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Abstract

Three-dimensional short-crested water waves are known to host harmonic resonances
(HRs). Their existence depends on their sporadicity versus their persistency. Previous
studies, using a unique yet hybrid solution, suggested that HRs exhibit sporadic
instability, with the domain of instability exhibiting a bubble-like structure which
experiences a loss of stability followed by a re-stabilization. Through the calculation of
their complete multiple solution structures and normal forms, we discuss the particular
harmonic resonance (2,6). The (2,6) resonance was chosen, not only because it is of
lower order, and thus more likely to be significant, but also because it is representative
of a fully developed three-dimensional water wave field. Its appearance, growth rate and
persistency are discussed. On our converged solutions, we show that, at an incidence
angle for which HR (2,6) occurs, the associated superharmonic instability is no longer
sporadic. It was also found that the multiple solution operates a subcritical pitchfork
bifurcation, so regardless of the value of the control parameter, the wave steepness,
a stable branch of the solution always exists. As a result, the analysis reveals two
competing processes that either provoke and enhance HRs, or inhibit their appearance
and development.

2020 Mathematics subject classification: primary 76B15; secondary 76E17.

Keywords and phrases: short-crested waves, harmonic resonances, stability.

1. Introduction to harmonic resonance of short-crested gravity waves

Short-crested water waves (SCWs) are the genuine three-dimensional waves that
exhibit a triangular symmetry. They can be generated by the reflection of a
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FIGURE 1. An example of a well-developed three-dimensional SCW profile η(X, Y) with two wavelengths
on each horizontal direction X and Y at angle θ = 52.3◦. The direction of propagation of the SCW field is X
and the transverse direction is Y. Parameter θ is the incidence angle of a two-dimensional (infinite-crested)
wave train reflecting onto the X-aligned vertical seawall, and η(X, Y) is the interface elevation. Lx and Ly
are the respective horizontal wavelengths.

two-dimensional wave train onto a vertical seawall at incidence angle θ (see
Figure 1). The reflection generates three-dimensional, doubly periodic wave patterns
of permanent form, which are assumed to be monophasic along the wall (Figure 1).
SCWs admit two two-dimensional limits: standing waves for θ = 0◦ and progressive
Stokes waves for θ = 90◦. Chappelear [1] then Hsu et al. [4] first calculated the second
and third order of deep water SCWs, respectively. Through an asymptotic method,
Roberts [10] extended the solutions of Hsu et al. [4] to any arbitrary order. Later,
Ioualalen and Kharif [5, 6] studied their stability and estimated the time scales of
low-to-moderate wave–wave interactions (resonances, modulations).

Roberts [10] discovered that SCWs are exposed to intrinsic resonances (I, J) of
harmonics I and J over horizontal directions X and Y, namely, harmonic resonances
(HRs). He showed that, theoretically, there are an infinite number of resonance angles
within the [0◦–90◦]θ-range. HR triggers a zero-divisor at resonance angle θHR and
a small divisor for angles surrounding θHR. For any given angle θ, the immediate
consequence is that the radius of convergence of the SCW power series solutions
will drop from the limiting wave height maximum hmax to some value hHR, h being
the steepness of SCW (half of the peak-to-trough height). Later, Ioualalen and
Okamura [7] used a direct Newton method to calculate SCWs. They showed that HR
yields multiple solution structures for some regimes of h, whereas Roberts [10] always
obtained a single solution using an asymptotic method.

