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Abstract

Characterisations of the distribution of a non-negative random variable are sought for which the
Liapunov moment inequality is extended to give inequalities between inverse powers of moment
ratios, which are known as mean sizes in considerations of particle size distributions. A solution is
found for continuous distributions, and the conditions applied to a number of well-known distribu-
tions. A further class of distributions is considered for which the new inequalities hold but the
inequality direction is reversed for some orders of the moments. The study involves examination of
the signs of the third central moments of a family of distributions, obtained by a log transformation,
from the weighted, or moment, distributions induced by the non-negative random variable.

1980 Mathematics subject classification (Amer. Math. Soc.): primary 60 E 15; secondary 62 E 10.

1. Introduction

The Liapunov inequality for absolute moments essentially states that for any
random variable, the natural logarithm of the rth absolute moment is a convex
function of r (see for example, Moran (1968), p. 234). Hence, for a non-negative
random variable whose rth moment about the origin is denoted by ar if it exists,
log ar is a convex function of r, and thus (ar)

1/r is increasing in r. Further
properties of log ar that are similar in concept have been established for
particular classes of non-negative random variables. For Polya densities of order
2 (Karlin, Proschan and Barlow (1961)), or, more generally, distributions with
increasing hazard rate (Barlow, Marshall and Proschan (1963)), the log of the
normalised moments is concave, giving that (ar/T(r + l))1/r is a decreasing
function of r.
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[2] Moment inequalities of the Liapunov type 237

In this paper, the variation of («r + u/ar_u)1 / 2 u in u is examined, and character-
istics of distributions sought for which Lr+ur_u = (ar+u/ar_u)

l/2u is monotonic
in u. For continuous distributions, a characterisation is found that ensures
Lr+ur_u is monotonic in u for all possible values of r, and hence for these
classes of continuous distributions, a new moment inequality is established
which may be considered as an extension to the Liapunov inequality. A further
class of distributions is then examined, for which Lr+Ur_u is monotonic in u for
given r, but the values of r fall into two subsets, in one of which Lr+Ur_u is
decreasing in u, and in the other, increasing. For these distributions, there is a
value of r that acts as a turning point and is a 'symmetry' value for the family of
distributions with density given by e(^r+l^yf(ey)/ar, where/(x) is the density of
the non-negative random variable.

The question of the variation of Lr+Ur_u arose in consideration of particle size
distributions in dispersed systems in chemical engineering. If the random varia-
ble, X, represents some measure of particle size, its m, nth mean size is defined
by Lmn = (am/an)1(m~"), and these mean sizes tend to be considered in en-
gineering and related fields, rather than the moments themselves (White (1971),
Allen (1975), Randolph and Larson (1971)). The ratio <*„/an is the (w - n)th
moment of the weighted, or moment, distribution Fn(x) = fot"/an dF(t), where
F(x) is the distribution function of X. These weighted distributions have
particular significance in various engineering and related fields, especially for
n < 3, and, for dimensional convenience, it is customary to use mean sizes (see,
for example, Randolph and Larson (1971), White (1971)), especially in compari-
sons of system properties.

It follows immediately from the Liapunov inequality that Lmn is increasing in
m for fixed n, and increasing in n for fixed m, and the request for information
regarding 'diagonal' relationships between mean sizes led to the work presented
in this paper.

2. Some preliminary remarks

The Liapunov inequality may be proved by considering moments as dif feren-
tiable functions of their orders and showing that the second derivative is
non-negative; this was noted by Belz (1947). However, the work reported in
Belz's note did not require a precise expression of the range on which ar is
differentiable, and since differentation of ar is used extensively in this paper, the
following lemma is required.

LEMMA 1. / / the absolute moments of order r, vr, of a random variable with
distribution function F(x) exist for r in the interval [0, b], then vr is differentiable
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238 H. L. MacGillivray (3]

with respect to r on (0, b), and the nth derivative is given by

The proof follows readily from dominated convergence, with the absolute
value of the difference quotients being bounded above by an integrable function
of x for all / in (0, b).

