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CONDITIONING AN ADDITIVE FUNCTIONAL
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I. SURVIVAL FOR A LONG TIME
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Abstract

Let (Xt )t≥0 be a continuous-time irreducible Markov chain on a finite state space E,
let v be a map v : E → R \ {0}, and let (ϕt )t≥0 be an additive functional defined by
ϕt = ∫ t

0 v(Xs) ds. We consider the case in which the process (ϕt )t≥0 is oscillating and
that in which (ϕt )t≥0 has a negative drift. In each of these cases, we condition the
process (Xt , ϕt )t≥0 on the event that (ϕt )t≥0 is nonnegative until time T and prove weak
convergence of the conditioned process as T → ∞.
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1. Introduction

The problem of conditioning a stochastic process to remain forever in a certain region has
been extensively studied in the literature. Many authors have addressed essentially the same
problem by conditioning a process with a possibly finite lifetime to live forever. An interesting
case is when the event that the process remains in some region is of probability 0, or, in terms
of the lifetime of the process restricted to the region, when the process has a finite lifetime with
probability 1. In that case, the process cannot be conditioned to stay in the region forever in
the standard way. Instead, this conditioning can be approximated by conditioning the process
to stay in the region for a long time (i.e. for a sequence of times tending to infinity).

There are many well-known examples of such conditionings in which weak convergence
of the approximating process occurs. For instance, Knight (1969) showed that the standard
Brownian motion conditioned not to cross 0 for a long time converges weakly to a three-
dimensional Bessel process; Iglehart (1974) considered a general random walk conditioned to
stay nonnegative for a long time and showed that it converges weakly; Pinsky (1985) showed
that, under certain conditions, a homogeneous diffusion on R

d conditioned to remain in an open
connected bounded region for a long time converges weakly to a homogeneous diffusion; and
Jacka and Roberts (1988) proved weak convergence of an Itô diffusion conditioned to remain
in an interval (a, b) for a long time.

However, weak convergence of the approximations does not always occur. There are
counterexamples in which a process conditioned to stay in a region for a long time either
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does not converge at all or does so, but to a dishonest limit. Bertoin and Doney (1994) and
Jacka and Warren (2002) gave examples of such processes.

In this paper, we are concerned with another example of the conditioning of a process to stay
in a region. We consider a finite-state space, continuous-time Markov chain (Xt )t≥0 and an
associated fluctuating additive functional (ϕt )t≥0. The aim is to condition the Markov process
(Xt , ϕt )t≥0 on the event that the fluctuating functional stays nonnegative.

The process (ϕt )t≥0 has three possible types of behaviour, in two of which – when it oscillates
and when it drifts to negative infinity – the event that it stays nonnegative is of probability 0.
We are interested in performing conditioning in these two cases.

A similar question was discussed in Bertoin and Doney (1994) for a real-valued random walk.
It was shown there that, under certain conditions, an oscillating random walk or a random walk
with a negative drift, conditioned to stay nonnegative for a long time, converges weakly to an
honest limit which is an h-transform of the original random walk killed when it hits 0. This
work presents the analogous result for the process (Xt , ϕt )t≥0.

The organization of the paper is as follows: the exact formulation of the problem and the
main results are given in Section 2, the notation and preliminary results used in the proofs of
the main theorems are given in Section 3, the proof of the result in the oscillating case is given
is Section 4, and the proof of the result in the negative-drift case is given in Section 5.

2. The problem and main results

Let (Xt )t≥0 be an irreducible honest Markov chain on a finite state space E. Let v be a
map v : E → R \ {0} and suppose that both E+ = v−1(0, ∞) and E− = v−1(−∞, 0) are
nonempty.

Define the process (ϕt )t≥0 by

ϕt = ϕ +
∫ t

0
v(Xs) ds, ϕ ∈ R.

For any y ∈ R, let
E+

y = (E × (y, ∞)) ∪ (E+ × {y})
and let H0 = inf{t > 0 : ϕt < 0}. The aim is to condition the process (Xt , ϕt )t≥0, starting in
E+

0 , on the event {H0 = ∞}.
There are three possible cases, depending on the behaviour of the process (ϕt )t≥0. When the

process (ϕt )t≥0 drifts to ∞, the event {H0 = ∞} is of positive probability, which implies that the
conditioning of the process (Xt , ϕt )t≥0 on it can be performed in the standard way. However,
when the process (ϕt )t≥0 oscillates or drifts to −∞, the event {H0 = ∞} is of probability 0, and
the conditioning of (Xt , ϕt )t≥0 on it cannot be performed in the standard way. We concentrate
on the two latter cases and define the conditioning of (Xt , ϕt )t≥0 on {H0 = ∞} as the limit as
T → ∞ of the conditioning of (Xt , ϕt )t≥0 on {H0 > t}.

Let P(e,ϕ) denote the law of the process (Xt , ϕt )t≥0 starting at (e, ϕ), and let E(e,ϕ) denote
the expectation operator associated with P(e,ϕ). Let P(T )

(e,ϕ), T > 0, denote the law of the
process (Xt , ϕt )t≥0 starting at (e, ϕ) ∈ E+

0 and conditioned on {H0 > T }, and let (Ft )t≥0 be
the natural filtration of (Xt )t≥0. We are interested in the weak convergence of the restrictions
of (P(T )

(e,ϕ))T ≥0 to Ft as T → ∞.
Let Q denote the conservative irreducible Q-matrix of the process (Xt )t≥0 and let V be

the diagonal matrix diag(v(e)), e ∈ E. Let V −1Q� = �G be the unique Wiener–Hopf
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factorization of the matrix V −1Q (see Barlow et al. (1980) or refer to Lemma 3.4, below). Let
J , J1, and J2 be the matrices

J =
(

I 0
0 −I

)
, J1 =

(
I 0
0 0

)
, J2 =

(
0 0
0 I

)
,

and let the matrix �2 be given by �2 = J�J . Throughout, I denotes the identity matrix, and
M(i, j) = [M](i, j) is used to denote the (i, j)th entry of a matrix M . In J1 and the first row
of J , I is of order |E+|, while in J2 and the second row of J , it is of order |E−|.

We now state our main result in the oscillating case.

Theorem 2.1. Suppose that the process (ϕt )t≥0 oscillates. Then, for a fixed (e, ϕ) ∈ E+
0 and

t ≥ 0, the restrictions of the measures (P(T )
(e,ϕ))T ≥0 to Ft converge weakly, as T → ∞, to the

restriction of the probability measure Phr

(e,ϕ) defined by

Phr

(e,ϕ)(A) = E(e,ϕ)(1(A)hr(Xs, ϕs)1(s < H0))

hr(e, ϕ)
, s ≥ 0, A ∈ Fs ,

where hr(e, y) is a positive, harmonic function for the process (Xt , ϕt )t≥0 given by hr(e, y) =
[e−yV −1QJ1�2r](e), (e, y) ∈ E × R, for a vector r satisfying V −1Qr = 1, and 1(S) denotes
the indicator function of a set S.

Let β0 be the point at which the Perron–Frobenius eigenvalue α(β) of the matrix Q − βV ,
β ∈ R, attains its global minimum (see Lemma 3.9, below). Let α0 = α(β0) and g0 be the
Perron–Frobenius eigenvalue and right eigenvector, respectively, of the matrix Q − β0V , and
let G0 be the diagonal matrix diag(g0). Let Q0 be the |E| × |E| matrix with entries

Q0(e, e′) = [G−1
0 (Q − α0I − β0V )G0](e, e′), e, e′ ∈ E. (2.1)

As we shall see later, the matrix Q0 is a conservative irreducible Q-matrix (see Lemma 3.11,
below). Let V −1Q0�0 = �0G0 be the unique Wiener–Hopf factorization of the matrix V −1Q0

and let �0
2 = J�0J . We can now state our main result in the negative-drift case.