Ioualalen and Kharif [5] showed that an HR corresponds to a superharmonic
instability triggered by a four-wave interaction (a quartet) of class Ia as defined by
Ioualalen and Kharif [6]. The calculation of their normal forms led them to suggest that
these instabilities are sporadic and should occur over a narrow h-band in the vicinity
of hHR. They first appear past a certain value of the wave steepness h, and then the SCW
solutions become stable again at a nearby h-value, that is, their so-called “bubble” of
instability. As the order of the solutions increases, additional angles of resonance θHR
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emerge, extending to infinity. Since they would likely cover the entire [0◦–90◦] range,
every angle could possibly be a resonance angle, and thus the radius of convergence
of SCWs would vanish everywhere. Then the existence of SCWs is not ensured. The
authors suggested that high order resonant harmonics should be physically damped
rapidly through viscosity, and therefore it is physically relevant to ignore them. At low
order, a sporadic bubble of instability is likely to statistically inhibit the emergence of
HR, while a lack of re-stabilization would favour its emergence and possible growth.
The issue is crucial and we want to evaluate this matter in the present study. It is strictly
related to the choice of the SCW solutions, that is, whether all branch-solutions are
obtained or not. Ioualalen and Kharif [5] used the SCW solutions that were derived
from the asymptotic method of Roberts [10]. They are discussed here, in the light of
complete solutions that are derived from the Newton method of Okamura [9]. The
general formulation of the problem is set up in Section 2. The SCW solutions are
described in Section 3 along with an introduction to the phenomenon of harmonic
resonances. The stability of “resonant” SCWs is performed in Section 4, then the
conclusion follows in Section 5.

2. Mathematical formulation for SCWs and their superharmonic normal forms

We consider surface gravity waves of an inviscid and incompressible fluid on
deep water within a nonrotating medium. The motion is assumed to be irrotational,
resulting in a velocity potential φ(x, y, z, t), where η(x, y, t) is the sea surface elevation
with respect to the water level at rest. To formulate a generalized flow, we take
1/k and (gk)−1/2 as our reference length and time, where k is the wave number of
the incident wave and g is the gravitational acceleration [4, 10]. A new frame of
reference (x∗, y∗, z∗, t∗, φ∗) moving with the wave and defined in [4, 10] is used to
enhance the resolution: x∗ = x − ct, y∗ = y, z∗ = z, t∗ = t and φ∗ = φ − cx∗, where c
is the wave velocity equal to ω/m, ω is the angular frequency and m = sin θ is the
wave number in the seawall in the x-direction, n = cos θ being the wave number in
the transverse y-direction. Once the asterisks are omitted for the sake of simplicity,
the flow equations are

φxx + φyy + φzz = 0 for z � η(x, y), (2.1)
φz = 0 for z→ −∞, (2.2)

ηt + φxηx + φyηy − φz = 0 on z = η(x, y), (2.3)

φt + η +
1
2 (φ2

x + φ
2
y + φ

2
z − c2) = 0 on z = η(x, y), (2.4)

where (2.1) is the linear Laplace continuity equation, (2.2) is the linear nonporous
bottom condition, and (2.3) and (2.4) are the nonlinear kinematic and Bernoulli
dynamical conditions at the free surface. To address both the SCW and the stability
issues, we require the general solutions [5, 6], with t = t∗ for simplicity, to be

η(x, y, t) = η̄(x, y) + η′(x, y, t), (2.5)
φ(x, y, z, t) = φ̄(x, y, z) + φ′(x, y, z, t), (2.6)
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where η̄(x, y) and φ̄(x, y, z), the SCW solutions of permanent form, are superimposed
on the infinitesimal unsteady perturbations η′(x, y, t) and φ′(x, y, z, t), with η′ � η̄
and φ′ � φ̄. After substituting forms (2.5) and (2.6) into the system of equations
(2.1)–(2.4), then retaining only linear terms when perturbations and their derivatives
are present, and finally ranging all components in the first two powers of the
perturbation terms (powers 0 and 1), we obtain two distinct systems of equations:
at the zeroth order of the perturbation elements (unperturbed wave field), we obtain
the nonlinear SCWs equations for solutions (η̄, φ̄); and at their first order, we obtain
a linear system of equations solving the linear stability problem for solutions (η′, φ′),
that is, the search of the normal forms [5, 6].

At the zeroth order, the system of equations (2.1)–(2.4) is

φ̄xx + φ̄yy + φ̄zz = 0 for z � η̄(x, y),
φ̄z = 0 for z→ −∞,

φ̄xη̄x + φ̄yη̄y − φ̄z = 0 on z = η̄(x, y), (2.7)

η̄ + 1
2 (φ̄2

x + φ̄
2
y + φ̄

2
z − c2) = 0 on z = η̄(x, y). (2.8)

The wave steepness is defined as the half of the nondimensional peak-to-trough
height:

h =
η̄(0, 0) − η̄(π/m, 0)

2
.