Lemma 2 states some properties of convex and concave functions in forms
which are required in this paper.

LEMMA 2. If the first derivative of the real function p(t) is convex (concave), then
(a) (p(t + u) — p(t — u))/2u is increasing (decreasing) in u for any t, and this

condition is necessary and sufficient; and
(b) p(t + u) — p(t — u) has at most one change of sign in u > 0, and if there is

a change of sign, it is from negative to positive values (positive to negative).

PROOF, (a)

d / p(t + u) - p(t - u)\
du\ 2K )

For p'(x) convex (concave) for all x and x < u, the integrand is non-negative
(non-positive), and hence necessity is proved.

If (2.2) is > 0 (< 0) for all u, t, suppose there is some interval on which p'(x) is
not convex (concave). Then for some t and some u > 0, the integrand in (2.2) is
< 0 ( > 0), giving a contradiction.

(b) Follows directly from (a) since u > 0.

COROLLARY 2.1. If p'(t) is linear, then (p(t + u) — p(t — u))/2u is constant,
and p(t + u) — p(t — u) is a multiple of u.

3. A new moment inequality

From Lemmas 1 and 2

= 1 r+u \
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[4 J Moment inequalities of the Liapunov type 239

is an increasing function of u if, and only if, (log ar)
( 3 ) > 0 for all r > 0. Hence,

for 0 < u < v < r,

*V — u / \ " r —

which may be rewritten as

(3-2) <+u<-v < <_uar"+v.

Lr+ur_u is decreasing in u if and only if (log ar)
(3) < 0 for all r > 0, and the

inequalities (3.1) and (3.2) are reversed.
These can be compared with the Liapunov inequality which corresponds to

(log ar)
(2) > 0, and (ar)

1/r increasing in r, and which gives for 0 < u < v < r,
ar_uar+u < ar+var_v.

The inequalities (3.1) and (3.2) will be referred to as inequality I1; and the
reverse inequalities corresponding to (log o .̂)(3) < 0, as inequality I2. As will be
seen in Table 1,12 holds more frequently than I,.

Denoting Xr as the random variable with distribution Fr(x), Yr = log Xr is
well-defined for all possible r, with distribution function

Gr(y) = f — dF{e').
J-<x> ar

The ratio (o^/a , . ) , the sth moment of Xr, is the moment generating function
about the origin of Yr.

The «th cumulant of Yr is given by

and thus (log ar)
(3) is the third central moment of Yr. Hence if the 'base'

distribution F(x) is such that the third central moments of all the members of
the family {Gr(y)} are of the same sign, then either inequality I, or I2 will hold
for all values of r, u and v for which the moments exist. Theorem I gives a
condition on the distribution of a continuous random variable, sufficient for the
third central moment to be of a given sign.

Although Theorem I is more appropriate for density functions whose support
is the whole real line, some generalisation is possible to those whose support is a
subset of the real line. This is discussed after Theorem I and the application of
the general case to the family { gr(y)} summarised in Theorem II, where gr(y) is
the density corresponding to Gr(y)-

The proof of Theorem I uses the variation diminishing property of totally
positive kernels in its stronger form (Karlin (1968), pp. 20, 21) in which the
following definitions of the number of changes of sign of a function are used.
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Let k(t) be defined in / , where / is an ordered set of the real line. Let

(3.3) S-(k) = S " [ * ( / ) ] = sup S " [ * ( * , ) , k(t2), . . . , k(tm)],

where the supremum is extended over all sets tx < t2 < • • • <tm (f, G / ) , m is
arbitrary but finite, and S ~(xx, x2, . . . , xm) is the number of sign changes of the
indicated sequence, zero terms being discarded. A more refined method of
counting sign changes is given by

(3.4) S+(k) = S + [k(t)] = sup S +[*(*,), k{t2) k(tj],

where S+(xv . . . , xm) denotes the maximum number of sign changes of the
indicated sequence, the zero terms being permitted to take on arbitrary signs.

