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Abstract

Let (X;);>0 be a continuous-time irreducible Markov chain on a finite state space E,
let v be amap v: E — R\ {0}, and let (¢;);>0 be an additive functional defined by
o = fot v(Xy)ds. We consider the case in which the process (¢;);>0 is oscillating and
that in which (¢;);>0 has a negative drift. In each of these cases, we condition the
process (X;, ¢:)s>0 on the event that (¢;);>0 is nonnegative until time 7" and prove weak
convergence of the conditioned process as T — oo.
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1. Introduction

The problem of conditioning a stochastic process to remain forever in a certain region has
been extensively studied in the literature. Many authors have addressed essentially the same
problem by conditioning a process with a possibly finite lifetime to live forever. An interesting
case is when the event that the process remains in some region is of probability 0, or, in terms
of the lifetime of the process restricted to the region, when the process has a finite lifetime with
probability 1. In that case, the process cannot be conditioned to stay in the region forever in
the standard way. Instead, this conditioning can be approximated by conditioning the process
to stay in the region for a long time (i.e. for a sequence of times tending to infinity).

There are many well-known examples of such conditionings in which weak convergence
of the approximating process occurs. For instance, Knight (1969) showed that the standard
Brownian motion conditioned not to cross 0 for a long time converges weakly to a three-
dimensional Bessel process; Iglehart (1974) considered a general random walk conditioned to
stay nonnegative for a long time and showed that it converges weakly; Pinsky (1985) showed
that, under certain conditions, a homogeneous diffusion on R conditioned to remain in an open
connected bounded region for a long time converges weakly to a homogeneous diffusion; and
Jacka and Roberts (1988) proved weak convergence of an It6 diffusion conditioned to remain
in an interval (a, b) for a long time.

However, weak convergence of the approximations does not always occur. There are
counterexamples in which a process conditioned to stay in a region for a long time either
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does not converge at all or does so, but to a dishonest limit. Bertoin and Doney (1994) and
Jacka and Warren (2002) gave examples of such processes.

In this paper, we are concerned with another example of the conditioning of a process to stay
in a region. We consider a finite-state space, continuous-time Markov chain (X;);>0 and an
associated fluctuating additive functional (¢;);>0. The aim is to condition the Markov process
(Xt, ¢1)r=0 on the event that the fluctuating functional stays nonnegative.

The process (¢;);>0 has three possible types of behaviour, in two of which — when it oscillates
and when it drifts to negative infinity — the event that it stays nonnegative is of probability 0.
We are interested in performing conditioning in these two cases.

A similar question was discussed in Bertoin and Doney (1994) for a real-valued random walk.
It was shown there that, under certain conditions, an oscillating random walk or a random walk
with a negative drift, conditioned to stay nonnegative for a long time, converges weakly to an
honest limit which is an h-transform of the original random walk killed when it hits 0. This
work presents the analogous result for the process (X;, ¢;)s>0.

The organization of the paper is as follows: the exact formulation of the problem and the
main results are given in Section 2, the notation and preliminary results used in the proofs of
the main theorems are given in Section 3, the proof of the result in the oscillating case is given
is Section 4, and the proof of the result in the negative-drift case is given in Section 5.

2. The problem and main results

Let (X;);>0 be an irreducible honest Markov chain on a finite state space E. Let v be a
map v: E — R\ {0} and suppose that both ET = v~1(0, 00) and E~ = v~!(—00, 0) are
nonempty.

Define the process (¢;);>0 by

t
§0z=(,0+/ v(Xy)ds, ¢ €R.
0

For any y € R, let
Ef = (E x (y,00) U(ET x {y})

and let Hy = inf{t > 0: ¢; < 0}. The aim is to condition the process (X, ¢;)s>0, starting in
E0+, on the event { Hy = 00}.

There are three possible cases, depending on the behaviour of the process (¢;);>0. When the
process (¢ )>o drifts to oo, the event { Hy = 0o} is of positive probability, which implies that the
conditioning of the process (X;, ¢;);>0 on it can be performed in the standard way. However,
when the process (¢;);>¢ oscillates or drifts to —oo, the event { Hy = oo} is of probability 0, and
the conditioning of (X, ¢;);>0 on it cannot be performed in the standard way. We concentrate
on the two latter cases and define the conditioning of (X;, ¢;);>0 on {Hy = oo} as the limit as
T — oo of the conditioning of (X;, ¢;);>0 on {Hp > t}.

Let P(, 4y denote the law of the process (X;, ¢;);>0 starting at (e, ¢), and let E(. ) denote
the expectation operator associated with P, o). Let P(e, ) T > 0, denote the law of the
process (X, ¢;);>0 starting at (e, @) € Ear and conditioned on {Hy > T}, and let (¥;);>0 be
the natural filtration of (X;);>0. We are interested in the weak convergence of the restrictions
of (PEQP))TzO to Fas T — oo.

Let Q denote the conservative irreducible Q-matrix of the process (X;);>0 and let V be
the diagonal matrix diag(v(e)), e € E. Let y-1 QOTI' = I'G be the unique Wiener—Hopf
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factorization of the matrix V! 0 (see Barlow er al. (1980) or refer to Lemma 3.4, below). Let
J, Ji, and J, be the matrices

I 0 I o 0 0
J=(0 —1>’ Jl:(o 0)’ Jz:(o 1)’

and let the matrix I'; be given by I', = JT' J. Throughout, I denotes the identity matrix, and
M(i, j) = [M](, j) is used to denote the (i, j)th entry of a matrix M. In J; and the first row
of J, I is of order |E™|, while in J> and the second row of J, it is of order |E~|.

We now state our main result in the oscillating case.

Theorem 2.1. Suppose that the process (Ea,),>0 oscillates. Then, for a fixed (e, ¢) € E T and
t > 0, the restrictions of the measures (P( . ))Tzo to F; converge weakly, as T — o0, to the
restriction of the probability measure P?g’ ) deﬁned by

E(e,) (1(A)hr(Xy, ¢5)1(s < Ho))
hr(ea (P)

where hr (e, y) is a positive, harmonic function for the process (X,, ©)i>0 given by hy(e,y) =
[eV" Q11 I'yr]e), (e, y) € E xR, for avector r satisfying V— Qr =1, and 1(S) denotes
the indicator function of a set S.

