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Abstract

The problem of optimally scaling the proposal distribution in a Markov chain Monte
Carlo algorithm is critical to the quality of the generated samples. Much work has gone
into obtaining such results for various Metropolis–Hastings (MH) algorithms. Recently,
acceptance probabilities other than MH are being employed in problems with intractable
target distributions. There are few resources available on tuning the Gaussian proposal
distributions for this situation. We obtain optimal scaling results for a general class of
acceptance functions, which includes Barker’s and lazy MH. In particular, optimal val-
ues for Barker’s algorithm are derived and found to be significantly different from that
obtained for the MH algorithm. Our theoretical conclusions are supported by numerical
simulations indicating that when the optimal proposal variance is unknown, tuning to
the optimal acceptance probability remains an effective strategy.
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1. Introduction

Over the past few decades, Markov chain Monte Carlo (MCMC) methods have become an
abundantly popular computational tool, enabling practitioners to conveniently sample from
complicated target distributions [5, 21, 26]. This popularity can be attributed to easy-to-
implement accept–reject-based MCMC algorithms for target densities available only up to a
proportionality constant. Here, draws from a proposal kernel are accepted with a certain accep-
tance probability. The choice of the acceptance probability and the proposal kernel can yield
varying performances of the MCMC samplers.

Unarguably, the most popular acceptance probability is Metropolis–Hastings (MH), of
[14, 20], owing to its acknowledged optimality [4, 25]. Efficient implementation of the MH
algorithm requires tuning within the chosen family of proposal kernels. For the MH accep-
tance function, various optimal scaling results have been obtained under assumptions on the
proposal and the target distribution. This includes the works of [3, 24, 27, 28, 29, 34, 40, 41],
among others.
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Optimal scaling of MCMC beyond Metropolis 493

Despite the popularity of the MH acceptance function, other acceptance probabilities remain
practically and theoretically relevant. Recently, Barker’s acceptance rule [2] and lazy MH
[18] have found use in Bernoulli-factory-based MCMC algorithms for intractable posteriors
[12, 13, 15, 37, 39]. Barker’s acceptance function has also proven to be optimal with respect
to search efficiency [19], and it guarantees variance improvements for waste-recycled Monte
Carlo estimators [7]. Further, a class of acceptance probabilities from [3] has been of indepen-
dent theoretical interest. We also introduce a new family of generalized Barker’s acceptance
probabilities and present a Bernoulli factory for use in problems with intractable posteriors.

To the best of our knowledge, there are no theoretical and practical guidelines concerning
optimal scaling outside of MH and its variants (although see [35] for a discussion on delayed-
acceptance MH and [8, 32, 36] for analyses pertaining to pseudo-marginal MCMC). We obtain
optimal scaling results for a large class of acceptance functions; Barker’s, lazy MH, and MH
are members of this class.

We restrict our attention to the framework of [27] with a random-walk Gaussian proposal
kernel and a d-dimensional decomposable target distribution. Similar to MH, our general class
of acceptance functions require the proposal variance to be scaled by 1/d. We find that, typi-
cally, for lower acceptance functions, the optimal proposal variance is larger than the optimal
proposal variance for MH, implying the need for larger jumps. For Barker’s acceptance rule,
the asymptotically optimal acceptance rate (AOAR) is approximately 0.158, in comparison to
the 0.234 rate for MH [27]. Similar AOARs are presented for other acceptances.

In Section 2 we describe our class of acceptance probabilities, with the main results pre-
sented in Section 3. AOARs for Barker’s and other functions are obtained in Section 3.1. In
Section 4 we present numerical results in some settings that comply with our assumptions and
others that do not. A trailing discussion on the scaling factor for different acceptance func-
tions and generalizations of our results is provided in the last section. All proofs are in the
appendices.