Two methods have been considered for the computation of the SCW solutions
of permanent forms. The first is the asymptotic method, which was proposed by
Roberts [10], and was rebuilt and used by Ioualalen and Kharif [5]. The derived
solutions are unique and, following Roberts [10], the radius of convergence of their
power series is increased beyond singularities (poles) by using the Padé approximation
through Shanks’ transform [12]. It is fair to say that the solution is no longer valid
around the singularity, at the pole location. Unfortunately, this is precisely the location
where Ioualalen and Kharif [5] found their sporadic instability domain. The second
method is a direct numerical procedure proposed by Okamura [9] who used a Newton
procedure. The method has no technical limitations, so it reveals the entire set of SCW
solutions.

At first order, the system of equations (2.1)–(2.4) writes

φ′xx + φ
′
yy + φ

′
zz = 0 for z � η̄(x, y), (2.9)

φ′z = 0 for z→ −∞, (2.10)

η′(φ̄zz − η̄xφ̄xz − η̄yφ̄yz) − η̄xφ
′
x − φ̄xη

′
x − η̄yφ

′
y − φ̄yη

′
y + φ

′
z − η′t = 0 on z = η̄(x, y),

(2.11)

φ′t + φ̄xφ
′
x + φ̄yφ

′
y + φ̄zφ

′
z + η

′(1 + φ̄xφ̄xz + φ̄yφ̄yz + φ̄zφ̄zz) = 0 on z = η̄(x, y), (2.12)
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for which we look for nontrivial superharmonic solutions of the form,

η′(x, y, t) = e−iσt
∞∑

K=−∞

∞∑

L=−∞
aKLei(Kmx+Lny), (2.13)

φ′(x, y, z, t) = e−iσt
∞∑

K=−∞

∞∑

L=−∞
bKLei(Kmx+Lny)eγKLz, (2.14)

where γKL = [(Km)2 + (Ln)2]1/2. Complex eigenvalues (σ) and their respective eigen-
vector components (aKL, bKL) are computed using the (spectral) Galerkin method
of Ioualalen and Kharif [5, 6]. For a given frequency �m(−σK,L), 	e(−σK,L) = 0
corresponds to a neutrally stable (K, L) perturbation mode,	e(−σK,L) < 0 to a stable
one and	e(−σK,L) > 0 applies for an instability.

3. SCW solutions. A brief review on harmonic resonances (HRs)

The semi-numerical asymptotic method of Roberts [10] and the fully numerical
Newton method of Okamura [9] both look for N-truncated doubly periodic permanent
solutions of the form,

η̄(x, y) =
N∑

I=0

N∑

J=2−I.mod(2)

ηI,J cos(Imx) cos(Jny),

φ̄(x, y, z) =
N∑

I=0

N∑

J=2−I.mod(2)

φI,J sin(Imx) cos(Jny)eγIJ z,

with γJK = [(Jm)2 + (Kn)2]1/2. Harmonical coefficients ηI,J and φI,J are obtained
directly with the numerical method of Okamura [9], which is also detailed by Ioualalen
and Okamura [7]. Those of the asymptotic method of Roberts [10] are obtained
through successive powers of the small parameter h, previously defined as the wave
steepness,

η̄(x, y) =
N∑

r=1

ηrhr, φ̄(x, y, z) =
N∑

r=1

φrhr, ω =

N∑

r=0

ωrhr. (3.1)

The symmetry of the wave propagation at the vertical wall imposes the first-order
linear solution to be of the form,

ω0 = 1, η1 = cos(x) cos(y) and φ1 = sin(x) cos(y)ez.

