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Abstract

Using a result on arithmetic progressions, we describe a method for finding the rational h-tuples p =
1, pn) such that all the multiples mp (for m coprime to a denominator of p) lie in a linear variety
modulo Z. We give an application to hypergeometric functions.
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1. Introduction

We consider a class of relations of the type

(1) co+ Y UL;(y)) =0,
j

where ((x)) = {x} — 1/2, x € R. The L;s are linear polynomials in Q[y], y =
(¥1» ..., yn), and the ¢;s are rational numbers. We are interested in the rational A-
tuples p = (p, . . ., pn) with the following property. Let m be a common denominator
for py, ..., py. For all n coprime with m (this is a technical condition), we require
that y = np be a solution of (1). We expect that these multiples np will in general
be well-distributed modulo Z*. On the other hand, if they all satisfy the relation (1),
then they have special properties which we try to analyse. We show that they in fact
form a ‘quasi-linear’ set, being roughly described by finitely many linear equalities
mod Z* (see Section 2-1I and Theorem 1 in Section 2-III). Moreover, these sets can be
effectively computed.
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In the fundamental cases (which will be called indecomposable) such quasi-linear
sets will turn out to be translations by Z* of finitely many lines plus or minus finitely
many points. We shall give practical methods for computing the linear conditions
which describe completely the above quasi-linear set.

The problem we study was motivated by the work of Schwarz [15], who in 1873
classified the hypergeometric differential equations
(2) D, p y)y=x(1—x)@+[y—(l+a+ﬂ)x]ﬂ—aﬂ=0

e dx? dx
having a full system of algebraic solutions. We briefly recall Schwarz’s work and
restrict our considerations to the operators which are irreducible over C(x).

SetA=1—y,u=y—a—B,v=a— B. Looking at the singularities and at the
reducibility of (2), it can be proved that for such operators «, 8, y € Q, while none of
the numbers A, u, v, «, B, ¥ —«, y — B belongs to Z. Further, if D(«, 8, y)y = Ohas
only algebraic solutions, one sees that the same is true for D(a+1, 8+m,y+n)y =0
forany [,m,n € Z. Hence we may assume that0 < A < 1,0 <pu < 1,0 < |vf < 1.

Schwarz also found a group of 24 transformations on (A, ¢, v) isomorphic to
7 and preserving the algebraicity of solutions; this allows the further restriction
A > pu > v. Under these conditions Schwarz proved that, apart from an explicitly
given finite number of sporadic cases (see also [13]), algebraic solutions occur if and
only if

A, p,v) = (1/2,1/2,v)
or, equivalently,
(avﬂv J/) = (a7 1 —Q, 1/2)'

In this case the monodromy group is dihedral of order 2n, where n is the denominator
of v. Moreover, Schwarz produced the full list of solutions.

In 1904 and 1911 Landau ([11, 12]), applying Eisenstein’s criterion to power series
solutions of (2), obtained the following arithmetic condition for algebraic solutions in
terms of the rational parameters

b
a=—, B=—, y=—  (abcm=1l).
m m m

For every integer n such that (n, m) = 1 we have

3) either na < nc < nb (mod m) or nb < nc <na (mod m),

where the inequalities are referred to the minimal non-negative residue.
In 1943 Errera [5] used Landau’s condition to obtain Schwarz’s list by an elementary
arithmetic argument (an account of which is also given in [13]).
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The arithmetic condition (3) appears also when one assumes that (2) satisfies
the hypotheses for the Grothendieck conjecture: this roughly states that, if a linear
differential equation with polynomial coefficients has a full system of solutions modulo
all large primes, then it has a full system of algebraic solutions. In fact, this connection
between (3) and the reduction of (2) mod p has been observed by Katz, who verified in
[9] the Grothendieck conjecture for Picard-Fuchs differential equations, so in particular
for (2) (see [9, Section 6.4]). This part of Katz’s paper is however independent of
the rest and essentially self-contained. One may then combine this with the Landau-
Errera Theorems and Schwarz’s list to verify in a different and more elementary way
the Grothendieck conjecture for equations (2).

To connect with the problem described at the beginning, we shall interpret the two
alternative inequalities appearing in (3) in the form of just one equality of type (1)
withy = np, p = (¢, B, ), namely

4) 2((ny)) = ((n)) + ((nB)) + ((n(y —a))) + ((n(y — B))) for (n,m) =1,

where ((x)) = {x}—1/2, assumingthat y, «, 8,y —«, y — B € Z. To our knowledge,
this formulation of (3) seems to be new.

We give and explicit computation of the linear equations which describe completely
the above quasi-linear set in the case (4) (see Theorem 2 and Section 2). In this
procedure we shall use a result on arithmetic progressions, proved in [4], which we
recall as Lemma 10. It is quite possible that these methods can be applied to more
general hypergeometric equations.

In Section 2 we study general relations of type (1), while Section 3 will be devoted
to the attainment of Schwarz’s list (apart from sporadic cases).

2. Fractional parts of linear polynomials

L. Uniform distribution Let f : R" — R be a function periodic mod Z*, and define
(5) S=58 ={xeR"|f(x)=0)}.

Observe that S; is invariant under translations by Z"*.