2. Class of acceptance functions

Let π be the target distribution, with corresponding Lebesgue density π and support X , so
that an MCMC algorithm aims to generate a π-ergodic Markov chain, {Xn}. Let Q be a Markov
kernel with an associated Lebesgue density q(x, ·) for each x ∈X . We assume throughout that
q is symmetric. Furthermore, let the acceptance probability function be α(x, y) : X ×X →
[0, 1]. Starting from an X0 ∈X , at the nth step, a typical accept–reject MCMC algorithm pro-
poses y ∼ q(Xn−1, ·). The proposed value is accepted with probability α(Xn−1, y) and rejected
otherwise, implying that Xn = Xn−1. The acceptance function α is responsible for guarantee-
ing π-reversibility and thus π -invariance of the Markov chain. Let a ∧ b denote min(a, b) and
s(x, y) = π (y)/π (x). We define A, the class of acceptance functions for which our optimal
scaling results will hold, as follows.

Definition 1. Each α ∈A is a map α(x, y) : X ×X → [0, 1], and for every α ∈A there exists
a balancing function gα : [0, ∞) → [0, 1] such that

α(x, y) = gα(s(x, y)), x, y ∈X , (1)

gα(z) = zgα

(
1

z

)
, 0 ≤ z < ∞, (2)

gα(ez), z ∈R, is Lipschitz continuous. (3)
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Properties (1) and (2) are standard and easy to verify, with (1) ensuring that intractable
constants in π cancel away and (2) ensuring π-reversibility. Property (3) is not required for
α to be a valid acceptance function; however, we need it for our optimal scaling results (to
establish Lemma 4), and it holds true for all common acceptance probabilities. Moreover, each
α ∈A can be identified by the corresponding gα , and we will use α and gα interchangeably. If
gMH denotes the balancing function for the MH acceptance function (αMH), then

gMH(z) = 1 ∧ z, z ≥ 0. (4)

It is easy to see that αMH ∈A. The lazy MH (αL) acceptance of [15, 18] also belongs to A. For
a fixed ε ∈ [0, 1], it is defined using

gL(z) = (1 − ε)(1 ∧ z), z ≥ 0 . (5)

Barker’s acceptance function is αB(x, y) = gB(s(x, y)) for all x, y ∈X , where

gB(z) = z

1 + z
, z ≥ 0. (6)

Then (2) follows immediately. For differentiable functions, Property (3), i.e. Lipschitz conti-
nuity of gα(ez), can be verified by bounding the first derivative. In particular, the derivative of
gB(ez), given by ez/(1 + ez)2, is bounded by 1/4 for all z ∈R, and hence αB ∈A. From [25], it
is well known that in the context of Monte Carlo variability of ergodic averages, MH is supe-
rior to Barker’s. Even so, Barker’s acceptance function has had a recent resurgence, aided by
its use in Bernoulli-factory MCMC algorithms for Bayesian intractable posteriors where MH
algorithms are not implementable.

We present a generalization of (6): for r ≥ 1 define

gR
r (z) =

⎧⎪⎨
⎪⎩

z(zr − 1)

zr+1 − 1
, z 
= 1,

r

r + 1
, z = 1 .

For r ∈N, the above can be rewritten as

gR
r (z) = z + · · · + zr

1 + z + · · · + zr
, z ≥ 0, r ∈N. (7)

If αR
r is the associated acceptance function, then αR

r ∈A for all r ≥ 1. Moreover, gR
1 ≡ gB and

gR
r ↑ gMH as r → ∞. For r ∈N, we present a natural Bernoulli factory in the spirit of [13]

that generates events of probability αR
r without explicitly evaluating it; see Appendix D. An

alternative approach would be to follow the general sampling algorithm of [23] for rational
functions.

Let �(·) be the standard normal distribution function. For a theoretical exposition, [3]
defines the following acceptance probability for some h > 0:

gH
h (z) = �

(
log z − h/2√

h

)
+ z · �

(− log z − h/2√
h

)
, z ≥ 0. (8)

For each h > 0, αH
h ∈A, and observe that as h → 0, gH

h → gMH, while as h → ∞, gH
h → 0;

i.e. the chain never moves. Similar examples can be constructed by considering other well-
behaved distribution functions in place of �. Lastly, it is easy to see that A is convex. Thus,
it also includes situations when each update of the algorithm randomly chooses an acceptance
probability. Moreover, as evidenced in (5), A is also closed under scalar multiplication as long
as the resulting function lies in [0, 1].
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3. Main theorem

Let f be a 1-dimensional density function and consider a sequence of target distributions
{πd} such that for each d, the joint density is

πd
(
xd)= d∏

i=1

f
(
xd

i

)
, xd = (xd

1, . . . , xd
d

)T ∈R
d.