The flow symmetry also forces the general solutions to be of the following form, where
harmonics I and J must be of same parity [10]:

ηr =

r∑

I,J

ηr,I,J cos(Imx) cos(Jny),

φr =

r∑

I,J

φr,I,J sin(Imx) cos(Jny)eγIJ z.
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The fully numerical method of Okamura [9] is based on a Newton procedure. The
system of equations (2.7) and (2.8) is solved at any collocation point of a computational
domain covering one wavelength in both horizontal directions X and Y. The procedure
starts with a first-guess solution (FGS) and Newton’s procedure operates several
iterations until convergence is reached. Then, the next wanted solution, at a different h,
is obtained by taking the previous converged solution as an FGS, that is, the choice of
the FGS to solve the problem prescribes the future solution. This iterative procedure
allows to calculate a segment/branch of the solution. However, in some circumstances,
convergence is not reached, indicating the presence of a singular point. An alternative
FGS is then necessary, permitting a jump from one branch solution to another around
the singularity. Then, the iterative procedure continues on the second branch. This
efficient iterative method may then reveal the multiple branches of the SCW solution.

Roberts [10] was at the beginning of the SCW studies, and revealed most of their
characteristics and behaviours, thanks to his semi-numerical method. Harmonics (I, J)
are ranged and their respective coefficients are computed once for all for a given
incident angle θ. Then, the wave expressions (3.1) are rapidly derived for any chosen
value of the expansion parameter h, which is defined as the wave steepness. To any
given value of h corresponds a unique solution of the wave height η, velocity potential
φ and frequency ω. It is inherent to a perturbation method [10]. The asymptotic
method used by Ioualalen and Kharif [6] is totally inspired by that of Roberts [10].
He prescribed a nonsecular condition to describe the harmonic coefficients as power
series of the wave height h instead of the arbitrary expansion parameter ε which has
no physical meaning, while Ioualalen and Kharif [6] operate an inversion of the power
series of the wave height h, that is, a function of ε, and then replace the parameter ε
inside the coefficient expansions, to obtain a power series of h as well. The obtained
solutions are then rigorously identical.

The combination of (2.7) and (2.8) leads to the well-known equation of a natural
oscillator, the free surface. Roberts [10] showed that its right-hand side may contain,
through nonlinear interactions, a term proportional to sin(IX) cos(IJ)eγIJ z that is a
solution of the homogeneous equation for some critical angles of resonance θHR, when
cos2 θHR = (I4 − I2)/(J2 − I2) on deep water (Table 1, up to the order of truncation
N = 11).

To accurately compute HRs, Roberts [10] analysed carefully the convergence of the
power series (3.1). One must ensure that the expansion parameter h is smaller than the
radius of convergence Rc of the series and eventually increase Rc by some techniques,
like the Shanks transform [12], if h > Rc. To illustrate, let us consider angles θ = 52.3◦

and θ = 53◦, which are close to the resonance angle θHR = 52.2388◦ (Table 1). At
the angle θHR, a resonance occurs for a flat surface (h = 0). At angles 52.3◦ and
53◦, it occurs at a nonzero wave steepness. Let us proceed with the computation of
the d’Alembert criterion [2] for the frequency ω(h), that is, the ratio between two
successive coefficients of its power expansion. Since ω retains only even orders of
the expansion (3.1) for symmetry reasons [10], it is developed in powers of H = h2.
Thus, for simplicity, we report the ratio (ωn+2/ωn)1/2 in Figure 2.
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TABLE 1. Resonance angles θHR(I, J) on deep water (in◦), up to order 11 of truncation [10]. The flow
symmetry forbids mixed parity for harmonics I and J [10]. Thus, values J = 5, 7, 9, 11, . . . , are not allowed
for I = 2; similarly for values J = 10 and I = 3. In deep water, harmonic resonances (HRs) appear at J = 4
and J = 9 for I = 2 and I = 3, respectively, at angle 0◦ [10].

J I = 2 I = 3

4 0
5
6 52.2388
7
8 63.4349
9 0
10 69.2052
11 36.6992

FIGURE 2. Computed ratio (ωn+2/ωn)1/2 as a function of the SCW order of truncation n up to order
n = 73 for angles θ = 52.3◦ (◦) and θ = 53◦(�); ωn being the component of the frequency at order r = n
(see (3.1)). The asymptotic method of Roberts [10] is used.

At angle θ = 52.3◦, where there is no other nearby resonance angles than
θHR = 52.2388◦ up to order n = 73, the ratio converges into the single value
h ≈ 0.054728 (Figure 2). The process begins after order n = 6 where HR (2,6) appears.
According to the criterion, it can be considered as the “local” radius of convergence.
The radius of convergence of the power series may also be approximated by using the
Padé approximation [3]. The pole of the (17,17) approximant is h = 0.054726 which is
in full agreement.