Later on f will be a linear combination of functions of the form ((a\x; + .-+ +
awxy + B)), wherea, € Z, B € R, and ((x)) = {x} — %

We shall be interested in characterizing the set X, C Q" defined by

6) X;={peQ"|npeS; Vne(Z/RZ)*, where R € Nand Rp € Z"}.

REMARK 1. We observe that the definition of X, does not depend on R, provided
that Rp € Z*. In fact, a simple argument based on the Chinese Remainder Theorem
proves that whenever R | R’ every class in (Z/RZ)* has a representative in (Z/R'Z)*.
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For technical reasons, which will appear later, it will be convenient to work with
a set more general than X;. To be precise, for a congruence class a mod g where
(a, g) = 1, define

) Xi(a,q)={peQ"|npeS;Vn=a (modgq), (n,R)=1),

where R is any natural number such that Rp € Z*. We contend that the definition
of X((a, q) is independent of the choice of R with the given property. To see
this, it is enough to show that in (7) we can replace R with any of its multiples,
or, equivalently, that if R|R" and n is such that (n, R) = 1, n = a (mod q), then
there exists n’ = a (mod gq), (n',R’) = 1, n’ = n (mod R). Now, the reduction
(Z/lg, R'D* — (Z/[q, R])* is surjective. But the class of n mod [¢q, R] is coprime
with [g, R] since (a, g) = 1; hence it lies in the image of the reduction, which proves
our contention.

This important remark will be used repeatedly in the sequel: for instance we shall
assume, replacing possibly R by ¢R, that g divides R. More generally, we may
assume that R is divisible by any given integer.

The technique below was introduced by Davenport and Schinzel [3], who dealt with
a problem concerning roots of unity. Another approach can be found in [7] and [8].

REMARK 2. The condition (n, R) = 1 seems rather artificial. In fact, it may
be replaced by restricting n to any subset .# of (Z/RZ) such that the exponential
sums Y _  e(nc/R) can be estimated somewhat non trivially. A motivation for
choosing this condition is provided, for instance, by the example coming from the
hypergeometric equations and discussed in the next section.

Forq | R, (a, q) = 1, we set R = qR* and, for integral ¢, we put

S(c,a,q. R)= Y. e(cm/R).

(m,R)=1
m=a (mod q)
LEMMA 1. Setting d = (c, R*) we have
_RR)
IS(c,a,q,R)| < "
¢ (R*/d)

where ¢ is Euler’s function.

PROOF.

S(c,a,q,R) = Z ( )éze(t(m—a))

(m.R)y=1 =1
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g 1 —at cm tm
Z 7 2 e YT
t=1 q q (m,R)=1 q

=1 2e(F) T e(eremp)
q =1 (m,R)=1 R
q
2

1 ( )S(c+tR* R),
q

where S(c, R) is the Ramanujan sum S(c, 0, 1, R). This sum may be easily evaluated.
We have (see [6, Theorem 272, page 238])

¢(R)
$(R/d)’

where d' = (¢, R). Plugging this value in the formula above and setting d, =
(R, c+ tR*) we get

S(c,R) = u(R/d’)

ﬂam%R)=¢;)§:H-mmnuRM)

— ¢ (R/d,)
whence
®(R)
|$(c, a, q,R)l<¢(R)max (R/d)s RD
In fact, (¢ + tR*, R*) = d for all t and (R*/d) | (R/d,). 0

We shall need the following lemma on Fourier series, stated without proof.

LEMMA 2. Let 0 < 6 < 1/2. Let F; : R — R be periodic mod Z and defined in
[—=1/2, 1/2] as follows:

§—Ix| forlx| <5

F, =
®=1, ford < x| < 1/2.

Then, for all x € R, F(x) = Y oo a,e(nx), where ay = 8* while, for n # 0,
a, = sin® Tnd/n*n?

PROPOSITION 1. Let p € X (a, q), 0 < & < 1/2 and assume that there is a cube of
side 28 disjoint from S. Then there exist integers my, . . ., my;, not all zero such that
(1) qlm;
(i) mpr+---+mupy € Z;
(iii) |m;| < c
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where ¢, = c,(8, h, q) is effectively computable (one may take c; = 6q>h8=1+31),

PROOF. Let (y,, ..., yx) be the center of a cube of side 28 disjoint from §. Let also

h
Gxy,...,x) =[] Fatxi = yo.
i=1
Clearly, G(x) = O forx € S, whence, if p € X/ (a, q) and R = gR* is a denominator
for p divisible by g,

Z G(mp,,...,mp,,)=0.

me(Z/RZ)*
m=a (mod q)

Using the Fourier series for Fj, multiplying out and changing the order of summation
we get

0=) a, - -ane(-n-y) D el pm).

neZ* me(Z/RZ)*
m=a (mod g)

If p; = r;/R this formula becomes

Z ay, "'anhe(-n')’)s((n'r), a,q, R) —GOS(O aq, R)

neZ\ {0}

Let B > 0 and split the sum according to whether max |n;} > B or not.