Theorem 2.2. Suppose that the process (ϕt )t≥0 drifts to −∞. For fixed (e, ϕ), (e′, ϕ′) ∈ E+
0

and t ≥ 0, if all nonzero eigenvalues of the matrix V −1Q0 are simple and if

lim
T →∞

P(e′,ϕ′)(H0 > T − t)

P(e,ϕ)(H0 > T )

exists, then the restrictions of the measures (P(T )
(e,ϕ))T ≥0 to Ft converge weakly, as T → ∞, to

the restriction of a probability measure P
h

r0

(e,ϕ) that is defined by

P
h

r0

(e,ϕ)(A) = E(e,ϕ)(1(A)hr0(Xs, ϕs, t)1(s < H0))

hr0(e, ϕ, s)
, s ≥ 0, A ∈ Fs ,

where hr0(e, y, t) is a positive, space–time-harmonic function for the process (Xt , ϕt )t≥0
given by hr0(e, y, t) = e−α0te−β0y[G0e−yV −1Q0

J1�
0
2r0](e), (e, y, t) ∈ E × R × [0, ∞),

and V −1Q0r0 = 1.

Note that Phr

(e,ϕ) and P
h

r0

(e,ϕ) are h-transforms of the transition kernel for the process (Xt , ϕt )t≥0
killed when the process (ϕt )t≥0 crosses 0.
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3. Notation and preliminary results

The purpose of this section is to introduce notation, recall some results, and prove some
others that are needed for the proofs in the subsequent two sections. The proofs are fairly
straightforward and are included for the sake of completeness.

Lemma 3.1. Let Q be an irreducible essentially nonnegative matrix, let V be a diagonal
matrix, and let β ∈ R. Then the matrix Q − βV is also an irreducible essentially nonnegative
matrix.

Proof. The proof follows directly from the definition of an irreducible essentially nonnega-
tive matrix (see Seneta (1981)).

The following three lemmas were proved in Barlow et al. (1980). We state them here in the
notation we intend to use.

Lemma 3.2. For a fixed α > 0, there exist a unique pair (�+
α , �−

α ), where �+
α is a |E−|×|E+|

matrix and �−
α is a |E+|×|E−| matrix, and Q-matrices G+

α and G−
α on E+×E+ and E−×E−,

respectively, such that if

�α =
(

I �α−
�+

α I

)
and Gα =

(
G+

α 0
0 −G−

α

)
,

then �α is invertible and �−1
α V −1(Q − αI )�α = Gα . Moreover, �+

α and �−
α are strictly

substochastic.

Recall that the subspace E+
y , y ∈ R, is given by E+

y = (E × (y, ∞)) ∪ (E+ × {y}). Let
E−

y , y ∈ R, be the subspace E−
y = (E × (−∞, y)) ∪ (E− × {y}), and let Hy , y ∈ R, be the

first crossing time of the level y by the process (ϕt )t≥0, defined by

Hy =
{

inf{t > 0 : ϕt < y} if (Xt , ϕt )t≥0 starts inE+
y ,

inf{t > 0 : ϕt > y} if (Xt , ϕt )t≥0 starts inE−
y .

Lemma 3.3. Let α > 0 be fixed. Then

E(e,0)(e
−αH0 1(XH0 = e′)) = �+

α (e, e′), (e, e′) ∈ E− × E+,

E(e,0)(e
−αH0 1(XH0 = e′)) = �−

α (e, e′), (e, e′) ∈ E+ × E−,

E(e,0)(e
−αHy 1(XHy = e′)) = [eyG+

α ](e, e′), (e, e′) ∈ E+ × E+, y > 0,

E(e,0)(e
−αH−y 1(XH−y = e′)) = [eyG−

α ](e, e′), (e, e′) ∈ E− × E−, y > 0.

Lemma 3.4. There exist a unique pair (�+, �−), where �+ is a |E−|× |E+| matrix and �−
is a |E+| × |E−| matrix, and Q-matrices G+ on E+ × E+ and G− on E− × E− such that

V −1Q� = �G, (3.1)

where

� =
(

I �−
�+ I

)
and G =

(
G+ 0
0 −G−

)
.

https://doi.org/10.1239/aap/1134587751 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1134587751


Conditioning an additive functional of a Markov chain. I 1019

Moreover, �+ and �− are substochastic and

P(e,0)(XH0 = e′) = �+(e, e′), (e, e′) ∈ E− × E+,

P(e,0)(XH0 = e′) = �−(e, e′), (e, e′) ∈ E+ × E−,

P(e,0)(XHy = e′) = [eyG+](e, e′), (e, e′) ∈ E+ × E+, y ≥ 0,

P(e,0)(XH−y = e′) = [eyG−](e, e′), (e, e′) ∈ E− × E−, y ≥ 0.

Lemmas 3.2 and 3.4 are said to yield the Wiener–Hopf factorizations of the matrices
V −1(Q − αI ), α > 0, and V −1Q, respectively.

The statements in the following lemma can easily be deduced from Lemmas 3.2, 3.3, and 3.4,
so we omit their proofs.

Lemma 3.5. (i) The matrices �+ and �− are positive.

(ii) If at least one of the matrices �+ and �− is strictly substochastic then the matrices
I − �−�+, I − �+�−, and � are invertible and

�−1 =
(

(I − �−�+)−1 −�−(I − �+�−)−1

−�+(I − �−�+)−1 (I − �+�−)−1

)
.

(iii) The matrices G+ and G− are irreducible Q-matrices.

(iv) G+ and G− are conservative if and only if �+ and �− are stochastic, respectively.

(v) limα→0 �α = �.

(vi) For any y > 0 and (e, ϕ) ∈ E+
0 ∩ E−

y , or any y < 0 and (e, ϕ) ∈ E−
0 ∩ E+

y ,

P(e,ϕ)(XHy = e′, Hy < H0) > 0 and 0 < P(e,ϕ)(Hy < H0) < 1.

(vii) For any (e, ϕ) ∈ E+
0 and e′ ∈ E−, or any (e, ϕ) ∈ E−

0 and e′ ∈ E+,

P(e,ϕ)(XH0 = e′, H0 < ∞) > 0.

(viii) For any (e, ϕ) ∈ E × R and T > 0, P(e,ϕ)(H0 > T ) > 0.

We now introduce vector notation that will be used in the sequel. For any vector g on E, let
g+ and g− denote its restrictions to E+ and E−, respectively. We write the column vector g as

g =
(

g+
g−
)

and the row vector µ as µ = (µ+, µ−).
It follows from Lemmas 3.2, 3.3, and 3.4 (see Barlow et al. (1980)) that the matrix

V −1(Q − αI ) cannot have strictly imaginary eigenvalues, and that there exists a basis B(α)

in the space of all vectors on E such that if g(α) is in B(α), then

(V −1(Q − αI ) − λ(α)I )kg(α) = 0,

for some eigenvalue λ(α) of V −1(Q − αI ) and some k ∈ N. The number of vectors in the
basis B(α) associated with the same eigenvalue is equal to the algebraic multiplicity of that

https://doi.org/10.1239/aap/1134587751 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1134587751


1020 S. D. JACKA ET AL.

eigenvalue. Let N (α) and P (α) be the sets of vectors g(α) ∈ B(α) associated with eigenvalues
with positive and with negative real parts, respectively. Then

g(α) ∈ N (α) ⇒ g(α) =
(

g+(α)

�+
α g+(α)

)
, g(α) ∈ P (α) ⇒ g(α) =

(
�−

α g−(α)

g−(α)

)
.