THEOREM I. If V is a continuous random variable defined on (-oo, oo), with a
differentiable probability density function h(v), mean n and sth central moment ft,
then if either h'(v) or (log h(v))' is convex {concave) for all v (but not linear), (i^ is
positive (negative).

PROOF, (a) For s odd,

(3-5) ft = I" r'[A(M + /) - A(M - /)] dt.

For h'(v) convex, it follows from Lemma 2(b) that h(fi + t) - h(n - t) has at
most one change of sign in t, from negative to positive values. Since t' is totally
positive (TP) for s, t > 0 (Karlin and others (1961)), from the variation di-
minishing property, it follows that (3.5) has at most one change of sign in s, from
negative to positive values. Indeed, t' is strictly totally positive and hence,
provided h(n + /) - h(n - t) is not identically zero, the stronger version of the
variation diminishing property holds, and

5+(3.5) < S- [*( / i + t) - h(ti - 0 ] < 1,

where 5"+ and S ~ are as defined in (3.3) and (3.4). Since J = 1 is a zero of (3.5),
5 + (3.5) > l,h(n + t)-h(n~t) must change sign, and S +(3.5) = 1. The zero
of (3.5) at s = 1 must also be a change of sign otherwise 5+(3.5) = 2, as in
counting the sign changes S+, the zero term may taken on an arbitrary sign.
Therefore (3.5) changes sign once at s = 1 from negative to positive values, and
the third central moment fi3 is positive.

Similarly, for h'(v) concave, ju3 is negative provided h(p + t) — h(fi — t) is
not identically zero.

Since the log function is monotonic increasing, the condition on log h(v)
follows.

The case h(n + t) — h(\i — t) identically zero, and hence /x3 = 0, corresponds
in this theorem to the degenerate case of h'(v) or (log h(v))' linear for all v.
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[6] Moment inequalities of the Liapunov type 241

Linearity implies that h(n + t) — h(n — t) does not change sign for t > 0
(Corollary 2.1), and since at least one change of sign is necessary for ju of
equation (3.5) to be zero, h(n + ) — h(n — t) must be identically zero, that is,
h(v) symmetric about its mean. For a concave or convex derivative as assumed
in this theorem,

in / implies linearity of the appropriate derivative. Linearity of h'(v) for all v is
impossible and the truncated range case is discussed below; linearity of
(log h(v))' corresponds to the normal distribution.

REMARK. For an arbitrary random variable V with distribution function H(v),
the central moments jtt, may be written as

t) - H(p - t)] dt.

If it is known, or can be proved, that the number of changes of sign of
[1 — H(n + t) — H(n — t)] is bounded by 1, then the reasoning of Theorem I
applies, and the sign of ju3 may be determined. This is not pursued further here.

REMARK. The totally positive properties of t* are a feature of the proof of the
normalised moments inequality due to Karlin, Proschan and Barlow (1961)
mentioned in Section 1. The kernel ts has also been used in moment compari-
sons for two symmetric distributions (Marsaglia, Marshall and Proschan (1965)).

Applying the condition on the log of the density to gr(y), gives that if
d\\ogf(ey)\/dy is concave (convex) in _y, then inequality I2 (I,) holds.

Theorem I may be generalised by considering equation (3.5) and seeking
conditions for which /I(JU + 0 — h(n — t) has at most one change of sign in
t > 0. Use is also made of the requirement that h(\i + t) — h(\i — i) must have
at least one change of sign to ensure /t, = 0, since the stronger version of the
variation-diminishing property holds. Consideration of (3.5) when the support of
the probability density function h(v) is some interval (a, b) shows that if h(v) is
continuous at a and b, then Theorem I holds with the condition of convexity
(concavity) of h'(v) or (log h(v))' applying only in the interval (a, b). Some
results can also be obtained when h(v) is not necessarily continuous at a and b.
The concave and convex cases are considered separately.