(e(p)(A) ’ 520, Ae}‘:&’

Let Bp be the point at which the Perron—Frobenius eigenvalue «(8) of the matrix Q — 8V,
B € R, attains its global minimum (see Lemma 3.9, below). Let ap = «(Bp) and go be the
Perron—Frobenius eigenvalue and right eigenvector, respectively, of the matrix Q — BV, and
let G be the diagonal matrix diag(go). Let Q° be the |E| x |E| matrix with entries

0%e, ¢) =[Gy (Q — aoI — BoV)Gol(e, €), e,¢ € E. 2.1)

As we shall see 1ater the matrix Q° is a conservative irreducible Q-matrix (see Lemma 3 11,
below). Let V! Q°T? = I'°G? be the unique Wiener—Hopf factorization of the matrix V ~! Q°
and let I'g = JT°J. We can now state our main result in the negative-drift case.

Theorem 2.2. Suppose that the process (¢;)i=0 drifts to —oo. For fixed (e, ¢), (¢/, ¢') € Ef
andt > 0, if all nonzero eigenvalues of the matrix V=" Q° are simple and if
i P(e/,w/) (Hy>T—-1)
T—o0 P(e’(p)(H() >T)

exists, then the restrictions of the measures (PE ) )T>0 to F; converge weakly, as T — oo, to
the restriction of a probability measure P 0 that is defined by

Ee, w)(l(A)hrO(Xs» ws, D1(s < H()))
hpo(e, @, 5)

Py’ (A) = s>0, Ae %,

where h,o(e, y,t) is a positive, space—time- harmomc function for the process (X, ¢1)i>0
given by hpo(e,y, t) =e e —Poy[Ge YV o’ J]I'O N(e), (e,y,1) € E x R x [0, 00),
and V~ Q0 0=1.

Note that Ph’ and P r0 ) are h-transforms of the transition kernel for the process (X;, ¢;):>0
killed when the process ((Pt)t>() crosses 0.
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3. Notation and preliminary results

The purpose of this section is to introduce notation, recall some results, and prove some
others that are needed for the proofs in the subsequent two sections. The proofs are fairly
straightforward and are included for the sake of completeness.

Lemma 3.1. Let Q be an irreducible essentially nonnegative matrix, let V be a diagonal
matrix, and let § € R. Then the matrix Q — BV is also an irreducible essentially nonnegative
matrix.

Proof. The proof follows directly from the definition of an irreducible essentially nonnega-
tive matrix (see Seneta (1981)).

The following three lemmas were proved in Barlow et al. (1980). We state them here in the
notation we intend to use.

Lemma 3.2. Forafixeda > 0, there exist a unique pair (11}, 1)), where N isa |E~| < |EY|
matrixand I isa |E™ | x| E~| matrix, and Q-matrices G} and G; on E¥ X Et and E~ xE~,
respectively, such that if

(1T M- _(GS 0
ro‘_(l'[;' I) and Ga—<0 —G; )

then Ty, is invertible and 1"071 V’I(Q — oIy, = Gy. Moreover, l'[;[r and 1, are strictly
substochastic.

Recall that the subspace E;f, y € R, is given by Ef = (E x (y,00)) U (E* x {y}). Let
ET, ye R, be the subspace ET = (E x (=00, y)) U(E™ x {y}), and let Hy, y € R, be the
first crossing time of the level y by the process (¢;);>0, defined by

inf{r > 0: ¢, <y} if (X;, @1)r>0 starts inE",

Y= inf{t > 0: ¢ > y} if (X;, ¢1)r>0 starts inEy_.

Lemma 3.3. Let o > 0 be fixed. Then

B0 *™1(Xpy = €)) =TS (e, €), (e,¢) e E- x ET,
Ee.0) (e 1(Xp, =€) =T (e, ¢), (e,e) e EY x E™,
B0 " 1(Xn, =€) = [C](e. ), (e.e)) e EY x ET, y >0,

Eeo(e " 1(Xp_, =) =[e*%](e.¢), (e.é) e E-xE™, y>O0.

Lemma 3.4. There exist a unique pair (I, II7), where T isa |E~| x |E™| matrix and TI~
isa |EY| x |E~| matrix, and Q-matrices Gt on ET x ET and G~ on E~ x E~ such that

vlor =T6, (3.1)

I O Gt 0
F:<H+ I) and G:(0 —G‘)'

where
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Moreover, Tt and TI~ are substochastic and
Pio)(Xay =€) =T (e, ), (e,ye ET x ET,
Peoy(Xuy =€) =T1" (e, €), (e,ye EY x E™,
Peo)(Xn, =€) =[e"%"1(e,¢), (e,e) e EF x EY, y =0,
Peo)Xu, =€) =[e% 1e.¢), (e.e)eE" xE™, y>0.
Lemmas 3.2 and 3.4 are said to yield the Wiener—Hopf factorizations of the matrices
V-1(Q —al), a > 0,and V! Q, respectively.

The statements in the following lemma can easily be deduced from Lemmas 3.2, 3.3, and 3.4,
so we omit their proofs.

Lemma 3.5. (i) The matrices I and I1™ are positive.

(ii) If at least one of the matrices I and I~ is strictly substochastic then the matrices
I—O 0O, I—-010", and T are invertible and

I I-mn-nohH-! I -oto)~!
“\-nfg-nohH!t g-mta)!

(iii) The matrices Gt and G~ are irreducible Q-matrices.
(iv) GT and G~ are conservative if and only if 1T and II~ are stochastic, respectively.
W) limgo Iy =T.

(vi) Forany y > O and (e, ¢) € EO+ NES, oranyy <0and (e, ) € E; N E;r
Peop(Xn, =€, Hy < Hy) >0 and 0 <P, (Hy < Ho) < 1.
(vii) For any (e, ¢) € Ef and e’ € E~, orany (e, ¢) € E; and e’ € ET,
Pe.o)(XH, = €', Hy < 00) > 0.

(viii) For any (e, 9) € E x Rand T > 0, P(¢ 4)(Ho > T) > 0.