(3.2)
The sets N (α) and P (α) contain exactly |E+| and, respectively, |E−| vectors and the vectors

g+(α) and g−(α), for all g(α) ∈ N (α) and, respectively, g(α) ∈ P (α)), form a basis in the
space of all vectors on E+ and, respectively, E−. The eigenvalues of V −1(Q − αI ) with
strictly negative and with strictly positive real parts coincide with the eigenvalues of G+

α and,
respectively, −G−

α .
The Wiener–Hopf factorization (3.1) of the matrix V −1Q implies that

G+f + = αf + if and only if V −1Q

(
f +

�+f +
)

= α

(
f +

�+f +
)

,

G−g− = −βg− if and only if V −1Q

(
�−g−

g−
)

= β

(
�−g−

g−
)

.

(3.3)

Let αj , j = 1, . . . , n, be the (not necessarily distinct) eigenvalues of the matrix G+, and
let −βk , k = 1, . . . , m, be the (not necessarily distinct) eigenvalues of the matrix G−. By
Lemma 3.5(iii), G+ and G− are irreducible Q-matrices, which implies that

αmax := max
1≤j≤n

Re(αj ) ≤ 0 and − βmin := max
1≤k≤m

Re(−βk) = − min
1≤k≤m

Re(βk) ≤ 0

are simple eigenvalues of G+ and G−, respectively. Hence, it follows from (3.3) that all
eigenvalues of V −1Q with negative and positive real parts respectively coincide with the
eigenvalues of G+ and −G−.

By Jordan normal form theory, there exists a basis B, in the space of all vectors on E,
containing exactly n = |E+| vectors, f1, f2, . . . ,fn, such that each fj , j = 1, . . . , n, is
associated with an eigenvalue αj of V −1Q for which Re(αj ) ≤ 0, and containing exactly
m = |E−| vectors, g1, g2, . . . ,gm, such that each gk , k = 1, . . . , m, is associated with an
eigenvalue βk of V −1Q for which Re(βk) ≥ 0. The vectors f +

1 , f +
2 , . . . ,f +

n form a basis
N + in the space of all vectors on E+ and the vectors g−

1 , g−
2 , . . . , g−

m form a basis P − in the
space of all vectors on E−.

Let fmax and gmin be the eigenvectors of V −1Q associated with the eigenvalues αmax and
βmin, respectively. Then f +

max and g−
min are the Perron–Frobenius eigenvectors of the matrices

G+ and G−, respectively.

Lemma 3.6. (i) The vectors fmax and gmin are the only positive eigenvectors of the matrix
V −1Q.

(ii) There are no nonnegative vectors on E+ or E− that are linearly independent of the vector
f +

max or g−
min, respectively.

Proof. (i) Let f be a positive eigenvector of the matrix V −1Q. Then, by (3.3), either f +
is an eigenvector of G+ or f − is an eigenvector of G−. The only positive eigenvectors of G+
and G− are f +

max and g−
min, respectively. Hence, either

f =
(

f +
max

�+f +
max

)
= fmax or f =

(
�−g−

min
g−

min

)
= gmin.
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Since, by Lemma 3.5(i), the matrices �+ and �− are positive, we see that fmax and gmin
are positive, which completes the proof.

(ii) Let f + be a nonnegative vector on E+ independent of f +
max. Since

N + = {f +
1 , f +

2 , . . . ,f +
n }

is a basis in the space of all vectors on E+, the vector f + has a decomposition

f + =
∑

{j=1,...,n : f +
j �=f +

max}
ajf

+
j ,

for some coefficients aj , j = 1, . . . , n.
Let f

l,+
max be the left Perron–Frobenius eigenvector of G+. Then f

l,+
maxetG+ = eαmaxtf

l,+
max

and f
l,+
maxf

+
j = 0 for all f +

j �= f +
max, j = 1, . . . , n. Thus, for any t ≥ 0,

f l,+
maxetG+

f + =
∑

{j=1,...,n : f +
j �=f +

max}
ajf

l,+
maxetG+

f +
j =

∑
{j=1,...,n : f +

j �=f +
max}

aj eαj tf l,+
maxf

+
j = 0;

however, this is a contradiction because f + and f
l,+
max are nonnegative and

f l,+
maxetG+

f + = eαmaxtf l,+
maxf

+ > 0.

Therefore, the vectors f + and f +
max are not linearly independent.

Let the matrix F (y), y ∈ R, be defined by

F (y) =
{

J1eyG = eyGJ1, y > 0,

J2eyG = eyGJ2, y < 0.

Then we have the following result.

Lemma 3.7. For any e, e′ ∈ E,

P(e,ϕ)(XH0 = e′, H0 < ∞) = [�F (−ϕ)](e, e′), ϕ �= 0,

P(e,0)(XH0 = e′, H0 < ∞) = [I − �2](e, e′) =
[(

0 �−
�+ 0

)]
(e, e′).

Proof. The lemma follows directly from the definition of the matrices �, �2, and F (ϕ).

Let G be the infinitesimal generator of the process (Xt , ϕt )t≥0 and let DG denote its domain.
Let a function f (e, ϕ) on E × R be continuously differentiable in ϕ. Then f ∈ DG and

Gf =
(

Q + V
∂

∂ϕ

)
f, (3.4)

where

Qf (e, ϕ, t) =
∑
e′∈E

Q(e, e′)f (e′, ϕ),

V
∂f

∂ϕ
(e, ϕ, t) = V (e, e)

∂f

∂ϕ
(e, ϕ).
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Similarly, let A be the infinitesimal generator of the process (Xt , ϕt , t)t≥0 and let DA denote
its domain. Let a function f (e, ϕ, t) on E × R × [0, ∞) be continuously differentiable in ϕ

and t . Then f ∈ DA and

Af =
(

Q + V
∂

∂ϕ
+ ∂

∂t

)
f. (3.5)

The behaviour of the process (ϕt )t≥0 is determined by the matrices Q and V . More precisely,

(ϕt )t≥0 drifts to ∞ ⇐⇒ µV 1 > 0

⇐⇒ G+ is conservative and G− is not conservative,

(ϕt )t≥0 oscillates ⇐⇒ µV 1 = 0

⇐⇒ G+ and G− are conservative,

(ϕt )t≥0 drifts to − ∞ ⇐⇒ µV 1 < 0

⇐⇒ G− is conservative and G+ is not conservative,

(3.6)

where µ denotes the invariant measure of the process (Xt )t≥0.
Let f1 = fmax and g1 = gmin be the eigenvectors of V −1Q associated with the eigenvalues

αmax and βmin, respectively. Then, in the positive-drift case fmax = 1 �= gmin and in the
negative-drift case gmin = 1 �= fmax, and in both cases the basis B in the space of all vectors on
E is equal to {fj , j = 1, . . . , n; gk, k = 1, . . . , m}. In the oscillating case, fmax = gmin = 1
and the equation V −1Qx = 1 has a solution. If r is a solution then, by Jordan normal form
theory, r is linearly independent of the vectors {fj , j = 1, . . . , n; gk, k = 1, . . . , m} and
B = {1, r, fj , j = 2, . . . , n; gk, k = 2, . . . , m} is a basis in the space of all vectors on E.

The following lemmas are concerned with the Perron–Frobenius eigenvalue of the matrix
Q − βV . For any β ∈ R, let α(β) be the Perron–Frobenius eigenvalue of the matrix
Q − βV and let ul(β) and ur(β) be the associated left and right eigenvectors such that
‖ul(β)‖ = ‖ur(β)‖ = 1 in some norm in the space R

|E|. A striking property of the eigenvalue
α(β) is that it is a convex function of β.