When dh(v)/dv or d(\og h(v))/dv is concave in (a, b):
If h{ n + t) — h( ju — t) changes sign for (p. — t, jn + t) contained in {a, b), it

is from positive to negative values. Therefore, if a = -oo, and b < oo, no further
change of sign occurs, but if a > -oo, b = oo, there is a second change of sign
from negative to positive values at ja — t = a.
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242 H. L. MacGillivray (7]

When dh(v)/dv or d(\og h(v))/dv is convex in (a, b):
As above, if h( ju + t) — h( n — t) changes sign for a < y. — t < fi + / < b, it

is from negative to positive values. Therefore if a > -oo, b = oo, no further
change of sign occurs, but i f a = - o o , Z > < o o , a second change of sign from
positive to negative values takes place at fi + t = b.

When both a and b are finite, the distribution requires special examination.
In applications to the family {gr(y)}, this involves examining gr(t\r + y) —
8r(Vr ~ y) directly, where i\r = (log ar)' is the mean of gr(y)-

If it is known that h(n + t) — h(n - t) does not change sign for a < \i - t
< jtt + / < b, whether h\v) or (log h(v))' is concave, convex or neither, then at
most one change of sign will occur at t = min(Z> — /i, /x — a). Since in (3.5)
ju., = 0, and the stronger version of the variation-diminishing property holds,
h(n + t) — /i(ft — /) must change sign at least once. Therefore, if h(n + t) —
h(n — t) is non-negative inside (a, b), the change is from positive to negative
values and ju3 < 0: if it is non-positive in (a, b), JU3 > 0; and if h( /i + t) —
h(n - t) is identically zero, ju3 = 0. If the support is (-oo, b), a change of sign
will occur only if h(fi + t) - h(n - t) is non-negative in (-oo, b), and thus
juj < 0. Similarly, if the support is (a, oo), h(n + t) - h(n - t) must be non-
positive in (a, oo) and thus /i3 > 0.

A special case of the above occurs when h(v) is monotonic in (a, b). Another
special case corresponds to hi3\v) or (log /J(C))(3) identically zero in (a, b), for
then h(n + i) - h(n - t) is of one sign in (a, b); the lower order derivatives of
h(v) determine the sign.

As before, in applying the above to the family {gr(y)}> the conditions on
log h(v) are used, to give conditions on the base distribution f{x) sufficient for
(log ar)

(3) to be of one sign for all values of r, and hence Lr+ur_u monotonic in u
for all r for which the moments exist. Theorem II states the results.

THEOREM II. Suppose X is a continuous non-negative random variable with a
probability density function f(x) with support [c, d] and differentiable in (c, d); ar is
the rth moment about the origin. Then

(a) // (\o%f(ey))' is convex in (log c, log d), and provided f(x) is continuous at d
for d < oo, (log ar)

(3) > 0, (ar+u/ar_u)
l/2u is strictly increasing in u;

(b) if (log f(ey))' is concave in (log c, log d), and provided f(x) is continuous at c
for c > 0, (log ar)

(3) < 0 and (dr+u/ar_u)
1/2u is strictly decreasing in u;

(c) «/(log/OO)' is linear in (log c, log d), either
(i) for f(x) continuous at c and d, (log a,)(3) = 0 and (ar+u/ar_u)

1/2u is
constant;

(ii) for f(x) continuous at c but not d, (log ar)
(3) < 0 and ( a r + u / a ,_ M ) l / 2 " is

decreasing in u;
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[81 Moment inequalities of the Liapunov type 243

(iii) for f(x) continuous at d but not c, (loga,.)(3) > 0 and (ar + u /ar_u)1 / ' 2 1 ' is
increasing in u.