We now introduce vector notation that will be used in the sequel. For any vector g on E, let
g1 and g~ denote its restrictions to ET and E~, respectively. We write the column vector g as

= (&)
8
and the row vector g as u = (u™, ™).
It follows from Lemmas 3.2, 3.3, and 3.4 (see Barlow et al. (1980)) that the matrix
V~1(Q — aI) cannot have strictly imaginary eigenvalues, and that there exists a basis B (c)
in the space of all vectors on E such that if g(«) is in B(«), then

(VH(Q —al) = Ma) D g(a) =0,

for some eigenvalue A(«) of V~-1(Q — aI) and some k € N. The number of vectors in the
basis B («) associated with the same eigenvalue is equal to the algebraic multiplicity of that
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eigenvalue. Let N (o) and & (&) be the sets of vectors g (o) € B(«) associated with eigenvalues
with positive and with negative real parts, respectively. Then

g

gla) € N(a) = gla) = <H+g+(a)) , g(a) € Pla) = gla) = (

M, g~ (a))
g (@ )
3.2)
The sets A () and P (or) contain exactly | E™| and, respectively, | E ™| vectors and the vectors
g7 (a) and g~ (@), for all g(a) € N () and, respectively, g(a) € £ (a)), form a basis in the
space of all vectors on ET and, respectively, E~. The eigenvalues of V~!(Q — ) with
strictly negative and with strictly positive real parts coincide with the eigenvalues of G} and,
respectively, -G, .
The Wiener—Hopf factorization (3.1) of the matrix V~! @ implies that

Gtft=aft ifandonlyif V! I — r
f f y 0 mf+ m )

G g =—-Bg~ ifandonlyif V~'Q (H;g_> iy (H_g_> .

g
Letaj, j = 1,...,n, be the (not necessarily distinct) eigenvalues of the matrix GT, and
let —B, k = 1,...,m, be the (not necessarily distinct) eigenvalues of the matrix G~. By

Lemma 3.5(iii), G* and G~ are irreducible Q-matrices, which implies that

Omax = max Re(x;) <0 and — Buyin := max Re(—pr) = — min Re(fr) <0
1<j=<n 1<k<m I1<k<m

are simple eigenvalues of G and G, respectively. Hence, it follows from (3.3) that all

eigenvalues of V! Q with negative and positive real parts respectively coincide with the

eigenvalues of Gt and —G™.

By Jordan normal form theory, there exists a basis 8B, in the space of all vectors on E,
containing exactly n = |E*| vectors, fi, f>, ..., fa, such that each fi»j =1,...,n,1is
associated with an eigenvalue «; of V~1Q for which Re(a j) < 0, and containing exactly
m = |E™| vectors, g1, &2, ..., &m, such that each gr, k = 1,..., m, is associated with an
eigenvalue By of V! Q for which Re(8x) > 0. The vectors f1+, f2+, ..., f;F form a basis
N in the space of all vectors on E™ and the vectors g, -8 .-, 8, formabasis # in the
space of all vectors on E~.

Let fmax and gmin be the eigenvectors of y-1 0 associated with the eigenvalues opax and
Bmin, respectively. Then f;F  and &min are the Perron—Frobenius eigenvectors of the matrices
G™ and G, respectively.

Lemma 3.6. (i) The vectors fmax and gmin are the only positive eigenvectors of the matrix
v-1Q.

(ii) There are no nonnegative vectors on E* or E~ that are linearly independent of the vector
Sibax OF 8 iy Tespectively.

Proof. (i) Let f be a positive eigenvector of the matrix V~! Q. Then, by (3.3), either f
is an eigenvector of G or f~ is an eigenvector of G~. The only positive eigenvectors of G
and G~ are f*_ and gin> fespectively. Hence, either

max
fr;l‘ra H_g_'
f= I'[+fi = fmax oOr f= ) = gmin-
max

8min
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Since, by Lemma 3.5(i), the matrices I+ and I~ are positive, we see that fiax and gmin
are positive, which completes the proof.

(i) Let f be a nonnegative vector on E™ independent of f . Since
+
= {f1+a f2 sttty fn+}
is a basis in the space of all vectors on E™, the vector f T has a decomposition

f+ = Z aj f+7
U=l [ # fiux}

for some coefficients a;, j =1, LN
Let fmax be the left Perron—Frobemus eigenvector of GT. Then fél;;e’ G* _ gomaxt f,L{fx
and fhh fi7=0forall fi # fif.,j=1,....n Thus, foranyr > 0,
L+ .tG* I+ .tG*
m;)—( ' f+ Z mzy_( ! f = Z oz/t maxfJr
j=ln: ff#fntx} {j=l.n: ff#fridx}

. _ 1, :
however, this is a contradiction because f* and fm';t( are nonnegative and

L4+ G+ 1,
he!C f = etmad o4 S0

Therefore, the vectors f* and f;} . are not linearly independent.

Let the matrix F(y), y € R, be defined by

Jie¥¢ =0, y >0,
F()’) = G G
Je¥” =", y <O.

Then we have the following result.

Lemma 3.7. Foranye,e' € E,
P(e,(p)(XHO = e/v HO < OO) = [rF(_(p)](e» e/)» @ 7& 01
0 I
Peoy(Xuy =€, Hy <00) =[I —Ts](e,e') = [(rﬁ 0 )} (e, €).

Proof. The lemma follows directly from the definition of the matrices I', I';, and F (¢).

Let § be the infinitesimal generator of the process (X;, ¢;);>0 and let Dg denote its domain.
Let a function f(e, ¢) on E x R be continuously differentiable in ¢. Then f € Dg and

$f = (Q + Vai>f, (3.4)
@
where

Qf(e.o.) =Y Qle.e)f(¢,9),

e'eE

—f(e @, 1) =V(e,e) f(e ®).
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Similarly, let 4 be the infinitesimal generator of the process (X;, ¢, t);>0 and let D 4 denote
its domain. Let a function f (e, ¢, ) on E x R x [0, 0co) be continuously differentiable in ¢
and ¢t. Then f € D4 and

a0
Af = <Q+V@+§>f. 3.5)

The behaviour of the process (¢;);>0 is determined by the matrices Q and V. More precisely,

(¢r)i>0 driftstoco <= uV1>0
<= G7 is conservative and G is not conservative,

(¢1)r=0 oscillates <= uV1=0 3.6)
<= G and G~ are conservative, '

(¢r)rs0 driftsto —oco <= uV1<0

<= G~ is conservative and G is not conservative,

where p denotes the invariant measure of the process (X;)>0.

Let f1 = fimax and g1 = gmin be the eigenvectors of y-1 Q associated with the eigenvalues
max and Bmin, respectively. Then, in the positive-drift case fiax = 1 # gmin and in the
negative-drift case gmin = 1 # fmax, and in both cases the basis 8B in the space of all vectors on
Eisequalto{f;, j=1,...,n; g, k=1,...,m}. Inthe oscillating case, fmax = &min = 1
and the equation V~! Qx = 1 has a solution. If r is a solution then, by Jordan normal form
theory, r is linearly independent of the vectors {f;, j = 1,...,n; g, k = 1,...,m} and
B={Lr,fj,j=2,...,n; 8, k=2,...,m}is abasis in the space of all vectors on E.

The following lemmas are concerned with the Perron—Frobenius eigenvalue of the matrix
QO — BV. For any B € R, let a(B) be the Perron—Frobenius eigenvalue of the matrix
Q — BV and let u'(B) and u*(B) be the associated left and right eigenvectors such that
lu'(B)|l = |u"(B)|| = 1 in some norm in the space RIEI A striking property of the eigenvalue
a(B) is that it is a convex function of 8.