At angle 53◦, the ratio drops into successive thresholds due to the presence of
nearby resonance angles. The first is the same θHR = 52.2388◦, appearing at order
6 and triggering a first convergence at h ≈ 0.191135. The value h is larger than the
value for angle θ = 52.3◦ because angle 53◦ is farther from θHR = 52.2388◦. The ratio

https://doi.org/10.1017/S1446181124000129 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181124000129


8 S. C. Colón Useche, S. Paul and M. Ioualalen [8]

then trends to a second value h ≈ 0.0749 due to HR (4,26) appearing at order 26
(θHR = 52.9133◦, not shown in Table 1), but operating at higher order; and finally
around h ≈ 0.0231 due to HR (5,41) (θHR = 52.9918◦). The successive drops may
potentially result in a zero-ratio, which is the effective radius of convergence of all
power series (3.1). Furthermore, we may expect that SCW solutions will not converge
because of the occurrence of HRs for every angle θ. Following Roberts [10], Ioualalen
and Kharif [5] explored low-order HRs (I < 4) by using the Shanks transform [12]
to increase their radius of convergence. They ignored high-order resonances (I > 3),
conjecturing that high-order HRs would be damped through viscosity in real ocean
waves.

The coefficient φ2,6 of the resonant component (2,6) is plotted in Figure 3 versus
the wave steepness h at the nontrivial angle of resonance θ = 52.3◦, which is close
to the resonance angle 52.2388 of HR (2,6) (Table 1). The fully numerical Newton
method of Okamura [9] and the semi-numerical asymptotic procedure of Roberts [10]
are used. Using Newton’s method, branch (3) is obtained starting from a flat surface
and increasing the wave steepness h (upper panel of Figure 3, in disks). A “severe”
positive jump is then obtained around the critical singularity hc ≈ 0.0547, which is
precisely the radius of convergence and the pole described above using the asymptotic
method. Below this critical value of h, branch (3) is similar to the solution obtained
with the asymptotic method (in blue and red lines in Figure 3): both are weak and
positive. The two solutions differ around the pole value. As expected, the asymptotic
solution, without any processing, diverges at the singularity (in dashed blue without
ε-algorithm). However, when the radius of convergence is extended using the Shanks
transform [12], here the ε-algorithm (ε-alg.), the processed solution operates a slight
jump into weak negative values (red line, with ε-alg.). The passage from positive to
negative values happens around the pole. The asymptotic solution cannot be reliable
around this point.

Using the Newton method past the pole, the remaining branches (2) and (3) are
obtained; thanks to the choice of a judicious first-guess solution in the iterative process.
Past the bifurcation at hc, the complete multiple solution is thus obtained. Branch (3)
escapes from branches (2) and (1), while those latter are connected through a turning
point (TP). It is interesting to note the similarity between branch (2) and the processed
asymptotic solution: both are weak, negative and have the same trend. Around the TP,
the complete and the processed asymptotic solutions differ significantly: both solutions
operate a jump from positive to negative value, but to a larger extent for the former one.

To summarize, using the fully numerical method, we obtain the effective set of
solutions, that is, a single branch prior to the TP, branch (3), and a multi-branch
solution subsequent to the TP, which is composed of the continuation of branch (3)
and the two connected branches (1) and (2). The asymptotic method, with or without
the use of the ε-alg., first provides the accurate segment of branch (3) for h smaller
than the radius of convergence of the coefficient expansion. Then, around the radius
of convergence, that is, at the TP, when complemented with the Shanks transform,
the transform connects continuously the lower segment of branch (3) (before the
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(a)

(b)

