-like extension structures near the
wall. In detail, the sheet-like extension structures induced by small disturbances gradually
grow and fracture, while the extension structures formed by fractures continue to grow
and fracture. Once triggered, EIT is self-sustained by the regeneration of the extension
structures.

So far, the above results are obtained under fixed inertial effect, and comprehensive
investigations are of course still necessary to draw an exhaustive picture of an MFU
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Figure 10. Statistics obtained by different grid resolutions for the case Re = 2000,
β = 0.9, L2 = 10 000, Wi = 60: (a) the ensemble-averaged drag coefficient Cf ; (b) the profile of the
mean streamwise velocity ū; (c) the profile of Cxy; (d) the profile of tr(c). Here, Cf = 2τw/ρu2

b with τw is
the temporally averaged wall shear stress. The insets illustrate the relative differences δ of the results at the
512 × 304 grid comparing with those of higher resolution cases (768 × 304 and 512 × 384, respectively).

for EIT. Moreover, with the MFU, now we can reach the level of identification of various
exact coherent structures, the geometry of EIT, and detailed dynamical process of EIT in
future work.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.977.
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Appendix

Before a large amount of numerical simulation, grid independence validation was
conducted at two representative Wi values (i.e. Wi = 60 and 100) and different channel
lengths. Figures 10 and 11 illustrate some important statistics and structural properties
obtained under different grid sets at Wi = 60, SX = 10. The insets illustrate the relative
differences δ of the results at the 512 × 304 grid, comparing with those at higher-resolution
cases (768 × 304 and 512 × 384), respectively. Here, the relative differences at different
grid resolutions are defined as δ = (θi − θ512×304)/θ512×304,p, where θi represents the
results at higher resolution, θ512×304 represents the results at the 512 × 304 grid, and
θ512×304,p represents the peak value of the corresponding data. It can be found that
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Figure 11. Instantaneous snapshots of polymer extension obtained by different grid resolutions:
(a) 256 × 152, (b) 512 × 152, (c) 512 × 304, (d) 768 × 304, (e) 768 × 384.

the variation of the streamwise grid number from Nx = 256 to Nx = 768 has gradually
decreasing effects on the statistics and the structural properties, and the results converge
at Nx = 512. Fixing Nx = 512, with the increase of grid resolution in the normal direction
from Ny = 152 to Ny = 384, the statistics of EIT increase slightly and almost converge at
Ny = 304. With the 512 × 304 grid, the numerical simulations can accurately predict no
matter the tendency but also the peaks of different parameters. As illustrated by the insets
of figure 10, the relative differences of different parameters are mostly less than 1 %, and
the maximum ones are within 5 %, comparing with those at the two highest resolution
cases. Furthermore, figure 12 shows the energy spectrum at different locations for the case
with resolution 512 × 304 and Wi = 60, which proves that there is no energy accumulation
at a higher wavenumber region. Therefore, the grid resolution 512 × 304 is suitable in the
current study.

Moreover, figure 13 shows the grid effects on the obtained flow pattern under different
channel lengths at a relatively high Wi (Wi = 100). As is shown, the improper choice of
grid resolution can produce different flow states. For instance, at Wi = 100, SX = 5, the
flow state obtained by the 128 × 152 grid is an intermittent chaotic state with higher drag,
but it converges to a steady state with an arrowhead structure and much lower drag when
refining the grid to be 224 × 272, 256 × 304 and further finer grids. Here, it seems to
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Figure 12. Energy spectrum E(k) at different locations for Re = 2000, β = 0.9, L2 = 10 000 and Wi = 60
with the 512 × 304 grid.
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Figure 13. Comparison of instantaneous Cf for cases with different lengths and grid resolutions for
Re = 2000, β = 0.9, L2 = 10 000, Wi = 100.

be counter-intuitive that a more chaotic state is obtained at a coarser grid, which may be
related to the PDI. Insufficient grid resolution, which brings in an additional numerical
artificial diffusion, can lead to new type of non-physical flow instability. The increase of
grid resolution can alleviate this non-physical flow instability. Finally, to get converged
results, the grid resolution is set to be 256n × 304 during all the simulations.
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