(R) 2h = Z |a"1 ) "aﬂhls((n'r)’a’q’R)

¢(q) =
¢(R)
¢( ) gl n' (nlvz"’:"—l Ia"ll-..la"hll)
¢(R) , 2h (R
F( -~ 0
B mini":|53¢(R*/dn)( )" + nZ(B 1) ¢( )( ( ))
¢(R) Sh—{— 2h d(R) -

T min, <p ¢ (R*/dy) (B~ ¢(@

where d, = (R*, (n - 1)). Let B = 4hd~"*M /72 4 1; we get

min in ¢ (R"/dy) < 5—,,¢(61)

Using, for simplicity, the crude inequality ¢ (x) > /x/2 we derive the existence of
integers ny, ..., n; not all zero, such that
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(i) In}| < B;
(i) R*8*/8 < (R*, (n'r))¢*(q).
Setting niry + --- + njry = N = dp.s and R* = d,» R’ we easily find
(gR'n)p1+ -+ (qR'np)pr € Z
and the conclusion follows with m; = qR’'n?}. O

In case S, is not dense, we shall use the foregoing proposition to decrease the
dimension A in the problem of describing the set X, (a, g).

To be precise, suppose § is not dense. Then S is disjoint from a suitable cube
and we may apply Proposition 1 with p = (py, ..., px) € X;(a, q) . We obtain the
existence of a non-trivial relation

8) mo+---+mp,=mel, |mj<c, q|m; foreveryi.

Suppose, for example, that m; # 0 and set, for b € Z,

b _
9 gy, ..., xum) = f (mhxl, cees MpXpoy, E— - Zmixi> .
B

Note that g, is the restriction of f to a certain linear subspace. Since f is periodic
mod Z*, any such g, is periodic mod Z*~'.

Moreover, in view of the periodicity of f, we get in this way only finitely many
functions; in fact g, depends only on the class of b mod m,,.

We abbreviate
. P P Ph-
o =_=(_',...,L).
my my my

Since p € Xs(a, q), we have f (tp) = Ofor (1, R) = 1 and t = a (mod g), where R
is a denominator for p which we may assume is divisible by m,, as already observed.

In particular, letting #, be any congruence class mod m,, such that #, = a (mod ¢),
(to,my) = 1, we have f(tp) = O for t = 4, (mod m,), (¢, R) = 1, thatis, p €
X (tp, my). But then, for such values of ¢, relation (8) yields

tm;
O0=f@p1, ..., ton-r, ton) = f (1,017-- s 10— l,t——z—'ﬁx>
i=1

1

-
tom tm; .
=f (tph-- s WPh-15 'O_ = E —p,) = gum(1P7).

i=1

Therefore we can conclude that p* € X 2 (to, my,).
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We may clearly reverse the steps of the argument and show that, if p* € X, (1), ms)
and p satisfies (8), then p € X, (fo, m;).

Note that, as #, varies mod m,, we obtain all classes t = a (mod g).

We may rephrase the preceding discussion as the following lemma.

LEMMA 3. Assume that S; is not dense. If p satisfies (8), then

peXi@q &p e [ Xeplto,mn).

h=a
(mod my)

The usefulness of this lemma comes from the lowering of the dimension from A

to h — 1. In fact, the function f (x, ..., x,) is replaced by several of its restrictions
to suitable subspaces of dimension & — 1. This will be the main tool for proving
Theorem 1.

Whenever possible, we apply this procedure again to the functions g, ,, obtained in
this way, and so on. The functions which arise in this procedure have the following

form:
(10) g(tl""?tv)=f(Ll(t)+rl7"'$Lh(t)+rh)1
where L, ..., L, arelinear formsinz,, ..., t, (v < h) with integer coefficients, while

the t;’s are rationals.

The bounds for the coefficients of the L;’s as well as for the heights of the t;’s can
be determined inductively depending on the size of a cube contained in the support of
any of the functions to which Proposition 1 is applied. Moreover, the whole procedure
is effective, provided we can give an effective lower bound for the size of such cubes.

The procedure of reducing the dimension terminates when either the dimension has
gone down to zero, or the relevant function g has a dense zero set S,. In the first case
we obtain a finite number of solutions mod Z*.

It remains to determine the structure of X, (a, q) for any function f with a dense
zero set. Hence from now on we restrict f to be of the following type

k
(11) FO =) aliler,....x0) +E)),
i=1

where [; are linear forms with integer coefficients of maximal rank and ¢, & € Q.
Observe that the functions defined by (10) have the same form as f .

II. Quasi-linear sets Before stating our main results, we describe the general struc-
ture of Sy for f of type (11) (see Proposition 2). We choose the affine description; of
course one might as well work directly on the torus R*/Z*, since Sy is invariant under
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translations by integral vectors. We define an affine rational linear subspace . C R*
as the set of solutions of a linear system

fj(x):aj, j=1,...,r

with rational coefficients. A rational linear strip %7 will be the set of solutions of a
system

gxyel, j=1,...,r

where g; are rational linear forms and /; are intervals (closed, open or half-open) with
rational endpoints. For any set X C R*, write X* = X + Z" for the saturated set of X
under integral translations.