Lemma 3.8. Let β ∈ R and let α(β) be the Perron–Frobenius eigenvalue of the matrix Q−βV .
Then α(β) is a convex function of β and is therefore continuous. It attains its global minimum
and has two not necessarily distinct zeros, αmax ≤ 0 and βmin ≥ 0.

Proof. Let r(A) denote the Perron–Frobenius eigenvalue of an essentially nonnegative
matrix A. Since Q is essentially nonnegative it follows from Cohen (1981) that, for any
x, y ∈ R and any t , 0 < t < 1,

r((1 − t)(Q − xV ) + t (Q − yV )) ≤ (1 − t)r(Q − xV ) + tr(Q − yV ).

Hence, α(β) is a convex function and is therefore continuous.
For a β with |β| sufficiently large, some rows of Q−βV are nonnegative, which implies that

there exists no positive vector f such that (Q − βV )f ≤ 0. Hence, by the Perron–Frobenius
theorem (see Theorem 2.6 of Seneta (1981)), α(β) > 0 for sufficiently large |β|.

Suppose that α(β) = 0. Then there exists a positive vector f such that (Q − βV )f = 0.
Since, by Lemma 3.6(i), there exist exactly two (not necessarily distinct) eigenvalues of V −1Q,
αmax and βmin, whose associated eigenvectors are positive, it follows that αmax and βmin are
the only zeros of α(β).

Therefore, the function α(β) is continuous, for |β| sufficiently large it is positive, and it has
either one or two zeros. All of these together imply that α(β) attains its minimum.
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Lemma 3.9. Let α(β) be the Perron–Frobenius eigenvalue and let ul(β) and ur(β) be the
unit left and right Perron–Frobenius eigenvectors of the matrix Q − βV . Then α(β) is a
differentiable function of β and

dα

dβ
(β) = −ul(β)V ur(β)

ul(β)ur(β)
.

In addition, there is a unique β0 ∈ (αmax, βmin) such that (dα/dβ)(β0) = 0, α0 ≡ α(β0) is
the global minimum of the function α(β), and

dα

dβ
(β)

⎧⎪⎨
⎪⎩

< 0 if β < β0,

= 0 if β = β0,

> 0 if β > β0.

Proof. By multiplying the equality

(Q − βV )ur(β + h) − hV ur(β + h)

= (α(β + h) − α(β))ur(β + h) + α(β)ur(β + h)

by ul(β)/h (on the left) and letting h → 0, we find that α(β) is a differentiable function of β.
By Lemma 3.8, it is also convex and attains its minimum. Hence, there exists a unique β0
such that α(β0) is the global minimum of α(β) and (dα/dβ)(β0) = 0. Also by Lemma 3.8,
α(β) has two zeros, αmax ≤ 0 and βmin ≥ 0. Hence, β0 ∈ (αmax, βmin) when αmax �= βmin and
β0 = αmax = βmin when αmax = βmin.

It remains to show that α(β) is strictly monotone on (−∞, β0] and [β0, ∞). Let α(β) be
the Perron–Frobenius eigenvalue of the matrix Q − βV , and first suppose that β0 = 0. Then
α(β0) = 0 and, therefore, α(β) ≥ 0. By Lemma 3.6(i), for α > 0 the only positive eigenvectors
of V −1(Q − αI ) are fmax(α) and gmin(α), which are associated with the eigenvalues αmax(α)

and βmin(α), respectively. Hence, for a fixed α ≥ α0, there exist only two values of β, namely
αmax(α) and βmin(α), such that α is the Perron–Frobenius eigenvalue of Q − βV . Since
αmax(α) ≤ 0 and βmin(α) ≥ 0, it follows that α(β) is strictly monotone on both intervals
(−∞, 0] and [0, ∞).

Now let β0 �= 0 and Q0 = Q − β0V − α0I . The matrix Q0 is essentially nonnegative
and (by Lemma 3.1) irreducible; so is the matrix Q0 − βV , for any β ∈ R. Let α0(β) be the
Perron–Frobenius eigenvalue of Q0 −βV . Then α0(β) = α(β +β0)−α0. Since α(β) attains
its global minimum at β = β0, it follows that α0(β) attains its global minimum, i.e. 0, at β = 0.
Therefore, by the argument for the β0 = 0 case, α0(β) is strictly monotone on (−∞, 0] and
[0, ∞), which implies that α(β) is strictly monotone on (−∞, β0] and [β0, ∞).

The sign of the unique argument, β0, of the global minimum of the function α(β), whose
existence we have just proved, is found to depend on the behaviour of the process (ϕt )t≥0. This
is the result of the next lemma.

Lemma 3.10. (i) In the positive-drift case, β0 > 0 and α0 < 0.

(ii) In the oscillating case, β0 = 0 and α0 = 0.

(iii) In the negative-drift case, β0 < 0 and α0 < 0.
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Proof. In the drift cases αmax �= βmin and, therefore, by Lemma 3.9, β0 ∈ (αmax, βmin).
In the positive-drift case, by (3.6), αmax = 0 and βmin > 0 and, therefore, β0 > 0. In the
negative-drift case, by (3.6), βmin = 0 and αmax < 0 and, therefore, β0 < 0. Since, in both
cases, the function α(β) has two distinct zeros, its global minimum α0 is negative.

Finally, in the oscillating case, by (3.6), αmax = βmin = 0 and, therefore, β0 = 0. Thus,
the function α(β) has exactly one zero at β = 0 and, since by Lemma 3.8 it attains a global
minimum, it follows that α(β) attains its global minimum at β0 = 0 and that α0 = α(β0) = 0.

Lemma 3.11. The matrixQ0 given by (2.1) is a conservative irreducibleQ-matrix. In addition,
if µ0 is a vector on E such that µ0Q0 = 0, then µ0V 1 = 0.

Proof. Since the matrices I and V are diagonal and the vector g0 is positive, the matrix Q0

is essentially nonnegative. In addition, Q0 1 = 0.
By Lemma 3.1, the matrix Q − α0I − β0V is irreducible, which implies that the matrix

et (Q−α0I−β0V ) is positive for all t > 0. Since the vector g0 is positive, it follows from the
definition of Q0 that etQ0

is positive for all t > 0 and that the matrix Q0 is irreducible.
Let gl

0 be the left Perron–Frobenius eigenvector of the matrix Q − β0V , and let µ0 be a
vector on E with entries µ0(e) = gl

0(e)g0(e), e ∈ E. Then µ0Q0 = 0 and, by Lemmas 3.9
and 3.10, µ0V 1 = 0. Since any vector v that satisfies vQ0 = 0 is a constant multiple of µ0,
the proof of the lemma is complete.

We recall the matrix G0 = diag(g0). Since the vector g0 is positive, the matrix G0 is
invertible.

Lemma 3.12. For α > 0, let

V −1(Q − αI )�α = �αGα and V −1(Q0 − αI )�0
α = �0

αG0
α

be the Wiener–Hopf factorizations of V −1(Q − αI ) and V −1(Q0 − αI ), respectively. Then

G0
α−α0

= G−1
0 (Gα − β0I )G0 and �0

α−α0
= G−1

0 �αG0, α > 0.

Proof. By the definition of Q0 and by the Wiener–Hopf factorization of V −1(Q − αI ),
α > 0, given in Lemma 3.2, we have

V −1(Q0 − (α − α0)I ) = G−1
0 �αG0(G

−1
0 (Gα − β0I )G0)G

−1
0 �−1

α G0. (3.7)

Let G+
0 and G−

0 be the restrictions of G0 to E+ × E+ and, respectively, E− × E−. Then

G−1
0 (Gα − β0I )G0 =

(
(G+

0 )−1(G+
α − β0I )G+

0 0
0 −(G−

0 )−1(G−
α + β0I )G−

0

)
.