Lemma 3.8. Let 8 € Randlet o(B) be the Perron—Frobenius eigenvalue of the matrix Q — V.
Then a(B) is a convex function of B and is therefore continuous. It attains its global minimum
and has two not necessarily distinct zeros, dmax < 0 and Bmin > 0.

Proof. Let r(A) denote the Perron-Frobenius eigenvalue of an essentially nonnegative
matrix A. Since Q is essentially nonnegative it follows from Cohen (1981) that, for any
x,yeRandany?,0 <t <1,

r(=0(@—-xV)+1(Q—yV) = -0r(@—xV)+1r(Q —yV).

Hence, () is a convex function and is therefore continuous.

For a g with | 8] sufficiently large, some rows of Q — BV are nonnegative, which implies that
there exists no positive vector f such that (@ — V) f < 0. Hence, by the Perron-Frobenius
theorem (see Theorem 2.6 of Seneta (1981)), a(B) > 0 for sufficiently large | 3|.

Suppose that @(8) = 0. Then there exists a positive vector f such that (Q — V) f = 0.
Since, by Lemma 3.6(i), there exist exactly two (not necessarily distinct) eigenvalues of V=! Q,
amax and Bmin, whose associated eigenvectors are positive, it follows that amax and Bpin are
the only zeros of a(B).

Therefore, the function « () is continuous, for | 8] sufficiently large it is positive, and it has
either one or two zeros. All of these together imply that «(8) attains its minimum.
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Lemma 3.9. Let a(B) be the Perron—Frobenius eigenvalue and let ul(ﬂ) and u*(B) be the
unit left and right Perron—Frobenius eigenvectors of the matrix Q — BV. Then a(B) is a
differentiable function of B and

do o _ _u(BVu'(B)
g dWBurp)

In addition, there is a unique By € (max, Pmin) Such that (de/dB)(Bo) = 0, g = a(Bo) is
the global minimum of the function a(B), and

<0 i B <P,
da )
d—(ﬁ) =0 ifB=po,
B .

>0 if B> Po.

Proof. By multiplying the equality

(@ —BV)u' (B+h) —hVu'(B+h)
= (a(B+h) —a(B)u’(B+h) +a(B)u’(B+h)

by ul(ﬂ )/ h (on the left) and letting &4 — 0, we find that o () is a differentiable function of g.
By Lemma 3.8, it is also convex and attains its minimum. Hence, there exists a unique Sg
such that «(Bp) is the global minimum of «(8) and (de/dB)(Bo) = 0. Also by Lemma 3.8,
a(B) has two zeros, ¢max < 0 and Bnin > 0. Hence, By € (¢max, Bmin) When omax 7% Bmin and
Bo = dtmax = Bmin When dmax = Bmin-

It remains to show that «(8) is strictly monotone on (—oo, o] and [Bp, 00). Let a(B) be
the Perron—Frobenius eigenvalue of the matrix @ — BV, and first suppose that fp = 0. Then
a(Bo) = 0and, therefore, «(8) > 0. By Lemma 3.6(i), for « > 0 the only positive eigenvectors
of V1 (Q —al) are fiax (o) and gmin (@), which are associated with the eigenvalues omax (o)
and Bmin (@), respectively. Hence, for a fixed & > «, there exist only two values of 8, namely
max (@) and Bin(a), such that « is the Perron—Frobenius eigenvalue of @ — V. Since
Imax (@) < 0 and Bpin(e) > 0, it follows that «(B) is strictly monotone on both intervals
(—00, 0] and [0, 00).

Now let Bg # 0 and Qp = Q — BoV — apl. The matrix Qg is essentially nonnegative
and (by Lemma 3.1) irreducible; so is the matrix Qo — BV, for any B € R. Let op(8) be the
Perron—Frobenius eigenvalue of Qg — BV . Then ag(B) = (B + Bo) — «p. Since a(B) attains
its global minimum at 8 = By, it follows that «g(B) attains its global minimum, i.e. 0, at 8§ = 0.
Therefore, by the argument for the By = 0 case, ap(B) is strictly monotone on (—oo, 0] and
[0, 00), which implies that () is strictly monotone on (—oo, Bo] and [Bo, 00).

The sign of the unique argument, By, of the global minimum of the function «(8), whose
existence we have just proved, is found to depend on the behaviour of the process (¢;);>0. This
is the result of the next lemma.

Lemma 3.10. (i) In the positive-drift case, o > 0 and oy < 0.
(ii) In the oscillating case, By = 0 and og = 0.

(iii) In the negative-drift case, By < 0 and ag < 0.
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Proof. In the drift cases amax 7# PBmin and, therefore, by Lemma 3.9, B9 € (¢max, Bmin)-
In the positive-drift case, by (3.6), amax = 0 and Bpin > 0 and, therefore, By > 0. In the
negative-drift case, by (3.6), Bmin = 0 and amax < 0 and, therefore, By < 0. Since, in both
cases, the function () has two distinct zeros, its global minimum «q is negative.

Finally, in the oscillating case, by (3.6), max = Bmin = 0 and, therefore, Sy = 0. Thus,
the function o(f) has exactly one zero at 8 = 0 and, since by Lemma 3.8 it attains a global
minimum, it follows that o(8) attains its global minimum at Sy = 0 and that &g = a(8g) = 0.

Lemma 3.11. The matrix Q° given by (2.1) is a conservative irreducible Q-matrix. In addition,
if n° is a vector on E such that p° Q° = 0, then pn°v 1 = 0.

Proof. Since the matrices I and V are diagonal and the vector g is positive, the matrix Q°
is essentially nonnegative. In addition, Q°1 = 0.

By Lemma 3.1, the matrix Q@ — gl — oV is irreducible, which implies that the matrix

e/ (@—al=hoV) g posmve for all # > 0. Since the vector g is positive, it follows from the
deﬁmtlon of QO that e’ 2° is positive for all 7 > 0 and that the matrix QY is irreducible.

Let go be the left Perron—Frobenius eigenvector of the matrix Q — BoV, and let u° be a
vector on E with entries uo(e) = go(e)go(e) e € E. Then p Q0 = 0 and, by Lemmas 3. 9
and 3.10, u°V 1 = 0. Since any vector v that satisfies v @° = 0 is a constant multiple of u°,
the proof of the lemma is complete.

We recall the matrix Go = diag(go). Since the vector gg is positive, the matrix G is
invertible.