DEFINITION 1. A quasi-linear set is a finite union of sets of the form X*\ J_, Y7,
where X, Y, ..., Y, are rational linear subspaces.

DEFINITION 2. A semi-linear set is a finite union of sets of the form X* \ |J;_, Y7,
where X, Y, ..., Y, are rational linear strips.

It is easy to see that quasi-linear (respectively semi-linear) sets are closed under
finite union, intersection and complementation. In fact, they are the minimal family
with this property containing the starred linear subspaces (respectively linear strips).
By abuse of language, we shall use sometimes quasi-linear to mean the set of rational
points of a quasi-linear set; this will cause no problem since everything will be defined
over Q.

LEMMA 4. Let [(X) = ayxy + - - - + apxy (a; # 0) be a rational linear form and let
& € Q. Then the set

(12) V={xeR"|Ix) +&eZ"
is a quasi-linear set.

PROOF. For 0 < r < |a,|, let 7€ be the affine hyperplane

IxX)+E=r
We claim that
V= U Jf;*.
0<r<|a;|

In fact, 5€* C Vis obvious; letx € Vandset {(x) +& = b € Z. Then b = qa;, +r,
0<r<lalandx—(q,0,...,0) € FZ. O
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Observe that, conversely, if ¢ is a rational hyperplane, then J£* is of type (12).
In fact, let

P ={x|1(x)+ & =0}

We may assume that [ is an integral primitive form (that is, with coprime coefficients);
then

A = x| I(X) + £ € (ZM)
={x|I(x)+& € 7).

PROPOSITION 2. For f of type (11) Sy is a semi-linear set and it may be effectively
determined. In particular, either Sy is dense and [0, 11" \ S; is contained in a finite
union of hyperplanes or we may compute the side 28 of some cube outside S;.

PROGE. For any subset y C {1, ..., k} let
V,={xeR" | (x)+E€Zsicy)

By Lemma 4 and the preceding remark it follows that V,, is a quasi-linear set. Clearly
Sy = U, (Sy N'V,) and we show that each term of the union is of the desired type.
Now §; NV, is the set of points of V, which satisfy

k
E C;.
i=l

N |-

(13) Y allix)+&) =

igy
Observe also that for all x € R* we have
(14) {{x) + &} =1({xh+{E}+n

for some integer n depending on x but uniformly bounded (in fact, [n} < |a;| +--- +
lap| + 1if I(X) = ayx, + -+ - + apxy). Now Sy NV, is the set of points of V, which
satisfy one of the following finitely many systems

{Lix) + &} = L({xh + {&) +n; foralli ¢ y
15 u
(1) Z(Cili({x})+ci{§}+cini) = %ZG‘-
i¢y i=1

It suffices to show that each equation in these systems defines a semi-linear set. Let
us first consider an equation of type (14). This is equivalent to an equation

(16) Ux)+ &l =ailx)]+ -+ aplx,] + [E] — n.
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Now the set
B=x|lx]l=- =] =0[x)+&]=[£] —n}

is an intersection of stripes, whence * is semi-linear; but #* is precisely the set of
solutions of (16). In fact, (16) may be written in the form

) +&1=UxD+[£]—n

which is equivalent to

(dx) + &) =[] —n.

Finally, the last equation in system (15) is of the type

a7 I({x}) = 1,
where again [ is an integral form and v € Q. Let 4 be the set of solutions of the
system

Ix)=r1

[xi]=---=[x]=0.

Clearly, #* is semi-linear and coincides with the set of solutions of (17).
The statement about effectivity is a consequence of the proof. 0

Concerning quasi-linear sets, we shall also need the following lemma.

LEMMAS. Let m : R" — R™ be a linear map defined over Q. If V C R™ is
quasi-linear, then 7w~ (V) is quasi-linear.

PROOF. We may assume without loss of generality that V is a starred hyperplane,
that is,

V={x|Ix)+&eZ)
for some integral linear form [/ and some & € Q. Then

(V) ={ylUom)y)+£€Z)

and Lemma 4 applies. O
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I1I. Structure of X; We are ready to state our main results.

THEOREM 1. Let f be as in (11). Then X (a, q) is quasi-linear and effectively
computable.

By ‘effectively computable’ we mean that we may compute equations for the
rational linear subspaces which, according to Definition 1, describe the quasi-linear
set in question.

In the practical computation, however, we need a better way of finding the equations
of the linear subspaces involved. We shall now describe a method which enables one
to determine more quickly the positive dimensional pieces of X .

By Theorem !, we may express X/ as a finite union of sets of the form X*\| J;_, Y7,
where X and the Y; are affine rational linear spaces with dim ¥; < dim X. Observe
that, by definition, f = 0 on X, hence f must vanish on X*, except possibly for a
lower dimensional set. We express this fact by the following definition.

DEFINITION 3. Let X be an affine rational subspace of Q". We say that f = 0 on
X* a.e. (almost everywhere) if f (x) = 0 holds for all x € X*, except possibly for a
lower dimensional linear set. We shall simply write f =Qa.e. if X = X* = Q*".