FIGURE 3. (a) Coefficient φ2,6 of the harmonics (2,6) of the velocity potential versus the wave steepness
h at the incidence angle θ = 52.3◦ using Newton’s method. The branches of the solution are numbered
(1)–(3), branches (1) and (2) being connected through a turning point (TP). Note branch (2) is negative,
although not visible at this scale. Branch (3), spanning from point (P1) to point (P2), is plotted in
small disks when stable, large disks when unstable and plus signs when normal form solutions have not
converged. Similarly, for branches (1) and (2), there are small and large triangles and plus signs extending
from point (P4) to point (P3) through the TP. For reference, there are also plotted solutions obtained
with an asymptotic method with (solid red) and without (dashed blue) use of the Shanks transform
(ε-algorithm). (b) Enlargement around the TP for better visibility. In particular, the passage between
stability regimes for branches (1) and (3) and around TP is clearly delineated (sizes of the disks and
triangles for ease to read).

singularity) to an approximate of branch (1) after the singularity, resulting in an
overall single solution [3, 12]. This single solution can thus be considered as “hybrid”,
because the transform operates a matching between two distinct branches. The use of
the Shanks transform seems efficient around and past the singularity by increasing
the radius of convergence of the power series. However, it still remains an artificial
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(a)

(b)

FIGURE 4. The coefficient φ1,1 of the harmonies (1,1) of (a) the velocity potential and (b) the wave
frequency ω versus the wave steepness h at incidence angle θ = 52.3◦, and their three solution branches
(1), (2) and (3).

procedure because it uses one particular Padé approximant, bearing in mind that Padé
approximants may differ drastically [3]. Moreover, Gilewicz [3] also proposed other
alternatives such as his so-called best Padé approximant (BAP) to increase radii of
convergence. Thus, the use of the “hybrid” solution is an interesting alternative, but
should be avoided when an exact set of solutions is available, (like that of Okamura)
[9] which we use hereafter. This is precisely what was done by Roberts [10], by also
developing a fully numerical method after his asymptotic one [11].

Once the resonant component (2,6) forces a multiple solution past the TP, the
entire set of coefficients of both the wave heights, the velocity potential and the
wave frequency behave similarly (Figure 4). The full resonance of the SCW field can
thus be described as a “contamination” of the entire SCW spectrum by the resonant
harmonics (2,6) through interactions between frequency components that are present
in nonlinear terms of (2.7) and (2.8). Once the SCW field is obtained, its mode of
occurrence and persistency is further analysed through the computation of its normal
forms.
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4. Stability of resonant SCWs: their normal forms

We consider the resonance (2,6) on deep water versus the wave steepness h. As
described by Ioualalen and Kharif [5], a harmonic resonance (±K, L) corresponds to a
superharmonic instability that may occur only when the two eigenvalues σs

K,L = σ
−s
−K,L

of opposite signatures coalesce. The collision of the two eigenmodes (±K, L) is then
interpreted as Ioualalen and Kharif’s [6] class Ia (K, L) instability. It corresponds to a
resonance between the two eigenmodes (±K, L) and the 2K modes (1,±1) of the basic
SCW of permanent form,

Ω1 = −Ω2 + KΩ01 + KΩ02,
k1 = k2 + Kk01 + Kk02,

where Ωi = |ki|1/2, Ω0i = |k0i|1/2 for i = 1, 2, k1 = (mK, nL) and k2 = (−mK, nL) being
the wave numbers of the perturbation modes, and k01 = (m, n) and k02 = (m,−n) being
those of the basic wave.

The stability problem is solved using the procedure of Ioualalen and Kharif [5].
The perturbation forms (2.13) and (2.14) are truncated at order M and the SCWs
of permanent form η̄(x, y, z) and φ̄(x, y) are computed using the Newton method of
Okamura [9]. Once both expressions are substituted into the first-order system of
equations (2.9)–(2.12), we obtain a generalized eigenvalue problem of the form
Au = iσBu that we solve with the QZ algorithm [8], where σ are the eigenvalues
and u = (ajk, bjk)T their corresponding eigenvectors. Complex matrices A and B are
functions of the basic flow. The Galerkin numerical procedure of Ioualalen and Kharif
[5] is used to solve the eigenvalue problem. Equations (2.11) and (2.12) are numerically
integrated over one wavelength in the two horizontal directions using fast Fourier
transforms (FFTs) over ν × μ points of coordinates αxu = 2πu/ν, u = 0, . . . , ν − 1 and
βyv = 2πv/μ, v = 0, . . . , μ − 1. A generalized eigenvalue problem is obtained at the free
surface z = η̄(x, y),