Lemma 3.12. Foro > 0, let
V(@ —-aDT, =T,G, and V'(Q°—aDr?=12G°
be the Wiener—Hopf factorizations of V"' (Q — aI) and V~( Q0 — o), respectively. Then

G)_,, =Gy (Go — BoD)Go and T_, =Gy'TeGo, o> 0.

oa—0op

Proof. By the definition of Q° and by the Wiener—Hopf factorization of V~1(Q — o),
a > 0, given in Lemma 3.2, we have

(0 — (@~ a0)) = G; ' TaGo(Gy ' (Gu — PuD)GO)Gy ' T, Go. (3.7)
Let Ga' and G, be the restrictions of Gg to E * x E™T and, respectively, E~ x E~. Then

. _(GHNGE - DGy 0
Gy (Gu — poD)Go = ( ’ 0 ' —(Gy) (G, +ﬁol>Ga>

Suppose that (G(J)r)’l(G;[r — /3()1)66r and (Gg)’l(G; + Bol)G,, are Q-matrices. Then,
by Lemma 3.2, (3.7) is the Wiener—Hopf factorization of vl (QO — (@ —ag)I) fora > 0,
and, by the uniqueness of the Wiener—Hopf factorization,

G)_y, =Gy (Go — po)Gy and TY_, = G;'T4Go, a > 0.

o—ap

Therefore, all we have to prove is that (GS‘)_l (G} — /3()I)G(‘)|r and (Ga)_1 (G, +BoD)Gyy are
Q-matrices.

Let the function h be defined by h(e, ¢, 1) = e *'e P%gy(e). Then h is continuously
differentiable in ¢ and ¢ and, by (3.5), it is in the domain of the infinitesimal generator + of the
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process (Xy, ¢r, 1)1>0, with Ak = 0. It follows that the process (hR(X/aH,, @iaH,, t A Hy))i>0
is a positive martingale. By Fatou’s lemma,

E(e,(ﬂ)(e_aoH’veiﬂO(pH»" go(Xp,)) < e P? g0 (e),
and, because gy is positive,
E(e,p) (e "™ g0(X1,)) < Ee,p) (6™ go(Xp,)) < e P g (e)

for o > .
By Lemma 3.3, for ¢ = 0 and y > 0, we have

echer ga_ )

—Boy —aH, _
e " go(e) = E0 (™" g0(Xn,)) = ( P
e % gy

. . . + .
which implies that e?(Ga —FoD) go+ < go+ , componentwise. Hence, because

o (Gi-hDgt _ o
lim . =0 = (G - poDgy

we have (G;(|r — Bol) gar < 0 and, therefore, because (G(J)r y~is positive,
(GHNGE =BG 1T = (G (G — poD)gg <0

and (G{)™(GJ — BoI)G{ is a Q-matrix. It can be proved that (G;) ™' (Go — Bol)G isa
Q-matrix in the same way.

Theorem 3.1. For « > 0, let omax() and PBmin(a) be the eigenvalues of the matrix
V-1(Q — «I) with maximal negative and minimal positive real parts, respectively, and let
Jmax (@) and gmin (@) be their associated eigenvectors, respectively.

Then, in the oscillating case, there exists an ¢ > 0 such that, for 0 < o < &, and some

constants d,, n = 2,3, ..., and ¢ > 0, we have
Omax (@) = —;al/z +dra +dz®? 4. = —;al/z + Omax (@!/?)
max —ﬂvr m max 9
1 1
Bmin(@) = ———=0'? + dya — d30** + - = ———a'* + Opin(@'/?),

N=pVr —uVr

where |®max(oz1/2)| < ca and |®min(a1/2)| < ca.
For suitable vectors va, W, Emax(@'/?), and & min(a'/?), the vectors fiax () and gmin(c)
can be chosen to be

1 1
fmax(a) = 1—chl/2r +oavy+ - = 1—m0€1/2r + Emax(C’ll/z),
1 1
gmin(@) = 1+W(¥1/2r +owy+ - = 1—}—%0[1/21' + Emin(dl/z),

where V-10r = 1 and | Emax(@'/?)|| < av and || Emin(@'/?)|| < aw for some positive
scalars v and w.
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In the negative-drift case, there exists an ¢ > 0 such that, for O < « < ¢, and some constants
a, and b,, n € N, we have

Omax (@) = Omax + a1a + ara® + -+ and Bmin (@) = b1 + bra® + by + -,
and the vectors fmax (o) and gmin(a) can be chosen to be
Jmax (@) = fmax + vy +a2v2+"' and  gmin(a) = 14+aw; +012w2+"' ,

where v, and w,, n € N, are constant vectors.
An analogous result holds in the positive-drift case.

Proof. The eigenvalues of V1 (Q — aI) converge to the eigenvalues of V! Q as o — 0.
Thus, &max (¢) = ¥max and Bmin (@) = Bmin as @ — 0.

In the drift cases, by (3.6), ¢max # Pmin- Hence, amax and Bmin are simple eigenvalues
of V1 Q, which implies, for a sufficiently small ¢ > 0, that omax (@) and Bmin (o), and also
JSmax (@) and gmin (@), can be represented by convergent power series (see Wilkinson (1965)).
In addition, in the positive-drift case amax = 0 and finax = 1, and in the negative-drift case
Bmin = 0 and gmin = 1. This proves the theorem for the drift cases.

In the oscillating case, by (3.6), 0 is an eigenvalue of the matrix V~' Q with algebraic
multiplicity two. Hence, there exists an ¢ > 0 such that, for 0 < |x| < ¢, there exist two
eigenvalues of V~1(Q — o), namely amax () and Bin (), that converge to 0 as o — 0. In
addition, either

Omax (@) = @1 + ara® +aza® + - -,

2 3 (3.8)
Bmin (@) = b1 + bra”™ +bzo” + -+ -,
for some constants ay and by, k € N, or
Omax (@) =d1a1/2+d205+d3013/2+"' s 3.9
.Bmin(a)z—d]()ll/2+d2(x—d3(x3/2+... , :
for some constants di, k € N. We shall show that (3.8) is not possible.
For any @ > 0,
(Q — amax (@) V) frmax (@) = & frnax(ct). (3.10)

Since, by Lemma 3.1, the matrix Q@ — amax V is irreducible and essentially nonnegative
and the vector fpax () is positive, it follows that « is the Perron—Frobenius eigenvalue of
0 — amax (@) V. Similarly, « is the Perron—Frobenius eigenvalue of Q — Bmin(a) V.

Let B € R and consider the matrix Q@ — BV and its Perron—Frobenius eigenvalue «(8) and
eigenvector u(f). The eigenvalue «(8) is simple and converges to a simple eigenvalue of the
matrix @ as B — 0. Thus, for |B| < 4,

— 2 ...
a(B) =co+ci1B +;:zﬁ e (3.11)
u(f) =1+pvi +pv2+---,

for some constants cg, kK € N U {0}, and some vectors vg, k € N, on E.