Recall that f is of type

k
(18) FO =) allilxr,...x) +E)).
i=1

We shall say that a relation f = 0 on X* a.e. is indecomposable if no proper subsum
in (18) has the same property. Clearly any relation f = 0 on X* a.e. can be split
into indecomposable ones. Parametrizing X by means of linear substitutions, we may
reduce to the case when X = Q" for some &' < h; in terms of the new parameters,
we may assume that f = 0 a.e. on the whole space.

The next result will be useful to determine the indecomposable relations f = 0
a.e. of given length k.

THEOREM 2. Let f be as in (11) and assume that f = 0 a.e. is an indecomposable
relation. Thenrank L; < 1. Ifrank L; = 1, after a linear substitution, we may write

li(x) =mx, where gcd{m;} = 1.

Then m; # 0 for all i and, setting M = lem{m;} =[] p°, we have

B Xap-1)<k-2
(i) M (&/m;—&/m;)€Lforeveryi,j .
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We observe that condition (ii) enables one to assume &; € (1/M)Z after a suitable
translation.

PROOF OF THEOREM 1. After a suitable substitution we may assume that rank (/;,
..., 4&k) = h. (This does not affect statement of the theorem. In fact, if » >
rank ([, ..., ;) we may write /|, ..., I as linear combinations with integral coeffi-
cients of suitable integral forms m,, ..., m, of maximal rank, which will be taken as
new variables. Then we may apply Lemma 5 and obtain that the inverse image of a
quasi-linear set by this substitution is quasi-linear). We argue by induction on k. Let
first h = 1. We distinguish two cases:

Case l: f =0a.e.

Now Sy = R\ &#*, where & = {cy,..., ¢/} is a finite set contained in Q. If
p € X;(a, q), then there exist c € &, t € Z such that mp = ¢ + ¢ for a suitable m
coprime with den (o). In particular, den (p) divides a fixed integer, proving that

Xf—_‘Q\'}f*’

where S is finite.

Case 2: f # 0 holds in an open set.

We apply Proposition 1 and obtain that if p € X, (a, q) then m,p € Z for some
bounded m; # 0. It is easy to conclude that X; = S~ for some finite J#°.

Now assume & > 1 and distinguish again two cases:

Case 1A: f =0a.e.

There are finitely many rational hyperplanes &2, ..., &, such that f (x) = 0 if
X g€ PrU---U P Assume p € Xs(a,q); then, for some m = a (mod gq),
(m, R) = 1 and for some i we have mp € &}, whence mp satisfies (mp - v;) € Z,
where we may assume v; € gZ" \ {0}. From this relation we see that den (p - v;)
divides den (p) as well as m. Since (m, R) = 1 we get den(p - v;) = 1, that is,
(p-v) €l

Lety, = {p € Q" | (p - v;) € Z}. We have proved that

Xf(a’q) = (Qh\U)’.) U(Xf(ayq)nyl)u"'u(xf(avq)QYr)-

i=1

Clearly, by Lemma 4, y; is quasi-linear. The proof will be complete if we show that,
ify ={peQ"|mp + -+ mup, € Z}, where the m;’s are integers not all zero
and divisible by g, then y N X/ (a, q) is quasi-linear.

Assume for instance m, # 0 and set m;p; + - - - + myp, = m € Z. We have seen
in Lemma 3 that, if such assumption is satisfied, then the assertions p € X, (a, ¢) and
£* € (y=a (mod gy X5om (f0, M) are equivalent, where p* = (01/m, . .., po—1/ms) and
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the g, are given by (9). By the inductive assumption,

(1 Xegalloom) = A2,

pw=a (modq)

where %, is a quasi-linear set in Q"*~!, depending only on the class of m mod m,.
Let ¢ be a class mod m,, and set

B=pecQ" \mp +---+myp,=meZ forsome m==¢ (mod my)}.

Clearly, %; is quasi-linear. If 7 : Q" — Q"~! is given by

X1 Xh-1
ﬂ(x,,...,xh)= (—— ...,———),

mpy ’ my
then we have shown that
.@5 N Xf(a, q) = g& ﬁﬂ_l(%).

But 7 ' (%) is quasi-linear by Lemma 5, so %Z: N X (a, q) is quasi-linear. Also

yNXs(a,q) = JZNX @ )

c=1

is quasi-linear. Finally,

Xs(a.q) = <Q"\UV,~) Uy NXp@@,g)U-- Uy, NXsla q)

j=1

is quasi-linear, as wanted.

Case 2A: f # 0 holds in an open set.

We may effectively determine a positive number § < % and a cube of side 26 such
that f (x) # O for all x inside that cube. By Proposition 1 we see that if p € X/ (a, q),
then p must satisfy at least one of finitely many relations mp; + - - - + mp, € Z and
now the proof proceeds exactly as before.

Finally, the proof is completely constructive and the statement about effectivity
follows. |

For the proof of Theorem 2 we need a number of lemmas.