Assumption 1. The density f is positive and in C2—the class of all real-valued functions with
continuous second-order derivatives. Furthermore, f ′/f is Lipschitz, and the following moment
conditions hold:

Ef

[(
f ′(X)

f (X)

)8
]

< ∞, Ef

[(
f ′′(X)

f (X)

)4
]

< ∞. (9)

Consider the sequence of Gaussian proposal kernels
{
Qd
(
xd, ·)} with associated density

sequence {qd}, so that Qd
(
xd, ·)= N

(
xd, σ 2

d Id
)
, where for some constant l ∈R

+,

σ 2
d = l2/(d − 1) .

The proposal Qd is used to generate a d-dimensional Markov chain, Xd = {Xd
n, n ≥ 0

}
, fol-

lowing the accept–reject mechanism with acceptance function α. Under these conditions and
with α = αMH, [27] established weak convergence to an appropriate Langevin diffusion for
the sequence of 1-dimensional stochastic processes constructed from the first component of
these Markov chains. Since the coordinates are independent and identically distributed (i.i.d.),
this limit informs the limiting behaviour of the full Markov chain in high dimensions. In what
follows, we extend the results of [27] to the class of acceptance functions A as defined in
Definition 1.

Let
{
Zd, d > 1

}
be a sequence of processes constructed by speeding up the Markov chains

by a factor of d as follows:

Zd
t = Xd

[dt] =
(

Xd
[dt],1, Xd

[dt],2, . . . , Xd
[dt],d

)T
; t > 0.

Suppose
{
ηd : Rd →R

}
is a sequence of projection maps such that ηd

(
xd
)= xd

1. Define a new
sequence of 1-dimensional processes

{
Ud, d > 1

}
as follows:

Ud
t := ηd ◦ Zd

t = Xd
[dt],1; t > 0.

Under stationarity, we show that
{
Ud, d > 1

}
weakly converges in the Skorokhod topology

[10] to a Markovian limit U. We denote weak convergence of processes in the Skorokhod
topology by ‘⇒’ and standard Brownian motion at time t by Bt. The proofs are in the
appendices.

Theorem 1. Let
{
Xd, d ≥ 1

}
be the sequence of πd-invariant Markov chains constructed using

the acceptance function α and proposal Qd such that Xd
0 ∼ πd. Further, suppose α ∈A and πd

satisfies Assumption 1. Then Ud ⇒ U, where U is a diffusion process that satisfies the Langevin
stochastic differential equation,

dUt = (hα(l))1/2dBt + hα(l)
f ′(Ut)

2f (Ut)
dt,
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with hα(l) = l2Mα(l), where

Mα(l) =
∫
R

gα

(
eb) 1√

2π l2I
exp

{−(b + l2I/2)2

2l2I

}
db (10)

and

I =Ef

[(
f ′(X)

f (X)

)2
]

.

Remark 1. Since αMH ∈A, our result aligns with [27], because

MMH(l) =
∫
R

gMH
(
eb) 1√

2π l2I
exp

{−(b + l2I/2)2

2l2I

}
db = 2�

(
− l

√
I

2

)
.

Remark 2. For symmetric proposals, Definition 1 requires α to be a function of only the
ratio of the target densities at the two contested points. Thus, the result is not applicable to
acceptances in [1, 22, 39].

In Theorem 1, hα(l) is the speed measure of the limiting diffusion process and so the optimal
choice of l is l∗ such that

l∗ = arg max
l

hα(l).

Denote the average acceptance probability by

αd(l) := Eπd,Qd

[
α
(
Xd, Yd)]=

∫ ∫
π
(
xd) α

(
xd, yd) qd

(
xd, yd) dxd dyd ,

and the asymptotic acceptance probability by α(l) := limd→∞ αd(l). The dependence on l is
through the variance of the proposal kernel. We then have the following corollary.

Corollary 1. Under the setting of Theorem 1, we obtain α(l) = Mα(l), and the asymptotically
optimal acceptance probability is Mα(l∗).

Corollary 1 is of considerable practical relevance, since for different acceptance functions it
yields the optimal target acceptance probability to tune to.