Suppose that the process (¢;);>0 oscillates. By Lemmas 3.9 and 3.10, the eigenvalue «(8)
attains its global minimum, 0, at § = 0. Hence, «(0) = (de/dB)(0) = 0, which gives
co = ¢1 = 0 and, therefore,

a(B) =B+ e3P Feapt 4. (3.12)
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By substituting «(8) and u () into the equation
(Q — BV)u(p) = a(pu(p),
and by equating the coefficients of A and A2 on each side of the resulting expansion, we obtain
vigu =1, Qvy — Vo, = ol (3.13)

It follows that ¢ # 0. (If co = O then y-1 Qv; = vy, which, by Jordan matrix theory, is
not possible since 0 is the eigenvalue of V~! @ with algebraic multiplicity two.)
Suppose that (3.8) holds. Then it follows from (3.8) and (3.10) that, for |«| < &,

o = ar(Otmax) = €20y (@) + €30y (@) + -+
=cz(aloz+a2a2+~~~)2+C3(a1a+a2a2+---)3 + -

= cza%az + const.oz3 + -,

which is not possible for every |o| < ¢. Hence, (3.8) is not true and, thus, (3.9) holds.

Substituting omax (@) and Bpin (@) from (3.9) into (3.12) gives d12 = 1/c;. By Lemmas 3.9
and 3.10, «(0) = 0 is the minimum of the function «(8), which implies that «(8) > 0 for all
B € R, and, by (3.12), that c; > 0. By multiplying the second equality in (3.13) by p on the
left, we obtain c; = —uVv;/ul = —pu Vv (because p 1 = 1). Therefore, the statement in
the theorem follows from (3.9) and (3.11).

4. The oscillating case: proof of Theorem 2.1

We start by considering limr_, P(ETL)(A) for A € ¥. By Lemma 3.5(viii), the events
{Ho > T}, T > 0, are of positive probability. Thus, for0 < ¢ < T and A € #,

p(M

E(e,p)(1(A) P(x, o) (Ho > T — 1) 1(Hy > 1))
(e, .

P(e,w) (HO > T)

y(A) =P g(A| Hy>T) = 4.1

We first show that
P o (H T —1t
G o) (Ho > )
T—00 P(e’(p)(Ho >T)

exists by looking at the asymptotic behaviour of the function t = P ) (Hp > ).

In the oscillating case, by (3.6) and Lemma 3.5(iv), O is an eigenvalue of V! Q with
algebraic multiplicity two and geometric multiplicity one. Therefore, there exists a vector r
such that V! QOr = 1. Since the choice of such vector is not relevant in the present work, we
shall always refer to it as if it were fixed.

Recall that u is the invariant measure of the process (X;);>0.

Lemma 4.1. For any (e, ¢) € E(')",

() gy > 1)~ — et PV O are), 1= oo,
(ii) hr(e, 9) = —[e ¥ € JiTar](e) > 0.
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Proof. (1) The statement is proved by applying Tauberian theorems to the Laplace transform,
1-— E(e,(p)(e_“HO)/a, of P y)(Ho > t). By Lemmas 3.2 and 3.3, for @ > 0 and (e, ¢) € ET,
we have

_ _ —1 _ _ -1
1 —E( ) _ [e(pvlgl—rQJu}(e)_ [e oVl (Q-al) _e—gVT'Q
o

Lo J> 1} (e).

4.2)

Let Bmin (@) be the eigenvalue of vl (@ —aI) with minimal positive real part and let gmin (c¢)

be its associated eigenvector. Then, by (3.2), Il g . (o) = g$in (o) and, by substituting
Zmin () from Theorem 3.1, we obtain

o o

L P TNV 2 S S
o —uVr —uVr ¢
1 |
+ B @)+ TG B @) 4.3)

for sufficiently small «.
By Theorem 3.1, (1/«) =T («!/?) is bounded in norm, and, by Lemma 3.5(v),

min
n, -0 -0 asa—0.
Thus, it follows from (4.3) that
1" -, 1~ 1 1
— /2 + - —
— ¢  ~ rT—I"r"), oa— 0. 4.4
. Ve il ) (4.4)
Furthermore, since
1-r, 1 1" —-M,17)/a rt—Tr™
—0[']2 = <( 0‘1 )/ ) and Jlrzr = ( y
o

we have

_v191-Tyr1 1 1 _oy-l
e—9V'0 d ~_ a 2e= V"2 I Tyr, a — 0.
o NaA%% 2
The function a > e—¢V (@D jg analytic for all ¢ and, by Lemma 3.5(v), I'y, — T as
o — 0. Hence, the second term on the right-hand side of (4.2) is bounded for small @ > 0.
Therefore, for any (e, ¢) € E x (0, 00),

1 —E( ) (e*") 1 12—Vl Q
. ~N—_—— e I'rrl(e), oa — 0.
. = JiTorl(e)
The assertion of the lemma now follows from the Tauberian theorem (see Feller (1971,
Chapter XIIL.5)).

(i) We give only the sketch of the proof. For the details, see Najdanovic (2003) or refer to
Jacka et al. (2005).

For any y € R, let the matrices A, and Cy be components of the matrix Ve given by

eiyvfl Q _ (Ay B}') )
Cy Dy
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Then, for any ¢ € R,

+ — —
V0 o — Apy(r™—I7r7)
© Jibor <C¢(r+ —mr))

The proof of the lemma consists of first showing that the vectors A, (rt — O r7) and
C,(r* —II"r~) have the same constant sign, which implies that the function 4, has a constant
sign. Then we deduce from part (i) that 4, must be positive.

By ordinary matrix algebra and the equalities V' Cr =y +yland I~ 1~ =17, itcan
be shown that, for any ¢, y € R, the vector A, (rt — II"r ™) satisfies the equality

(Ap(Ay —TI"C A DA, - r ) = AT =TT r7).

In addition, it can be shown that the matrix A,(A, — II"C y)_lA(zl, @ # y, is positive

and that its Perron—Frobenius eigenvalue is 1. The last equality then implies that the vector

Ay (rt — II™r7) is its Perron-Frobenius eigenvector and therefore has a constant sign.
Furthermore, it can be shown that the matrix C (pA(;l is positive. Hence, because

Cort =T r7) =CyA Ay (rt =T r7)

and Aq,(rJr — II"r™) has a constant sign, we deduce that the vector Cy, (rt — I~ r7) has the
same constant sign. Thus, the function 4, has a constant sign and, since P o) (Hy > t) > 0,
it follows from part (i) that the function £, is positive.