M∑

K=−M

M∑

L=−M

FK−r,L−s{E(1)
KL}aKL +

M∑

K=−M

M∑

L=−M

FK−r,L−s{G(1)
KL}bKL = iσars,

M∑

K=−M

M∑

L=−M

FK−r,L−s{E(2)
KL}aKL +

M∑

K=−M

M∑

L=−M

FK−rL−s{G(2)
KL}bKL

= iσ
M∑

K=−M

M∑

L=−M

FK−r,L−s{H(2)
KL}bKL,

with

E(1)
KL = −φ̄zz + imKφ̄x + inLφ̄y + η̄xφ̄xz + η̄yφ̄yz,

G(1)
KL = (imKη̄x + inLη̄y − γKL)eγKLη̄,

E(2)
KL = 1 + φ̄xφ̄xz + φ̄yφ̄yz + φ̄zφ̄zz,
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G(2)
KL = (imKφ̄x + inLφ̄y + γKLφ̄z)eγKLη̄,

HKL = eγKLη̄.

The functions

FK−r,L−s{fKL} =
ν−1∑

u=0

μ−1∑

v=0

fKLeiα(K−r)xu eiα(L−s)yv ,

where r = −M, . . . , M and s = −M, . . . , M, are computed using two-dimensional FFTs.
Convergence of the eigenvalues σ is obtained by increasing M. In the following, all
computations are carried out up to order M = 49 if necessary.

In Figure 5, we have plotted the frequencies [−	e(σ±2,6)] of the eigenvalues σ±2,6
along with their growth rates [−�m(σ±2,6)] for branches (1) to (3) of the SCW field.
Let us first consider branch (3). As expected, as h increases from point (P1) towards
the TP (Figures 3 and 5), the frequencies of the harmonics (−2,6) and (2,6) converge
to each other while remaining neutrally stable. Then, they coalesce when they both
vanish and give rise to an instability beyond the TP. As described by Ioualalen and
Kharif [5], a coalescence at zero-frequency is consistent with a resonance, since both
harmonic components propagate at the same phase speed as the basic SCW field. They
are phase-locked, which is precisely the definition of a resonance phenomenon.

Beyond a certain value of the wave steepness h, Ioualalen and Kharif [5], using an
asymptotic method, observed a re-stabilization. They described the h-range of insta-
bility as a “bubble”-like structure with a specific maximum growth rate. In contrast,
with our complete SCW solution, and in particular for our branch (3), we do not
observe any re-stabilization, at least as far as the normal form problem converges,
which is not the case past a certain value of the wave steepness (Table 2). We even
find an inflection point from h ≈ 0.10 enhancing the growth rate instead of reaching a
maximum (Figure 5).

For the other branches, starting from point (P3) towards the TP all along branch (2),
the frequencies converge to each other and also give rise to an instability around the
TP at the beginning of branch (1) (Figures 3 and 5). Within branch (1) from the TP
to point (P4), an instability arises with no re-stabilization of the converged solutions
(Table 2, Figure 5), in contrast to that observed by Ioualalen and Kharif [5]. Similarly
to the unstable segment of branch (3), an inflection point is also observed from the
same wave steepness h ≈ 0.10, with very similar growth rates.

We propose the following reason for the re-stabilization computed by Ioualalen and
Kharif [5], that is, the existence of their “bubble”-like structure. Their hybrid SCW
solution operates a jump from the h-left segment of our branch (3) to branch (2).
As we show here, both parts are stable. Around the jump, the solution operates a
jump from the beginning of the unstable branch (3) to the beginning of the unstable
branch (1). The passage automatically requires a narrow h-range of instability, that is,
their “bubble”. It is thus due to the hybrid but incomplete structure of their solution.
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FIGURE 5. Frequency [−	e(σ±2,6)] (dots) and growth rate [−�m(σ±2,6)] (+ signs) versus the wave
steepness h for angle θ = 52.3◦. Positive values of the frequencies and growth rates correspond to
eigenvalues σ2,6 and negative values correspond to σ−2,6. (a) Solution branch (3), and (b) branches (2)
and (1). Points (P1) to (P4) and TP are the same as in Figure 3.