LEMMA 6. We have the following identities:

1) ((=x))=—(x))forx € Z;
(i) ((mx)) = Zhe(z/mz)((x + h/m)) form > 0.

We omit the simple proof of this well-known fact (see for instance [14]).
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LEMMA 7. Let ay, ..., ar be distinct mod 1, ¢y, ..., cr € R and assume

T
o+ Z ci((x4+a)) =0 ae

i=]
Then c¢; = 0 for every i.
PROOF. Let g(x) = ¢co + ZL, ¢;{((x + a;)). We have
a((x+a))=—co— ) c((x+a)) ae.
J#i
In a suitable neighbourhood I of —«; the right-hand side is equal to a linear function
I(x). For x € I we have

ci(x —a; —1/2) ifx > —a;;

ci(x +ap) = lCi(x +o;+1/2) ifx < —a;.

So, setting h(x) = l(x) —c¢i(x + a;), we have forx € I

—¢;/2 forx > —qa; ae.;
h(x) =
¢;/2 forx < —a; ae.

By continuity ¢; = 0. O
Let

k
(19) f@=c+) almx+p))=0 ae.

i=1

be an indecomposable relation, where m; # O are integers for every i > 1, and
¢, Bi € R. In view of Lemma 6 (i) we may assume m; > 0. Let M = lcm{m,}.

LEMMA 8. The following hold
(1) ¢ =0;
(ii) there exists S such that B; = m;B + m;b;/M, where b; € Z. In other words,
after a suitable translation, all B;s become rational with denominator M,
(ii1) letting x: be the characteristic function of the arithmetic progression b; +
(M/m;)Z, we have

k
(20) D axim)=0, for nel

i=1

Moreover (20) is indecomposable and primitive.
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Strictly speaking, statement (i) implies that the relation is decomposable. What we
really mean is that no constant term appears in the definition of f given by (19).

PROOF. (i) The statement follows from the fact that fol((mx + B))dx = 0 for
m #£ 0.

(ii) From Lemma 6 we have 0 = Zle i ;,";_ol((x + (h + B:)/m;)). Denote by
oy, ..., ar the distinct classes mod 1 of the numbers (h + 8;)/m; as h and i vary.
Grouping together the terms congruent mod 1 and applying Lemma 7 we get

(21) = Z ¢i=0 forallj.

(h+Bi)/mi=a;

Observation: if (h) + B,)/m, = (hy + B;)/m,, then 8, /m, — B,/m; € (1/[m,, m,])Z
C (i/M)Z.
Define an equivalence relation on {1, 2, ..., k} by

r~s — ﬂr/mr_ﬂs/mse(l/M)Z

Let y be any equivalence class. Observe that

Z ¢, =0.

(h+B,)/mi=a;
iey
In fact, either the sum is empty or it must contain all the terms occurring in (21) which,
in view of the observation, must be equivalent. Working backwards, it follows that

Z ci((mx +B)) =0 ae.
iey
hence y = {1, ..., k}. We thus may put 8,/m, = B + b;/M, where B is any of the

B,/m., proving (ii).
(iii) Let x; be the characteristic function of b; + (M /m;)Z.

ZCiXi(n) = Z ¢ = Z Ci

i, 0<h<m;-—1 bi/M+h/mi=n/M (mod 1)
bi+hM/m;=n (mod M)

= Z ¢ =0 (by(21)).

ih
(h+B;)/mi=n/M+8

Moreover, gcd(M/m;) = 1 since lcm{m,} = M. O

We finally remark that if (19) is not indecomposable, then (ii) may not be true,
whence a corresponding relation (20) may not exist. On the contrary, starting from
(20), we are led to (19) and this will be indecomposable if and only if (20) is such.
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LEMMA9. Let L., ..., L; be linear forms in x,, . .., x, with rational coefficients,
Bi, - .., B be reals and assume we have an indecomposable relation
k
(22) Y elLitxr, .. x) +B)) =0 ae.
i=]
Thenrank (L,,..., L) < 1.

PROOF. After a rational linear change of variables we may assume that the rank
of L,...,Lyisequalto h and L, = x|, ..., Ly, = x,. Consider another term and
write it in as (A + y)) where y € Rand A = A(x,...,x,) = mx; + l(x3, ..., xp).
Assume now that m € Q\ {0} and ! is a non-zero linear form with rational coefficients.
Specialize now x2, ..., x, to x5, ..., x; € R such that

k
(23) Y a(Lilxr, x5, .., x) +B)) =0 ae.
i=l

as a relation in x;. This holds for almost all specializations, say those belonging to a
set ¥, C R*~'. Now (23) in general could be decomposable. We claim however that,
for almost all specializations in Y;, the term in question will lie in an indecomposable
subsum different from that of ((L; + £1)). In fact, let ¥; be the set for which the
two terms belong to the same indecomposable subsum. This subsum can be written
in the form (19) after a substitution x, = gx, where q is a suitable non-zero integer.
In particular, gm = m’ is a non-zero integer. Observe that ¢ does not depend on
the particular specialization for x,, ..., x,; hence the same holds for the integers m;
occurring in the expression of the subsum in the form (19).
By Lemma 8 (ii), applied to both terms in question, we easily get

A+Lx3, ..., x)) c 1

- —Z
Bi - v
for a certain integer M’ independent of the chosen specialization in ¥,. This however
can hold only for (x3, ..., x}) lying in a subset of R*~! of measure zero, since ! # 0.