Suppose that (G+
0 )−1(G+

α − β0I )G+
0 and (G−

0 )−1(G−
α + β0I )G−

0 are Q-matrices. Then,
by Lemma 3.2, (3.7) is the Wiener–Hopf factorization of V −1(Q0 − (α − α0)I ) for α > 0,
and, by the uniqueness of the Wiener–Hopf factorization,

G0
α−α0

= G−1
0 (Gα − β0I )G0 and �0

α−α0
= G−1

0 �αG0, α > 0.

Therefore, all we have to prove is that (G+
0 )−1(G+

α −β0I )G+
0 and (G−

0 )−1(G−
α +β0I )G−

0 are
Q-matrices.

Let the function h be defined by h(e, ϕ, t) = e−α0te−β0ϕg0(e). Then h is continuously
differentiable in ϕ and t and, by (3.5), it is in the domain of the infinitesimal generator A of the
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process (Xt , ϕt , t)t≥0, with Ah = 0. It follows that the process (h(Xt∧Hy , ϕt∧Hy , t ∧ Hy))t≥0
is a positive martingale. By Fatou’s lemma,

E(e,ϕ)(e
−α0Hy e−β0ϕHy g0(XHy )) ≤ e−β0ϕg0(e),

and, because g0 is positive,

E(e,ϕ)(e
−αHy g0(XHy )) ≤ E(e,ϕ)(e

−α0Hy g0(XHy )) ≤ e−β0(ϕ−y)g0(e)

for α > α0.
By Lemma 3.3, for ϕ = 0 and y > 0, we have

e−β0yg0(e) ≥ E(e,0)(e
−αHy g0(XHy )) =

(
eyG+

α g+
0

�+
α eyG+

α g+
0

)
,

which implies that ey(G+
α −β0I )g+

0 ≤ g+
0 , componentwise. Hence, because

lim
y→0

ey(G+
α −β0I )g+

0 − g+
0

y
= (G+

α − β0I )g+
0 ,

we have (G+
α − β0I )g+

0 ≤ 0 and, therefore, because (G+
0 )−1 is positive,

(G+
0 )−1(G+

α − β0I )G+
0 1+ = (G+

0 )−1(G+
α − β0I )g+

0 ≤ 0

and (G+
0 )−1(G+

α − β0I )G+
0 is a Q-matrix. It can be proved that (G−

0 )−1(Gα − β0I )G−
0 is a

Q-matrix in the same way.

Theorem 3.1. For α ≥ 0, let αmax(α) and βmin(α) be the eigenvalues of the matrix
V −1(Q − αI ) with maximal negative and minimal positive real parts, respectively, and let
fmax(α) and gmin(α) be their associated eigenvectors, respectively.

Then, in the oscillating case, there exists an ε > 0 such that, for 0 < α < ε, and some
constants dn, n = 2, 3, . . . , and c > 0, we have

αmax(α) = − 1√−µV r
α1/2 + d2α + d3α

3/2 + · · · = − 1√−µV r
α1/2 + �max(α

1/2),

βmin(α) = 1√−µV r
α1/2 + d2α − d3α

3/2 + · · · = 1√−µV r
α1/2 + �min(α

1/2),

where |�max(α
1/2)| < cα and |�min(α

1/2)| < cα.
For suitable vectors v2, w2, �max(α

1/2), and �min(α
1/2), the vectors fmax(α) and gmin(α)

can be chosen to be

fmax(α) = 1 − 1√−µV r
α1/2r + αv2 + · · · = 1 − 1√−µV r

α1/2r + �max(α
1/2),

gmin(α) = 1 + 1√−µV r
α1/2r + αw2 + · · · = 1 + 1√−µV r

α1/2r + �min(α
1/2),

where V −1Qr = 1 and ‖�max(α
1/2)‖ < αv and ‖�min(α

1/2)‖ < αw for some positive
scalars v and w.
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In the negative-drift case, there exists an ε > 0 such that, for 0 < α < ε, and some constants
an and bn, n ∈ N, we have

αmax(α) = αmax + a1α + a2α
2 + · · · and βmin(α) = b1α + b2α

2 + b3α
3 + · · · ,

and the vectors fmax(α) and gmin(α) can be chosen to be

fmax(α) = fmax + αv1 + α2v2 + · · · and gmin(α) = 1 +αw1 + α2w2 + · · · ,

where vn and wn, n ∈ N, are constant vectors.
An analogous result holds in the positive-drift case.

Proof. The eigenvalues of V −1(Q − αI ) converge to the eigenvalues of V −1Q as α → 0.
Thus, αmax(α) → αmax and βmin(α) → βmin as α → 0.

In the drift cases, by (3.6), αmax �= βmin. Hence, αmax and βmin are simple eigenvalues
of V −1Q, which implies, for a sufficiently small α > 0, that αmax(α) and βmin(α), and also
fmax(α) and gmin(α), can be represented by convergent power series (see Wilkinson (1965)).
In addition, in the positive-drift case αmax = 0 and fmax = 1, and in the negative-drift case
βmin = 0 and gmin = 1. This proves the theorem for the drift cases.

In the oscillating case, by (3.6), 0 is an eigenvalue of the matrix V −1Q with algebraic
multiplicity two. Hence, there exists an ε > 0 such that, for 0 < |α| < ε, there exist two
eigenvalues of V −1(Q − αI ), namely αmax(α) and βmin(α), that converge to 0 as α → 0. In
addition, either

αmax(α) = a1α + a2α
2 + a3α

3 + · · · ,

βmin(α) = b1α + b2α
2 + b3α

3 + · · · ,
(3.8)

for some constants ak and bk , k ∈ N, or

αmax(α) = d1α
1/2 + d2α + d3α

3/2 + · · · ,

βmin(α) = −d1α
1/2 + d2α − d3α

3/2 + · · · ,
(3.9)

for some constants dk , k ∈ N. We shall show that (3.8) is not possible.
For any α > 0,

(Q − αmax(α)V )fmax(α) = αfmax(α). (3.10)

Since, by Lemma 3.1, the matrix Q − αmaxV is irreducible and essentially nonnegative
and the vector fmax(α) is positive, it follows that α is the Perron–Frobenius eigenvalue of
Q − αmax(α)V . Similarly, α is the Perron–Frobenius eigenvalue of Q − βmin(α)V .

Let β ∈ R and consider the matrix Q − βV and its Perron–Frobenius eigenvalue α(β) and
eigenvector u(β). The eigenvalue α(β) is simple and converges to a simple eigenvalue of the
matrix Q as β → 0. Thus, for |β| < δ,

α(β) = c0 + c1β + c2β
2 + · · · ,

u(β) = 1 +βv1 + β2v2 + · · · ,
(3.11)

for some constants ck , k ∈ N ∪ {0}, and some vectors vk , k ∈ N, on E.
Suppose that the process (ϕt )t≥0 oscillates. By Lemmas 3.9 and 3.10, the eigenvalue α(β)

attains its global minimum, 0, at β = 0. Hence, α(0) = (dα/dβ)(0) = 0, which gives
c0 = c1 = 0 and, therefore,

α(β) = c2β
2 + c3β

3 + c4β
4 + · · · . (3.12)
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By substituting α(β) and u(β) into the equation

(Q − βV )u(β) = α(β)u(β),

and by equating the coefficients of β and β2 on each side of the resulting expansion, we obtain

V −1Qv1 = 1, Qv2 − V v1 = c21. (3.13)

It follows that c2 �= 0. (If c2 = 0 then V −1Qv2 = v1, which, by Jordan matrix theory, is
not possible since 0 is the eigenvalue of V −1Q with algebraic multiplicity two.)