Behaviour of

Strictly

decreasing

Strictly
increasing

Increasing

Constant

Distribution and Form

of Density Function

Pearson Type I; xm'(a - x)m\

Pearson Type III; xme~x/c,

WeibuU; ^ exp - ^ ,
a a

Planck's; / ,

Linear failure rate;

(1 + 0x)exp - (x + ^ - Y

Normal with negative values

la

Except for Pearson Type I, each of
the above distributions when
truncated on the right.

Pearson Type V; x-
l/ce^x,

Pareto; aka/xa+\
(Strictly increasing when truncated
on right).

. , 1 ( l o g x - Q 2

x 2a2

(Increasing when distribution
truncated on the left,
decreasing when distribution
truncated on the right).

«i , m2 > -1 , a > 0,
0 < x < a.

m > -\,c > 0,
0 < x < oo.

c, a > 0,

0 < x < oo.

/ > 0,0 < x < oo.

0 < 1, 0 < x < oo.

n < o, a2 > a

0 < x < oo.

c > 0, 0 < x < oo,
and when truncated on the left.

a, k > 0, k < x < oo.

-oo < £ < oo, a2 > 0,

0 < x < oo.

TABLE 1
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244 H. L. MacGillivray [9]

Some of the special cases discussed in generahsing Theorem I are not covered
by Theorem II. For example, if gr(y) is monotonic in (log c, log d), the sign of
(log ar)

(3) is determined as follows: for gr(y) increasing in.y for any r, (log ar)
(3)

< 0; for gr(y) decreasing in_y for any r, (log ar)
(3) > 0; while for gr{y) constant

in>\ (log ar)
(3) = 0.

Table 1 gives examples of density functions f(x) of nonnegative random
variables for which Lr+Ur_u is monotonic; where a result exists for a truncation
of f(x), this is also stated.

4. Symmetry values of r for the distribution family { gr{y)}

From (2.2), Lr+Ur_u is an increasing function of u if (r — u, r + u) lies in an
interval in which (log a,)' is convex, and is decreasing when (log a,)' is concave.
However, no general conclusions can be drawn if, in (r - u, r + u), (log a,)' is
both convex and concave, so that even if the exact behaviour of (log a,)' is
known, this is not sufficient in itself to describe the variation of Lr+Ur_u.

For certain distributions, however, although (log a,)' changes from concave to
convex or conversely, the behaviour of Lr+ur_u can be described exactly. For
these distributions, there is a unique value of r for which gr(y) is symmetric, and
which acts as a turning point in the monotonic behaviour of £>.+„,._„. Theorem
III and Corollary III.l give general results, but the application of these results
implicitly depends on the solution of a problem that is possibly unsolvable in a
general context; namely the problem of characterising distributions for which a
zero third central moment implies that the distribution is symmetric. However,
Theorem III can be applied to certain classes of distributions without the
general problem being solved, and this is discussed in Section 5.

THEOREM III. In the interval of existence of the moments ar, there exists a value
of r, c, such that Lr+ur_u is increasing in u for r < c and decreasing in u for r > c
{or conversely), if and only if Gc(y) is symmetric about its mean, and for no other
possible value of r does (log ar)

(3) change sign.

PROOF, (a) Necessity. Let TJC be the mean of Gc(y), that is,

Suppose Gc(y) is symmetric about TJC. Then

E[exp(Yc - %)u] = 4exp(r,c - Yc)u],
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(10 ] Moment inequalities of the Liapunov type 245

for u such that these expectations exist. That is,

(4.1) e-^^ji = e%u^u

defining \p(r) = log ar, (4.1) is rewritten

(4.2) xp(c + u) = 2HV//(C) + yp(c - u).

Successive differentation of (4.2) with respect to u, gives for n > 2,

(4.3) ^<n)(c + u) = ( - l ) V n ) ( c - u),

where

Since \p(3\c + u) = -»//(3)(c — u), \j/{3\r) must change sign at r = c or be
identically zero for all possible r, and since it is assumed that c is the only value
of r for which ^3\r) may change sign, one of the following cases holds:

(i) if »f/w(c) > 0, «//(3)(/-) < 0 for r < c,

(4.4) and ^3){r) > 0 for r > c;

(ii) if i//(4)(c) < 0, the inequalities (4.4) are reversed.