This proves our claim.

We may rephrase our conclusion by saying that, for almost all specializations of
the last & — 1 variables, the indecomposable subsum of L, in (23) will contain either
terms originally depending only on x; or constant terms, originally depending only on
X3, ..., X,. Inparticular, take one such specialization and consider the indecomposable
subsum containing ((L; + B;)) in (23). There exists i, < i, < --- < i, such that

> e (L x3, .. x) +B,) =0 ae.

n=I1
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is indecomposable as a relation in x,. By Lemma 8 (i), we may neglect the terms
independent of x,. By the above argument, the remaining terms were originally
dependent only on x,, whence

!

Y e (L, xinxa . x) +B8,) =0 ae.

u=1
is a vanishing subsum of (22), which is proper if A > 1. g

Before proving Theorem 2 we quote one more lemma, proved in [4] as Theorem 2.
Let

1 if n=a; (mod q;);
(24) Xxi(n) = .
0 otherwise

be the characteristic function of the arithmetic progression a; + ¢;Z. Assume that we
have an indecomposable relation

k

(25) Zci)(,«(n) =0 VneN

i=1

holding over a field K, where ¢; € K. Let also Q =lcm{q,, ..., g} and assume that
(41 ,qk) = 1. Then

LEMMA 10. The number of terms k in (25) is at least

(26) 2+ h(p.—1).
v=1
PROOF OF THEOREM 2. That rank L; < 1 is the content of Lemma 9.
Assume h = 1 and ;(x) = m;x, ged{m;} = 1. As in Lemma 8 we may assume
m; > 0 for all i: namely we use (i) of Lemma 6 in the form

((mix +£)) = —(((-m)x — &)) ae.

whenever m; < 0. Such substitution does not affect (i) and (ii) of Theorem 2 and
moreover the new relation f = 0 a.e. is still indecomposable if k > 2 (if k = 2 then
the same is true unless f is of type f = A((x + £)) + A((—x — &)), in which case the
theorem holds).

Now, the fact m; # O for every i is Lemma 8 (i). With the notation of that lemma
we obtain the indecomposable relation

k
ZC:‘X:'(") =0 VrneZ

i=1
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among the characteristic functions x; of the arithmetic progressions b; + (M/m;)Z.
Then Lemma 10 implies (i). Finally Lemma 8 (ii) implies immediately (ii). O

In the next section we give an example how Theorem 2 may be useful in the
practical computation of the linear set in the statement of Theorem 1.

3. Attainment of the parametric families in Schwarz’s list

The argument we are going to present is perhaps rather lengthy, but we remark that
in principle the computations involved are a computer job and may be implemented
in every analogous situation.

First of all we show that the set of triples of reals (x, y, z) such that either {x} <
{z} < {y}or{y} < {z} < {x} coincides with the set of solutions of

@ fxy2)=2() — () — () —((z—x)) = ((z—y) =0.

In fact, observe that, for reals «, 8

172 if {a} < {B)

§(a, B) =((B)) — (@) —((B—a)) = {_1/2 if () > {B).

Our assertion follows, since
f&x,y,2)=68(x,2)+8(,2).

By Landau’s (or Katz’s) criterion, the set 2 of relevant triples of rationals (a/m, b/ m,
¢/ m) consists of those such that, for every n coprime to m,

) na nc nb nb nc na
either [——]<{—I< — or — <{—]<{—}
m m m m m m
In particular, @ C X,. If (a/m,b/m,c/m) € X; \ & then, for some n coprime
to m either na = nc (mod M) or nb = nc (mod M) whence a = cor b = ¢
(mod M). By symmetry, we may thus assume that (a/m, b/m,a/m) € X;. This is
however impossible unless a = 0 (mod M), since otherwise {na/m} would be less
than {nb/m} for all n coprime to m. But

na [nb] —na} [—nb}
(=<2 = =212
m m m m
hence we get a contradiction. We have proved that

(28) X \Q={Q\Z)xZxZ}U{Z x (Q\Z) x Z}.
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From Theorem 1 we conclude at once that 2 is a quasi-linear set.

We now show how the preceding methods can be used to determine X, apart from
a set F* where Z is finite.

We begin by showing that X, does not contain two-parameter families. Assume
the contrary; by Lemma 9 the relation resulting from (27) after the parametrization
of the family must be reducible. Let us consider the partition A corresponding to
the indecomposable subsums. It cannot be of type (4, 1): in fact, consider the
corresponding indecomposable relation with four terms: any four of the linear forms
z,X,y,2 —x,z— y occurring in formula (27) have rank 3, so x, y, z can be written as
linear combinations of those four terms. But, by Lemma 9, after the parametrization
all four terms depend on one parameter only, so the same should be true for x, y, z.