Suppose that (3.8) holds. Then it follows from (3.8) and (3.10) that, for |α| < ε,

α = α(αmax) = c2α
2
max(α) + c3α

3
max(α) + · · ·

= c2(a1α + a2α
2 + · · · )2 + c3(a1α + a2α

2 + · · · )3 + · · ·
= c2a

2
1α2 + const. α3 + · · · ,

which is not possible for every |α| < ε. Hence, (3.8) is not true and, thus, (3.9) holds.
Substituting αmax(α) and βmin(α) from (3.9) into (3.12) gives d2

1 = 1/c2. By Lemmas 3.9
and 3.10, α(0) = 0 is the minimum of the function α(β), which implies that α(β) > 0 for all
β ∈ R, and, by (3.12), that c2 > 0. By multiplying the second equality in (3.13) by µ on the
left, we obtain c2 = −µV v1/µ 1 = −µV v1 (because µ 1 = 1). Therefore, the statement in
the theorem follows from (3.9) and (3.11).

4. The oscillating case: proof of Theorem 2.1

We start by considering limT →∞ P(T )
(e,ϕ)(A) for A ∈ Ft . By Lemma 3.5(viii), the events

{H0 > T }, T > 0, are of positive probability. Thus, for 0 < t < T and A ∈ Ft ,

P(T )
(e,ϕ)(A) = P(e,ϕ)(A | H0 > T ) = E(e,ϕ)(1(A) P(Xt ,ϕt )(H0 > T − t)1(H0 > t))

P(e,ϕ)(H0 > T )
. (4.1)

We first show that

lim
T →∞

P(e′,ϕ′)(H0 > T − t)

P(e,ϕ)(H0 > T )

exists by looking at the asymptotic behaviour of the function t �→ P(e,ϕ)(H0 > t).
In the oscillating case, by (3.6) and Lemma 3.5(iv), 0 is an eigenvalue of V −1Q with

algebraic multiplicity two and geometric multiplicity one. Therefore, there exists a vector r

such that V −1Qr = 1. Since the choice of such vector is not relevant in the present work, we
shall always refer to it as if it were fixed.

Recall that µ is the invariant measure of the process (Xt )t≥0.

Lemma 4.1. For any (e, ϕ) ∈ E+
0 ,

(i) P(e,ϕ)(H0 > t) ∼ 1

π

1√−µV r
t−1/2[−e−ϕV −1QJ1�2r](e), t → ∞,

(ii) hr(e, ϕ) := −[e−ϕV −1QJ1�2r](e) > 0.
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Proof. (i) The statement is proved by applying Tauberian theorems to the Laplace transform,
1 − E(e,ϕ)(e−αH0)/α, of P(e,ϕ)(H0 > t). By Lemmas 3.2 and 3.3, for α > 0 and (e, ϕ) ∈ E+

0 ,
we have

1 − E(e,ϕ)(e−αH0)

α
=
[

e−ϕV −1Q 1 − �αJ2 1
α

]
(e) −

[
e−ϕV −1(Q−αI ) − e−ϕV −1Q

α
�αJ2 1

]
(e).

(4.2)
Let βmin(α) be the eigenvalue of V −1(Q−αI ) with minimal positive real part and let gmin(α)

be its associated eigenvector. Then, by (3.2), �−
α g−

min(α) = g+
min(α) and, by substituting

gmin(α) from Theorem 3.1, we obtain

1+ −�−
α 1−

α
= − 1√−µV r

α−1/2(r+ − �−r−) + 1√−µV r
α−1/2(�−

α − �−)r−

+ 1

α
�+

min(α
1/2) + 1

α
�−

α �−
min(α

1/2) (4.3)

for sufficiently small α.
By Theorem 3.1, (1/α)�+

min(α
1/2) is bounded in norm, and, by Lemma 3.5(v),

�−
α − �− → 0 as α → 0.

Thus, it follows from (4.3) that

1+ −�−
α 1−

α
∼ − 1√−µV r

α−1/2(r+ − �−r−), α → 0. (4.4)

Furthermore, since

1 −�αJ2 1
α

=
(

(1+ − �−
α 1−)/α

0

)
and J1�2r =

(
r+ − �−r−

0

)
,

we have

e−ϕV −1Q 1 −�αJ2 1
α

∼ − 1√−µV r
α−1/2e−ϕV −1QJ1�2r, α → 0.

The function α �→ e−ϕV −1(Q−αI ) is analytic for all α and, by Lemma 3.5(v), �α → � as
α → 0. Hence, the second term on the right-hand side of (4.2) is bounded for small α > 0.
Therefore, for any (e, ϕ) ∈ E × (0, ∞),

1 − E(e,ϕ)(e−αH0)

α
∼ − 1√−µV r

α−1/2[e−ϕV −1QJ1�2r](e), α → 0.

The assertion of the lemma now follows from the Tauberian theorem (see Feller (1971,
Chapter XIII.5)).

(ii) We give only the sketch of the proof. For the details, see Najdanovic (2003) or refer to
Jacka et al. (2005).

For any y ∈ R, let the matrices Ay and Cy be components of the matrix e−yV −1Q given by

e−yV −1Q =
(

Ay By

Cy Dy

)
.
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Then, for any ϕ ∈ R,

e−ϕV −1QJ1�2r =
(

Aϕ(r+ − �−r−)

Cϕ(r+ − �−r−)

)
.

The proof of the lemma consists of first showing that the vectors Aϕ(r+ − �−r−) and
Cϕ(r+ −�−r−) have the same constant sign, which implies that the function hr has a constant
sign. Then we deduce from part (i) that hr must be positive.

By ordinary matrix algebra and the equalities eyV −1Qr = r + y 1 and �− 1− = 1+, it can
be shown that, for any ϕ, y ∈ R, the vector Aϕ(r+ − �−r−) satisfies the equality

(Aϕ(Ay − �−Cy)
−1A−1

ϕ )Aϕ(r+ − �−r−) = Aϕ(r+ − �−r−).

In addition, it can be shown that the matrix Aϕ(Ay − �−Cy)
−1A−1

ϕ , ϕ �= y, is positive
and that its Perron–Frobenius eigenvalue is 1. The last equality then implies that the vector
Aϕ(r+ − �−r−) is its Perron–Frobenius eigenvector and therefore has a constant sign.

Furthermore, it can be shown that the matrix CϕA−1
ϕ is positive. Hence, because

Cϕ(r+ − �−r−) = CϕA−1
ϕ Aϕ(r+ − �−r−)

and Aϕ(r+ − �−r−) has a constant sign, we deduce that the vector Cϕ(r+ − �−r−) has the
same constant sign. Thus, the function hr has a constant sign and, since P(e,ϕ)(H0 > t) > 0,
it follows from part (i) that the function hr is positive.

For the proof of Theorem 2.1 we need two more lemmas.

Lemma 4.2. (i) Let {fn, n ∈ N} and f be nonnegative random variables, on a probability
space (�, F , P), such that E fn = E f = 1, where expectation is taken with respect to the
probability measure P. If fn → f almost surely as n → ∞, then fn → f in L1(�, F , P) as
n → ∞.

(ii) Let {Pn, n ∈ N} and P be probability measures, on a measurable space (�, F ), such that,
for any A ∈ F , Pn(A) → P(A) as n → ∞. Then the measures {Pn, n ∈ N} converge weakly
to P on F .