Considering case (i), if r < c, and 0 < v < r, then for r + v < c,

\pm(r — v) > ^2\r + v),

while for r + v > c,

\iP\r - v)> <//<2)(c - v) = «//(2)(c + u) (by 4.3)

> \p(2)(r + v).

Therefore, for r < c and 0 < v < r,

(4.5) ^ < 2 ) ( r — v) > ^2\r + v).

Integrating (4.5) with respect to v from x to u < r gives

v/'X'' ~ x) — $'(r — u) > i//(r + M) — \p'(r + x),

and since

-^ log Lr + U,r_u

Lr+u,r-u i s decreasing in u for r < c. Similarly, it can be shown that Lr+ur_u is
increasing in u for /• > c, and in case (ii) the inequalities are reversed. It is
obvious that if ^3\r) is identically zero for all possible values of r, Lr+Ur_u will
be constant in u for all possible r.
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(b) Sufficiency. Suppose Lr+ur_u is increasing in u for r < c and decreasing in
u for r > c. That is,

-fa (log 4+u,r- u) > 0. for r < c, and

< 0, for r > c.

Since a, is continuously differentiate, d(\ogLr+ur_u)/du is continuous in r,
and therefore

for all possible 0 < u < c.

Since

— (log Lc+uc_u) = — ——

(4.6) = 2 1ogLc+u>c_H

= constant for 0 < u < c.

Successive differentiation of (4.6) with respect to u gives j//(n)(c + u) =
(_iy^(»)(c - M), n > 2, 0 < « < c as in (4.3).

Since i/>(r) is continuously differentiable, from (4.3) it follows that for n odd,
^,(n)(c) = o, that is, the odd central moments of Gc(y) are zero.

The characteristic function, (pc(/), of the distribution Gc(y) is analytic, since
there exists a positive constant h — min(c, b - c), where [0, b] is the interval of
existence of the moments c ,̂ such that, for s < h, 1 - Gc(y) + Gc(-y) = o(e~v)
as y ^> oo (Lukacs (1960), p. 137). Hence <pc(z) can be expanded as an infinite
series in z, convergent for \z\ < some p > 0, and therefore (?,.(>') is uniquely
determined by its moments. Since its odd central moments are zero, Gc(y) is
symmetric about its mean.

Suppose there exists another value of r, c,, such that «//(3)(r) changes sign at
r = c,, and suppose cx < c. Then for r, < c, < r <c, and u in some neighbour-
hood of zero, one of Lr+ur_u will be increasing in u and the other decreasing.
This contradicts the assumption of the theorem, and there is no other value of r
for which ^P\r) changes sign.

The proof for the case Lr + U r_u decreasing in u for r < c, and increasing for
r > c, is exactly similar.

The values of r for which Gr(y) is symmetric will be referred to as symmetry
values. From Theorem III, the following corollary is derived.
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[12] Moment inequalities of the Liapunov type 247

COROLLARY III. 1. If the family {Gr(y)} has more than one symmetry value, then
the symmetry values either form an arithmetic progression or consist of all values of
r. Therefore if all the moments ar exist, either none, one or an infinite number of
values of r are symmetry values.

PROOF. From the proof of Theorem III, it can be seen that the system of
equations (4.3), namely

^<u)(c + u) = (-l)"\f/^(c — w), n > 2,

is necessary and sufficient for c to be a symmetry value of { Gr(y)}.
Suppose c + a is another symmetry value and consider c + 2a, c — a, pro-

vided these are possible orders of the moments ar. Then

i//n)(c — a + u) = (-l)"«//(n)(c + a — u), (c a symmetry value),

= ip(n)(c + a + u), (c + a a symmetry value),

= ( - l ) V " > ( c - a - u ) ,
and therefore c — a is also a symmetry value. Similarly c + 2a is a symmetry
value.