For the proof of Theorem 2.1 we need two more lemmas.

Lemma 4.2. (i) Let {f,, n € N} and f be nonnegative random variables, on a probability
space (2, F,P), such that E f,, = E f = 1, where expectation is taken with respect to the
probability measure P. If f, — f almost surely as n — oo, then f, — f in L'(Q, ¥, P) as
n — oo.

(ii) Let {P,,, n € N} and P be probability measures, on a measurable space (2, ), such that,
forany A € ¥, P,(A) - P(A) asn — oo. Then the measures {P,,, n € N} converge weakly
toPon ¥.

Proof. (1) Since { f,, n € N} and f are nonnegative and E f;, = E f = 1, the functions
{fu(w), n € N} and f(w), w € R, are densities with respect to the measure P. In addition,
fa — f almost surely as n — oo and, so, f, — f in probability as n — oo. Therefore, by
Theorem 2.2 of Jacka and Roberts (1997), f, — f in Ll(Q, F,P)asn — oo.

(ii) For any A € F, let P,(A) — P(A) as n — oo. Then, by the definition of strong
convergence in Jacka and Roberts (1997), the measures {P,, n € N} converge strongly to P,
which, by Theorem 2.1 of Jacka and Roberts (1997), implies that the measures {P,,, n € N}
converge weakly to P.

Lemma 4.3. The function hy (e, @) is harmonic for the process (X;, ¢:);>0, and the process
(hr(X:, @) 1(t < Hp))r>0 is a martingale under P, o).

Proof. The function &, is continuously differentiable in ¢, which, by (3.4), implies that &,
is in the domain of the infinitesimal generator § of the process (X;,¢;);>0 and that
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Gh, = 0. Hence, the function 4, (e, ¢) is harmonic for the process (X;, ¢;);>0 and the process
(hr (X1, @1))1=0 is a local martingale under P, ). It follows that the process

(hr (XinHys PinHy) = hr(X:, 9)1(t < Hp))i=0

is also a local martingale under P, ) (the equality of the processes is valid because
hr(XH()a ngo) = O

if the process (X;, ¢;)s>0 starts in E(‘)"). Since the process (h,(X:, ¢:)1(t < Hp))s>0 is bounded
on every finite interval, it follows that it is a martingale under P, ).

Proof of Theorem 2.1. By Lemmas 4.1(ii) and 4.3, the function A, (e, ¢) is positive and
harmonic for the process (X;, ¢;);>0. Therefore, the measure Ph’ e.0) is well defined.
For a fixed (e, ) € E; Ffandr > 0,andany T > 0, let Z7 be a random variable defined by

Px, o (Ho > T — 1t
2y = Do =T =0y
P(e,(p)(HO >T)

Then, by Lemmas 4.1, 4.2, and 4.3, the random variables Z7 converge in Ly, 7, Pee.p)),
as T — 00, to the random variable (h, (X;, ¢;)/h, (e, ))1(t < Hpy). Therefore, by (4.1), for
fixedt > 0 and A € F;, we have

lim P(e (@) = lim Ec g (1(A)Zr)

hr(X:, @)

PR 1(t < H0)>

=E(,p) (I(A)
hr
=P (A,
which, by Lemma 4.2 (ii), implies that the restrictions of the measures (Pg;))yzo to ¥; converge
weakly to the restriction of Pi’ . @) a8 T — oo.
5. The negative-drift case: proof of Theorem 2.2

We again start by considering limr_, o pY (A) for A € ¥;. As in the oscillating case, we

need to find

(e, w)

Py (Hy > T —1)
lim .
T—oo P oy(Hy>T)

We recall that 8y denotes the point at which the Perron—Frobenius eigenvalue «(8) of the
matrix Q — BV attains its global minimum (see Lemma 3.9), that «g = «(Bp) and go denote
the Perron—Frobenius eigenvalue and right eigenvector, respectively, of the matrix Q — BoV,
and that G denotes the diagonal matrix diag(go). We also recall the |E| x |E| matrix Q°,
given by (2.1) as

0%e, ¢') =[Gy (Q — aol — BoV)Gol(e, ).

By Lemma 3.11, the matrix QU is a conservative 1rredu01ble Q-matrix. Let V=1 QT% = 1°G°
be the unique Wiener—Hopf factorization of the matrix V' Q°, and let I‘O Jroy.
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Our aim is to prove the following lemma.
Lemma 5.1. (i) The function h,o(e, ¢, t) is given by
hyole, 9. 1) = —e~ e P9[Goe V" € [ TI01e) > 0, (e.9.1) € EJ x [0, 00).

(i) If

P ony(Hy>T —t h e/, /,l‘
lim —¥ ) (Ho ) exists it is equal to ,o(_(p)'
T—oo P oy(Hy > T) ho(e, ¢, 0)

To prove this, we will need some auxiliary lemmas. For o > 0, let V=1(Q° — ozI)I'g =
T'YGY be the unique Wiener-Hopf factorization of the matrix V~!(Q% — «I) and, for a fixed
(e,p) € E x R, let a function L ¢)(a), @ > ap, be defined by

1—eF0vGoe¢V (@' ~@—)h 0 G-l
Lie.g)(@) = [ " = ]( ) .1
By Lemmas 3.3 and 3.12, for @ > 0 we have
1—e ¢V @Dy, 1 1-E —aHo
Le,p)(a) = [ © otz ](e) = o) (© )
o o
]

= /0 e Y P(e.p)(Ho > 1) dr. (5.2)

Lemma 5.2. For any (e, ¢) € ET, the function L, o) () is analytic for Re(a) > ao.

Proof. By the definition in Lemma 3.3, the matrices I1; and IT;, are analytic for Re(«) > 0.
Hence, the matrix Iy is analytic for Re(e) > 0 and, therefore, by Lemma 3.12, the matrix

rg,ao is analytic for Re(a) > a. It follows that the numerator of L, ¢)() in (5.1) is analytic

for Re(a) > g and, since
e P9 Goe ¢V T, Gyl 1= T L1 = 1,

the numerator of L., 4) () vanishes for @ = 0. Therefore, L . ) (a) is analytic for Re(a) > ayg.

We adopt the convention that objects (e.g. vectors and matrices) with the superscript ‘0’ are
associated with the matrix Q° and are defined in the same way as their counterparts associated
with the matrix Q.

Lemma 5.3. Let all nonzero eigenvalues of the matrix V=1 Q0 be simple. Then, for some
nonzero constant c,

() (T_yy —THG 1~ cla —ag)'? T30 as o — a,

.. _ _ -1 0
(i) Le.p)(@) — Le.gy (@) ~ cla — ag)2e™P?[Goe Y & J1T9r01(e) as & — ao.