Proof. (i) Since {fn, n ∈ N} and f are nonnegative and E fn = E f = 1, the functions
{fn(ω), n ∈ N} and f (ω), ω ∈ �, are densities with respect to the measure P. In addition,
fn → f almost surely as n → ∞ and, so, fn → f in probability as n → ∞. Therefore, by
Theorem 2.2 of Jacka and Roberts (1997), fn → f in L1(�, F , P) as n → ∞.

(ii) For any A ∈ F , let Pn(A) → P(A) as n → ∞. Then, by the definition of strong
convergence in Jacka and Roberts (1997), the measures {Pn, n ∈ N} converge strongly to P,
which, by Theorem 2.1 of Jacka and Roberts (1997), implies that the measures {Pn, n ∈ N}
converge weakly to P.

Lemma 4.3. The function hr(e, ϕ) is harmonic for the process (Xt , ϕt )t≥0, and the process
(hr(Xt , ϕt )1(t < H0))t≥0 is a martingale under P(e,ϕ).

Proof. The function hr is continuously differentiable in ϕ, which, by (3.4), implies that hr

is in the domain of the infinitesimal generator G of the process (Xt , ϕt )t≥0 and that
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Ghr = 0. Hence, the function hr(e, ϕ) is harmonic for the process (Xt , ϕt )t≥0 and the process
(hr(Xt , ϕt ))t≥0 is a local martingale under P(e,ϕ). It follows that the process

(hr(Xt∧H0 , ϕt∧H0) = hr(Xt , ϕt )1(t < H0))t≥0

is also a local martingale under P(e,ϕ) (the equality of the processes is valid because

hr(XH0 , ϕH0) = 0

if the process (Xt , ϕt )t≥0 starts in E+
0 ). Since the process (hr(Xt , ϕt )1(t < H0))t≥0 is bounded

on every finite interval, it follows that it is a martingale under P(e,ϕ).

Proof of Theorem 2.1. By Lemmas 4.1(ii) and 4.3, the function hr(e, ϕ) is positive and
harmonic for the process (Xt , ϕt )t≥0. Therefore, the measure Phr

(e,ϕ) is well defined.
For a fixed (e, ϕ) ∈ E+

0 and t ≥ 0, and any T ≥ 0, let ZT be a random variable defined by

ZT = P(Xt ,ϕt )(H0 > T − t)

P(e,ϕ)(H0 > T )
1(t < H0).

Then, by Lemmas 4.1, 4.2, and 4.3, the random variables ZT converge in L1(�, F , P(e,ϕ)),
as T → ∞, to the random variable (hr(Xt , ϕt )/hr(e, ϕ))1(t < H0). Therefore, by (4.1), for
fixed t ≥ 0 and A ∈ Ft , we have

lim
T →∞ P(T )

(e,ϕ)(A) = lim
T →∞ E(e,ϕ)(1(A)ZT )

= E(e,ϕ)

(
1(A)

hr(Xt , ϕt )

hr(e, ϕ)
1(t < H0)

)
= Phr

(e,ϕ)(A),

which, by Lemma 4.2 (ii), implies that the restrictions of the measures (P(T )
(e,ϕ))y≥0 to Ft converge

weakly to the restriction of Phr

(e,ϕ) as T → ∞.

5. The negative-drift case: proof of Theorem 2.2

We again start by considering limT →∞ P(T )
(e,ϕ)(A) for A ∈ Ft . As in the oscillating case, we

need to find

lim
T →∞

P(e′,ϕ′)(H0 > T − t)

P(e,ϕ)(H0 > T )
.

We recall that β0 denotes the point at which the Perron–Frobenius eigenvalue α(β) of the
matrix Q − βV attains its global minimum (see Lemma 3.9), that α0 = α(β0) and g0 denote
the Perron–Frobenius eigenvalue and right eigenvector, respectively, of the matrix Q − β0V ,
and that G0 denotes the diagonal matrix diag(g0). We also recall the |E| × |E| matrix Q0,
given by (2.1) as

Q0(e, e′) = [G−1
0 (Q − α0I − β0V )G0](e, e′).

By Lemma 3.11, the matrix Q0 is a conservative irreducible Q-matrix. Let V −1Q�0 = �0G0

be the unique Wiener–Hopf factorization of the matrix V −1Q0, and let �0
2 = J�0J .
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Our aim is to prove the following lemma.

Lemma 5.1. (i) The function hr0(e, ϕ, t) is given by

hr0(e, ϕ, t) ≡ −e−α0te−β0ϕ[G0e−ϕV −1Q0
J1�

0
2r0](e) > 0, (e, ϕ, t) ∈ E+

0 × [0, ∞).

(ii) If

lim
T →∞

P(e′,ϕ′)(H0 > T − t)

P(e,ϕ)(H0 > T )
exists it is equal to

hr0(e′, ϕ′, t)
hr0(e, ϕ, 0)

.

To prove this, we will need some auxiliary lemmas. For α > 0, let V −1(Q0 − αI )�0
α =

�0
αG0

α be the unique Wiener–Hopf factorization of the matrix V −1(Q0 − αI ) and, for a fixed
(e, ϕ) ∈ E × R, let a function L(e,ϕ)(α), α ≥ α0, be defined by

L(e,ϕ)(α) =
[

1 −e−β0ϕG0e−ϕV −1(Q0−(α−α0)I )�0
α−α0

G−1
0 J2 1

α

]
(e). (5.1)

By Lemmas 3.3 and 3.12, for α > 0 we have

L(e,ϕ)(α) =
[

1 −e−ϕV −1(Q−αI )�αJ2 1
α

]
(e) = 1 − E(e,ϕ)(e−αH0)

α

=
∫ ∞

0
e−αt P(e,ϕ)(H0 > t) dt. (5.2)

Lemma 5.2. For any (e, ϕ) ∈ E+
0 , the function L(e,ϕ)(α) is analytic for Re(α) > α0.

Proof. By the definition in Lemma 3.3, the matrices �+
α and �−

α are analytic for Re(α) > 0.
Hence, the matrix �α is analytic for Re(α) > 0 and, therefore, by Lemma 3.12, the matrix
�0

α−α0
is analytic for Re(α) > α0. It follows that the numerator of L(e,ϕ)(α) in (5.1) is analytic

for Re(α) > α0 and, since

e−β0ϕG0e−ϕV −1(Q0+α0I )�0−α0
G−1

0 J2 1 = e−ϕV −1Q�J2 1 = 1,

the numerator of L(e,ϕ)(α) vanishes for α = 0. Therefore, L(e,ϕ)(α) is analytic for Re(α) > α0.

We adopt the convention that objects (e.g. vectors and matrices) with the superscript ‘0’ are
associated with the matrix Q0 and are defined in the same way as their counterparts associated
with the matrix Q.

Lemma 5.3. Let all nonzero eigenvalues of the matrix V −1Q0 be simple. Then, for some
nonzero constant c,

(i) (�0
α−α0

− �0)G−1
0 J2 1 ∼ c(α − α0)

1/2J1�
0
2r0 as α → α0,

(ii) L(e,ϕ)(α) − L(e,ϕ)(α0) ∼ c(α − α0)
1/2e−β0ϕ[G0e−ϕV −1Q0

J1�
0
2r0](e) as α → α0.