If another symmetry value c + b exists, where b is not a multiple of a, the
arithmetic progression of symmetry values will have a smaller difference, the
actual magnitude depending on the relative magnitudes of a, b, \a — b\.

The set of symmetry values for the family induced by the log-normal distribu-
tion consists of all values of r. It was noted in Section 3 that the distribution
gr(y) induced by the log-normal density function/(x) where

f(x)a- exp - ( 1 ° g * ~ * ) 2 x > 0J(x)a x exp 2<^2 , x > U,

is symmetric for all r > 0. The constant value of Lr+Ur_u in this case is given by
exp(£ + ra2).

5. Application of Theorem III

This theorem as it stands appears difficult to apply because either the form of
log ar must be amenable to analysis, which is seldom the case, or it must be
known that the family Gr(y) is such, that if the third central moment of Yr is
zero, its distribution is symmetric about its mean. This problem in a general
context is as yet unsolved and a complete solution may not exist. However, a
general solution is not necessary for the application of Theorem III to certain
types of continuous distributions.

It is often straightforward to find possible symmetry values of Gr(y) when the
base distribution F(x) is a continuous distribution. If the base density function
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f(x) is differentiable in its support, a necessary condition for gr(y) to be
symmetric about its mean, -qr = (log ar)', is that

(5.1)
2d_

dt7

2
d_

dt2

for all.y > 0 such that

/ ( e " - ' ) > 0.
Denoting the function log f(ey) by l(y), a symmetry point y must satisfy

(5.2) /(2)(y + >>) = P\y - y) where /(«***) > 0.

As in Corollary III.l, if there is more than one such y, they either form an
arithmetic progression or consist of all values of y such that f(ey) > 0. If
f(x) > 0 on (0, oo), there is therefore none, one or an infinite number of y's
satisfying (5.2).

A value y that satisfies (5.2) can correspond to a symmetry value of gr(y) only
if it is a permissible value of %. If this is so, gr(y + y) — g,{y — y) is either
identically zero or a multiple of y. As in Section 3, if f{x) is continuous on
(0, oo), the latter case is inadmissible since gr(y + y) — gr(y — y) must have at
least one change of sign in>> for y to be the mean of gr(y).

If S~(gXvr + y) ~ 8r(vr ~ >0) *» 1> ^en OTtty ^OT symmetry values does
(log c^)^ = 0. In this case if there is just one value of y satisfying (5.2), either it
corresponds to the unique symmetry value and Theorem III applies, or if it does
not correspond to any t]r, (log ar)

(3) does not change sign and either inequality I,
or I2 hold for all possible r.

For the case f(x) continuous on (0, oo), Section 3 gives results when
(log/(<?*))(3) does not change sign. When (log/(e*))<3) changes sign once the
following lemma gives a condition which enables Theorem III to be applied.

LEMMA 3. If, for the probability density function f(x) defined and continuous on
(0, oo), ( l o g / ^ ) ) ^ exists and changes sign once, and there exists a point y
satisfying (5.2), then provided (log/(e-v))(2) tends to a finite limit as y —* oo,
Sr(v "*• y) ~ sXv ~~ y) nas oni^ one change of sign in y > Ofor all ij ¥= y, and thus
Theorem III is applicable.

PROOF. With the notation l(y) = log/(e^), for i\ > y,

y)- /<2>(2Y + y - i,)

(5-3) =C+y P\t)dt,
J2y+y-i\

K(y, t)P\t) dt,
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where

1, 2y + y — T} < t <, T) + y,
™ ^ ' ) - l 0 , elsewhere.
K(y, t) is the product of two TP-functions, J(y, t) and M(y, t), where

1, 2y + y — Tj < t < oo,
0, elsewhere;

and
1, -oo < t < TJ + y,
0, elsewhere.