Proof. (1) Let g~ be a nonnegative vector on E~. Then

m
_ 0,—
g ZE a8
k=1
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for some constants a, k = 1, ..., m, where the vectors g,?’_, k=1,...,m, form a basis in
the space of all vectors on E~ and are associated with the eigenvalues of the matrix G%~. By
Lemma 3.6(ii), the constant ap,j,, wWhich is associated with ggl’i; = 17 in the previous linear
combination, is not 0. Thus,

00 g = amnllo 17 + 3 @’ gl (5.3)

0,— 0,—
{k=1,....m: 8 #gmin}

By (3.6) and Lemma 3.11, the matrices QO and V define the oscillating case. Therefore,

by (4.4),
1
1t -n% 1~ ———— 2" % %), a—o. (5.4)
¢ /—uOV 0
- ~ ~ 0. L 0, 0.~
We must also determine the behaviour of Hg’ g, »k=1,...,m(with g~ # g ).

Since, by assumption, all nonzero eigenvalues of the matrix V~! Q° are simple, it can be shown
(see Wilkinson (1965)) that there exist vectors vk ,, n € N, on E such that

oo
gy — Mgl = o), — MO7vg,). (5.5)
n=1

From (5.3), (5.4), and (5.5), and because, by Lemma 3.5(v), %~ — O%~ as & — 0, we find
that
o
n’ g —m% g~ ——28 41720+ _ 100, o — 0,
“ [~ OV O

which proves part (i).
(ii) By the definition of L, ¢)(a),
L(e,go) (@) — L(e,(p) (o)
- [ (@ — ag)(1 —e =¥ Goe=¢V ' 210G ! ], 1)

(0707

+ ao(ePo¥ Goe—9V (@0 —(@—ap) _ o—¢V~! QO)FOGSI 221

o
e*ﬂo‘ﬂGoe*(ﬂV_l Q° (rg—ao _ rO)GalJz 1
o
e P0Gy eV (@ —(@—a0) _ o—gV~! QO)(rg_ao ~T9HG;' 11
+ " (e).

The function o > e=#Y ™ (@"—(@=a0)) jg analytic for all o, which implies that

e ?V (@'~ (a—a0) _ o—¢V7'Q°

tends to 0 as @ — «. Hence, by part (i) and the last equality, part (ii) holds.

Lemma 5.4. For a fixed (e, ¢) € EJ, the function Le,p)(a + ap), a > 0, is the Laplace
transform of e~ P, o) (Hy > 1).
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Proof. By (5.2), L(¢,y)(@), @ > 0, is a Laplace transform and, therefore, by Theorem 1a of
Feller (1971, Chapter XIII.4), is completely monotone for > 0. In addition, by Lemma 5.2,
L(e,p)(a) is analytic for & > og. Since the analytic continuation of a completely monotone
function is completely monotone, it follows that L., 4)(c) is completely monotone for a > g
and, therefore, is a Laplace transform of some measure on [0, co). By the uniqueness of the
inverse of the Laplace transform, it follows from (5.2) that, for @ > 0, L, ¢)(a + ) is the
Laplace transform of e P, o) (Ho > 1).

Proof of Lemma 5.1. (i) By Lemma 4.1(i), the vector —eeV ' Ji l“gr0 is positive for any
¢ € R. Since the matrix G is positive by definition, it follows that the function %,0 (e, ¢, t) is
positive for any (e, ¢, t) € EO+ x [0, 00).

(i) By Lemma 5.4,
L(é’,(ﬂ)(a + ap) _ L(e,go)(ao)
o o

is the Laplace transform of the monotone function

t
t— /0 e " P.oy(Hy > 5)ds — Le,g)(0).

Therefore, by the Tauberian theorem (see Feller (1971, Chapter XIIL.5)),

t c -1 0
/ e P, o) (Hy > 5)ds — Le,g)(c0) ~ mt_”ze_ﬂo"’[Goe‘”’V 2" J,r9r°e)
0 2
as t — oo. Then, for fixed (e, @), (¢, ¢') € E,
T—t _ _ ’ _yv—1pn0
lim Jo e Py (Ho > 5)ds — Ly g (e0) _e Po¢'[Goe=¢V 2" 1 TIr%(e")
700 [Te=a0s Py, ) (Hy > 5)ds — Lie 4 (a0) e P [Goe¢V ' 2° J1TIr0](e)

The statement in the lemma is now proved since, by I’Hopital’s rule,

T—t —gns
i fo e Py ) (Hy > 5)ds — L) (t0) _ oo i Py (Hy > T —1)

T—o00 fOT e @5 P, o, (Ho > ) ds — Le.q)(ct0) T—o00 P(e,ga)(HO >T)

’

if the latter limit exists.

Lemma 5.5. The function h,o is space—time harmonic for the process (X;, ¢1)r>0, and the
process (h,o (X, ¢, )1(t < Hp))s>0 is a martingale under P o).

Proof. The function A, is continuously differentiable in ¢ and ¢, which, by (3.5), implies
that it is in the domain of the infinitesimal generator «+ of the process (X;, ¢;);>0, and that
Ah.o = 0. Hence, the function £,0(e, ¢, t) is space—time harmonic for the process (X;, ¢)>0
and the process (h,0(X;, ¢;,1));>0 is a local martingale under P, o). It follows that the
process (1,0(XiaHy» PinHys t A Ho) = hpo(Xy, @7, t)1(t < Hp))s>0 is also a local martingale
under P, o). Since the process (h,0(X;, ¢;, t)1(t < Ho)):>0 is bounded on every finite interval,
it follows that it is a martingale under P, ).
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Proof of Theorem 2.2. By Lemmas 5.1(i) and 5.5, the functi%n h,o(e, @, t) is positive and
space—time harmonic for the process (X;, ¢;);>0. The measure P( . ° is therefore well defined.
For a fixed (e, ¢) € EaL andt > 0,and any T > 0, let Z7 be a random variable defined by

Px, o (Ho > T — 1t
zp = P =T 20y oy
Pe,py(Ho > T)

Then, by Lemmas 5.1, 4.2(i), and 5.5, the random variable Z7 converges to

hro (le 901)

1(t < H
hote,g) 0= HO)

inL\(Q, F, P(e,y)) as T — oo. Therefore, by (4.1), forafixedr > O and A € F;,

. (T) _ . p— hro
Aim P L) (4) = lim B (1(4)Zr) = P, (A),

which, by Lemma 4.2(ii), implies that the restrictions to ¥; of the measures (PEETL)) y>0 converge
weakly to the restriction to ¥; of P e,o(p) as T — oo.
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