Proof. (i) Let g− be a nonnegative vector on E−. Then

g− =
m∑

k=1

akg
0,−
k
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for some constants ak , k = 1, . . . , m, where the vectors g
0,−
k , k = 1, . . . , m, form a basis in

the space of all vectors on E− and are associated with the eigenvalues of the matrix G0,−. By
Lemma 3.6(ii), the constant amin, which is associated with g

0,−
min = 1− in the previous linear

combination, is not 0. Thus,

�0,−
α g− = amin�

0,−
α 1− +

∑
{k=1,...,m : g

0,−
k �=g

0,−
min }

ak�
0,−
α g

0,−
k . (5.3)

By (3.6) and Lemma 3.11, the matrices Q0 and V define the oscillating case. Therefore,
by (4.4),

1+ −�0,−
α 1− ∼ − 1√−µ0V r0

α1/2(r0,+ − �0,−r0,−), α → 0. (5.4)

We must also determine the behaviour of �0,−
α g

0,−
k , k = 1, . . . , m (with g

0,−
k �= g

0,−
min ).

Since, by assumption, all nonzero eigenvalues of the matrix V −1Q0 are simple, it can be shown
(see Wilkinson (1965)) that there exist vectors vk,n, n ∈ N, on E such that

�0,−
α g

0,−
k − �0,−g

0,−
k =

∞∑
n=1

αn(v+
k,n − �0,−

α v−
k,n). (5.5)

From (5.3), (5.4), and (5.5), and because, by Lemma 3.5(v), �0,−
α → �0,− as α → 0, we find

that
�0,−

α g− − �0,−g− ∼ − amin√−µ0V r0
α1/2(r0,+ − �0,−r0,−), α → 0,

which proves part (i).

(ii) By the definition of L(e,ϕ)(α),

L(e,ϕ)(α) − L(e,ϕ)(α0)

= −
[
(α − α0)(1 −e−β0ϕG0e−ϕV −1Q0

�0G−1
0 J2 1)

αα0

+ α0(e−β0ϕG0(e−ϕV −1(Q0−(α−α0)) − e−ϕV −1Q0
)�0G−1

0 J2 1)

αα0

+ e−β0ϕG0e−ϕV −1Q0
(�0

α−α0
− �0)G−1

0 J2 1

α

+ e−β0ϕG0(e−ϕV −1(Q0−(α−α0)) − e−ϕV −1Q0
)(�0

α−α0
− �0)G−1

0 J2 1

α

]
(e).

The function α �→ e−ϕV −1(Q0−(α−α0)) is analytic for all α, which implies that

e−ϕV −1(Q0−(α−α0)) − e−ϕV −1Q0

tends to 0 as α → α0. Hence, by part (i) and the last equality, part (ii) holds.

Lemma 5.4. For a fixed (e, ϕ) ∈ E+
0 , the function L(e,ϕ)(α + α0), α > 0, is the Laplace

transform of e−α0t P(e,ϕ)(H0 > t).
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Proof. By (5.2), L(e,ϕ)(α), α > 0, is a Laplace transform and, therefore, by Theorem 1a of
Feller (1971, Chapter XIII.4), is completely monotone for α ≥ 0. In addition, by Lemma 5.2,
L(e,ϕ)(α) is analytic for α > α0. Since the analytic continuation of a completely monotone
function is completely monotone, it follows that L(e,ϕ)(α) is completely monotone for α > α0
and, therefore, is a Laplace transform of some measure on [0, ∞). By the uniqueness of the
inverse of the Laplace transform, it follows from (5.2) that, for α > 0, L(e,ϕ)(α + α0) is the
Laplace transform of e−α0t P(e,ϕ)(H0 > t).

Proof of Lemma 5.1. (i) By Lemma 4.1(i), the vector −e−ϕV −1Q0
J1�

0
2r0 is positive for any

ϕ ∈ R. Since the matrix G0 is positive by definition, it follows that the function hr0(e, ϕ, t) is
positive for any (e, ϕ, t) ∈ E+

0 × [0, ∞).

(ii) By Lemma 5.4,
L(e,ϕ)(α + α0)

α
− L(e,ϕ)(α0)

α

is the Laplace transform of the monotone function

t �→
∫ t

0
e−α0s P(e,ϕ)(H0 > s) ds − L(e,ϕ)(α0).

Therefore, by the Tauberian theorem (see Feller (1971, Chapter XIII.5)),

∫ t

0
e−α0s P(e,ϕ)(H0 > s) ds − L(e,ϕ)(α0) ∼ c


( 1
2 )

t−1/2e−β0ϕ[G0e−ϕV −1Q0
J1�

0
2r0](e)

as t → ∞. Then, for fixed (e, ϕ), (e′, ϕ′) ∈ E+
0 ,

lim
T →∞

∫ T −t

0 e−α0s P(e′,ϕ′)(H0 > s) ds − L(e′,ϕ′)(α0)∫ T

0 e−α0s P(e,ϕ)(H0 > s) ds − L(e,ϕ)(α0)
= e−β0ϕ

′ [G0e−ϕ′V −1Q0
J1�

0
2r0](e′)

e−β0ϕ[G0e−ϕV −1Q0
J1�

0
2r0](e) .

The statement in the lemma is now proved since, by l’Hôpital’s rule,

lim
T →∞

∫ T −t

0 e−α0s P(e′,ϕ′)(H0 > s) ds − L(e′,ϕ′)(α0)∫ T

0 e−α0s P(e,ϕ)(H0 > s) ds − L(e,ϕ)(α0)
= eα0t lim

T →∞
P(e′,ϕ′)(H0 > T − t)

P(e,ϕ)(H0 > T )
,

if the latter limit exists.

Lemma 5.5. The function hr0 is space–time harmonic for the process (Xt , ϕt )t≥0, and the
process (hr0(Xt , ϕt , t)1(t < H0))t≥0 is a martingale under P(e,ϕ).

Proof. The function hr0 is continuously differentiable in ϕ and t , which, by (3.5), implies
that it is in the domain of the infinitesimal generator A of the process (Xt , ϕt )t≥0, and that
Ahr0 = 0. Hence, the function hr0(e, ϕ, t) is space–time harmonic for the process (Xt , ϕt )t≥0
and the process (hr0(Xt , ϕt , t))t≥0 is a local martingale under P(e,ϕ). It follows that the
process (hr0(Xt∧H0 , ϕt∧H0 , t ∧ H0) = hr0(Xt , ϕt , t)1(t < H0))t≥0 is also a local martingale
under P(e,ϕ). Since the process (hr0(Xt , ϕt , t)1(t < H0))t≥0 is bounded on every finite interval,
it follows that it is a martingale under P(e,ϕ).
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Proof of Theorem 2.2. By Lemmas 5.1(i) and 5.5, the function hr0(e, ϕ, t) is positive and
space–time harmonic for the process (Xt , ϕt )t≥0. The measure P

h
r0

(e,ϕ) is therefore well defined.
For a fixed (e, ϕ) ∈ E+

0 and t ≥ 0, and any T ≥ 0, let ZT be a random variable defined by

ZT = P(Xt ,ϕt )(H0 > T − t)

P(e,ϕ)(H0 > T )
1(t < H0).

Then, by Lemmas 5.1, 4.2(i), and 5.5, the random variable ZT converges to

hr0(Xt , ϕt )

hr0(e, ϕ)
1(t < H0)

in L1(�, F , P(e,ϕ)) as T → ∞. Therefore, by (4.1), for a fixed t ≥ 0 and A ∈ Ft ,

lim
T →∞ P(T )

(e,ϕ)(A) = lim
T →∞ E(e,ϕ)(1(A)ZT ) = P

h
r0

(e,ϕ)(A),

which, by Lemma 4.2(ii), implies that the restrictions to Ft of the measures (P(T )
(e,ϕ))y≥0 converge

weakly to the restriction to Ft of P
h

r0

(e,ϕ) as T → ∞.
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