The same argument works if A is of type (3,2) except for the case when the
indecomposable subsums are

2(@) — () —z—x)) and ((Y)+((z—y)

or, symmetrically,

2((@) — () —Wz—y) and ((x)) + ((z —x)).

Take the first case. Letting x = X(t,u) + A, y = y(t, u) + u, 2 = Z(¢, u) + v where
X, ¥,z are linear homogeneous, Lemma 9 implies that

rank(y,Z —$) <1, rank(z,X,7 —%) < 1.

Since, however, we are assuming rank(x, y, ) = 2, the only possibility is 7 = 0.
Finally the relation

N+ Uz=y) =0 ae.

would imply z = 0, whence 2((0)) — ((x)) — ((—x)) = —1 a.e. unless x = 0, which
gives a one-parameter family (actually in this way we find the components of X \ Q).
It is even more straightforward to check that a partition in more than two subsets
gives rise to two independent relations among ¥, ¥, Z.
We are left with the case rank(X, y, ) = 1. Assume first that the resulting relation
is indecomposable. By Theorem 2 we may write

sz]t, X = mst, f=m3t, my £ m,, m #ms,
M =lem(my, my, my, my — my, my — ms) = HP“”,

1 = ged(m,, my, m3, my — ma, my — my).

Moreover, Y _a,(p — 1) < 3, whence M = 1,2, 3,4, 6, 8. But M is clearly even, and
so we are left with the cases M = 2, 4, 6, 8. Changing if necessary ¢ with —z we may
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assume m; > 0. Also, in view of the symmetries among x and z — x, yandz — y, x
and y, we may reduce to ms > m, > m, /2 > 0.

It is now practical to work with the arithmetic progressions associated to the
functions ((mt + £)) according to Lemma 8. Denoting by x (g, b) the characteristic
function of the arithmetic progression b + gZ we get

M M M M
2x (—,bl> =x|—b}+x|—. bt x ——,b4)
m m; n; |my — m;|

M
:l: X (_7 bs) k]
[m; — ms|

where the signs equal sign(m, — m,) or sign(m, — m3) respectively. Reduce the
relation mod 2, getting

M M M M
() () o () () 0
m; m; Imy — my| |my — ms|

If M > 6, this relation must be decomposable in F, by Lemma 10. The splitting will
be necessarily (2, 2), that is, we must have two pairs of equal progressions, say xa,
Xx3. But then

2x (M/my, by) =2x, £ 2x3

is a relation of three terms, which implies M < 2. Hence M < 4. We have the
following list of possibilities:

Mim |my|my | m—my | m —ms
11211 2 2 -1 -1
mj| 2|2 1 1 1 1
| 4 | 2 1 4 1 -2

According to Lemma 8, we may have the following possibilities:

D 2x@2, b)) = x(1,0) + x(1,0) — x(2, by) — x(2, b)) false;
(I 2x(1,0) = x(2, b)) + x(2, b3) + x (2, =by) + x(2, —bs) true when b, # bs
(mod 2);
(D) 2x(2, b)) = x4, b3) + x(1,0) + x(4,2b, — b3) — x (2, by) false.

The true relation (II), say with b, = 0, b; = 1, corresponds to the family
=2, x=t y=t+1/2.

Now we deal with decomposable relations. Start with partitions containing a singleton.
By symmetry such singleton may be assumed to be either 2((z)) or ((x)). In the first
case z = 1/2, and the remaining terms give rise to

() +((1/2=x) + () +((1/2—-y)) =0.
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Assume this to be decomposable, x = mt + &,y = mat + &, (m,my) = 1. We
may assume M = lcm(m,, m,) < 4, hence, by symmetry, m, = 1, |m,| = M. By
Theorem 2 (ii)

£ _e-1r 1,
m; m; M

a contradiction. Hence such relation becomes decomposable. If the corresponding
partition X is of type (3, 1) we again get a contradiction with (i) of Lemma 8. If
A is of type (2, 2) or (2, 1, 1), necessarily ((x)) + ((y)) or ((x)) + ((—y + 1/2)) is
a vanishing subsum. We get thus two solutions (which become however equivalent
under the action of the Schwarz’s group)

z2=1/2, y=-x
or
z2=1/2, y=x+1/2.

If the singleton is ((x)) the remaining terms give rise to
2@ — (M) —(z—-y) —(z—1/2)) =0.

By direct checking one sees that this must be decomposable. Let Z = m,t, y = m,t,
(my,my) = 1, M = lem(m,, my, my — m;). Since M < 4, by Theorem 2 we get
M = 1,2 and, M being even, M = 2.

Arguing as before we only consider the case m; = 1, m; = 2, giving

2O - (2 +EN+H((+E) - ((t—1/2)) =0 ae.
By Theorem 2 (ii), § /2 € (1/2)Z; this implies that £ may be assumed to be 0, giving
a false identity.

Finally, we consider a partition of type (3, 2). But the indecomposable relations of
length 2 and 3 are, up to a translation, multiples of

(M)+ (=) =0 ae. (2 —-(())—-(t+1/2))=0 ae.
and this excludes immediately this last possibility.
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