Therefore, for^, <y2, ty < t2,

(5.6) M(y, t) = j (

(5.7) K^]2^ > M{yv t2)M(y2, h)J^[^ > 0,

and so K(y, t) is at least TP2.
Since /(3)(f) changes sign once, by the variation-diminishing theorem,

/(2)(TJ + y) — /(2)(TJ — y) has at most one change of sign in y > 0. However,
/(2)(TJ + y) — /<2)(TJ — y) tends to zero as.y tends to 0 and as.y tends to infinity,
the second following from (5.3) and because /(2)(x) has a finite limit as x tends
to infinity. Therefore, a change of sign of /(2)(TJ + y) — /(2)(rj — y) would require
/(3)(x) to have two changes of sign. Hence, the second derivative of gf(Tj + y) —
gXv ~ y) d° e s n o t change sign, and is negative if /(3)(x) changes from negative
to positive values, and positive if the change is reversed. Since gr(r\ + y) —
Sri7! ~ y) ' s z e r o when y is zero, this function may change sign no more than
once.

Similarly, the proof for TJ < y follows, with the sign of the second derivative of
8r(v + y) ~ gXv ~ y) reversed.

The Pearson Type VI and Type VII distributions with range (0, oo) satisfy the
conditions of Lemma 3.

For the Type VI distribution with density function/(x) of the form

K{x + ayqixq\ qx > q2 + 1 > 0, a > 0,

the moments ar exist for r <qx — q2 — 1. One value of y exists, y = log a,
( log/(e*)) ( 3 ) changes sign from negative to positive values, a n d ( log/(e*)) ( 2 ) has
a zero limit at infinity. The value of r corresponding to Tjr = log a is given by

which is thus the unique symmetry value c. Thus Theorem III applies, and
Lr+ur_u is monotonic in u with a turning point in the type of monotonicity at
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From Lemma 3, gr(vr + y) ~ gAVr ~ y) changes from positive to negative
values for 17,. > y and hence (log ar)

(3) < 0 for r > c, while similarly, (log ar)
(3) >

0 for r < c. Therefore, inequality I, holds for

and inequality I2 for

For the Type VII distribution with density function f(x) of the form
K(c0 + c2x

2)'1/2c2, truncated to x > 0, with c0, c2 > 0, the moments ar exist for

The unique value of y is jlog co/c2, (log/(ex))(3) changes sign from negative to
positive values, and (log/(e*))(2) has a zero limit at infinity. The symmetry value

2c2

and as above, inequality I, holds for

and inequality I2 for

r < ^ - - 1,2c2

2c2

For the inverse Gaussian, with density of the form Kx 3/2exp -
\(x — n)\2n2x)~\ there is one value of y, log ft, which is a symmetry point, with
symmetry value c =\ but (log/(e^))(2)-i^ finite limit as _y-»oo. However by
direct inspection, S ~{gr(j\ + y) ~ griv ~ y)) < 1> Theorem HI can be applied,
and for r < \, I, holds while for r > \, I2 holds.

6. Discussion

The conditions given here for which the new inequalities hold are conditions
on f{x) which basically ensure that qr(y) — gXVr + y) ~ sXVr ~ y) changes sign
in y at most once. In Section 3, the change is in the same direction for all r, and
I, or I2 hold for all possible moment orders. Sections 4 and 5 investigate the
changeover properties of symmetry points. For some distributions which do not
satisfy the conditions on f(x), direct inspection of qr(y) may give results; for
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example, for the normal with positive mean and negative values truncated, qr(y)
changes in y from positive to negative for any r, so that (log ar)

(3) < 0 and I2

holds.
In the general context, to ensure a given sign for /x3, it appears difficult to go

beyond the condition that h(p + x) - h(n - x) changes sign once only, al-
though this also fixes the signs of the remaining odd central moments. However,
the application of this apparently restrictive condition to investigating the
monotonicity of Lr+ur_u, has given inequalities for the moments of a reasonably
wide class of continuous distributions.
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