Ultimately, in our case study, the stability analysis indicates a possible passage from
partially unstable segments of branches (1) and (3) onto the always-neutrally stable
branch (2) for any given wave steepness h (Figures 3 and 6). Regardless of the wave
steepness h, a subcritical bifurcation may always operate from an unstable branch
onto a stable one (Figures 3 and 6). There exists always a pre-existing (neutrally)
stable branch solution upon which a transition from an unstable segment may occur
(Figure 6). Therefore, the physical appearance of HRs is still questionable, despite the
possible large growth rate of their associated instability.
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TABLE 2. Convergence of the growth rates −�m(σ±2,6) versus the wave steepness h at incidence angle
θ = 52.3◦. Three values of the parameter h are taken for each branch (3) (h3) and (1) (h1), h = 0.1386 and
h = 0.1129 being respectively the highest values where convergence is reached.

M Branch (3) Branch (1)

h3 = 0.0859 h3 = 0.1137 h3 = 0.1386 h1 = 0.0927 h1 = 0.1027 h1 = 0.1129

29 0.00131 0.00034 0 (stable) 0.00135 0 (stable) 0 (stable)
33 0.00133 0.00191 0 (stable) 0.00176 0.00198 0 (stable)
37 0.00132 0.00196 0.00203 0.00178 0.00213 0.00201
41 0.00132 0.00198 0.00271 0.00179 0.00220 0.00269
45 0.00132 0.00199 0.00287 0.00179 0.00222 0.00286
49 0.00132 0.00199 0.00289 0.00179 0.00223 0.00287

FIGURE 6. Schematic representation of the SCW three-solution branches (1), (2) and (3) for coefficient
φ2,6 of the velocity potential versus the wave steepness h for angle θ = 52.3◦ (Figure 3). Dashed lines
apply for unstable segments while solid lines are for neutrally stable ones. Arrows represent possible
jumps form unstable to stable branch segments.

5. Conclusion

Short-crested waves are the genuine three-dimensional wave fields that are gen-
erated when two two-dimensional progressive waves intersect at a certain incidence
angle. It is well known since the pioneering work of Roberts [10] that they host
the HR phenomenon that questions their existence, because of the problem of small
divisors. Previous studies of Ioualalen and Kharif [5] identified these resonances as a
particular case of modulational instabilities that occur at zero-frequency, which means
that they are phase-locked with the main wave. They computed their normal forms
and suggested that they are weak and sporadic, and thus they are not likely to develop
in a water wave field. The asymptotic method they used to compute the solutions has
some limitations, especially around and past the singularity due to HR. Their hybrid
solution, although unique, is composed of two branch solutions before and beyond
the pole of the power series of the wave steepness h that are connected continuously
(and artificially); thanks to the use of the Shanks transform. Around the pole, their
solution cannot be considered valid, and past the pole, it cannot be reliable because
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it is constructed artificially. Later, Ioualalen and Okamura [7] computed SCWs with
a fully numerical procedure based on the Newton method, and they showed that HRs
give rise to multiple solution structures that are composed of three branches.

In the present study, the HR (2,6) is investigated, because it corresponds to a
low-order resonance, and thus it is more likely to appear, according to previous
studies [5]. It was also selected because it exemplifies a well-developed three-
dimensional SCW field. The solutions and normal forms are computed. When
converged solutions are obtained, instabilities arise for both branch (1) and a segment
of branch (3) of Figure 5. In that case, it is important to note that no re-stabilization
was obtained, unlike that observed by Ioualalen and Kharif [5] who used a hybrid
asymptotic solution. It is found that the residual branch (2) is always stable. In fact, it
is shown that the asymptotic SCW solution of Ioualalen and Kharif [5] is a composite
of the stable segment of branch (3) and the stable branch (2) before and beyond the
pole. It is therefore obvious that if their solution is unstable near the instability region
(as they found), it must necessarily exhibit a bubble-like structure.

A further interesting result follows: the solution involves a subcritical bifurcation
from an unstable to a stable mode around critical incidence angle and wave steepness h.
As a result, there always exists a stable state regardless of the wave steepness, thus
avoiding an HR appearance. These two competing processes certainly need to be
further investigated.
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