3.1. Optimal results for some acceptance functions

In Section 2, we discussed some important members of the class A. Corollary 1 can then be
used to obtain the AOAR for them by maximizing the speed measure of the limiting diffusion
process. For Barker’s algorithm, from Theorem 1 and (6), the speed measure hB(l) of the
corresponding limiting process is hB(l) = l2MB(l), where

MB(l) =
∫
R

1

1 + e−b

1√
2π l2I

exp

{−(b + l2I/2)2

2l2I

}
db.

Maximizing hB(l), the optimal value l∗ is approximately (see Appendix C)

l∗ = 2.46√
I

.

By Corollary 1, using this l∗ yields an asymptotic acceptance rate of approximately 0.158.
Hence, when the optimal variance is not analytically tractable in high dimensions, one may
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FIGURE 1. Efficiency (h(l)) versus acceptance rate (α(l)) with I = 1 (left). Relative efficiency of Barker’s
versus MH (hB(l)/hMH(l)), plotted against l (right).
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FIGURE 2. Optimal acceptance rate against number of dimensions.

consider tuning the algorithm so as to achieve an acceptance probability of approximately
0.158. Additionally, the right plot in Figure 1 verifies that the relative efficiency of Barker’s
versus MH, as measured by the ratio of their respective speed measures for a fixed l, remains
above 0.5 [18, Theorem 4]; this relative efficiency increases as l increases. The ratio of the
speed measures of Barker’s versus MH at their respective optimal scaling is 0.72. This quanti-
fies the loss in efficiency in running the best version of Barker’s compared to the best version
of the MH algorithm. We can also study the respective speed measures as a function of the
acceptance rate; this is given in the left plot in Figure 1. We find that as the asymptotic accep-
tance rate increases, the speed measure for Barker’s decreases more rapidly than that of MH.
This suggests that there is much to gain by appropriately tuning Barker’s algorithm.

For lower dimensions, the optimal acceptance rate is higher than the AOAR. Figure 2 shows
optimal values for MH and Barker’s algorithms on isotropic Gaussian targets in dimensions
1 to 10, the proposal kernel being the same as in the setting of Theorem 1. This plot is produced
using the criterion of minimizing first-order auto-correlations in each component [11, 28, 29].
For αMH and αB, the optimal acceptance rates in one dimension are 0.43 and 0.27 respectively.
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TABLE 1. Optimal proposal variance and asymptotic acceptance rates.

αMH αH
1 αH

1.913 αH
5 αR

10 αR
5 αR

2 αB

Mα(l∗) 0.234 0.189 0.158 0.129 0.229 0.223 0.197 0.158
|l∗√I| 2.38 2.43 2.46 2.49 2.39 2.39 2.42 2.46

FIGURE 3. Optimal acceptance rates for αH
h against h (left) and αR

r against r (right).

For lazy MH with ε ∈ [0, 1], Corollary 1 implies that the AOAR of the algorithm is (1 −
ε)0.234 with the same optimal l∗ as MH. For the acceptance functions αH

h in (8),

Mh(l) = 2�

(
−

√
h + l2I

2

)
.

With h = 0, we obtain the result of [27] for MH. Further, the left panel of Figure 3 high-
lights that as h → 0, the AOAR increases to 0.234 and the algorithm worsens as h increases.
Moreover, for h ≈ 1.913, the AOAR is roughly 0.158, i.e. equivalent to Barker’s acceptance
function.

Lastly, the AOARs for αR
r in (7) are available. For r = 1, . . . , 10, the results have been

plotted in the right plot of Figure 3. As anticipated, the AOAR approaches 0.234 as r increases.
Notice that αR

2 yields an AOAR of 0.197, which is a considerable increase from αB = αR
1 .

Table 1 below summarizes the results of this section. (Code for all plots and tables is available
at https://github.com/Sanket-Ag/BarkerScaling.)

4. Numerical results

We study the estimation quality for different expectations as a function of the proposal
variance (acceptance rate) for the generalized Barker acceptance function, αR

r . We focus on
r = 1 (Barker’s algorithm) and r = 2. Suppose f : Rd →R is the function whose expectation
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FIGURE 4. Convergence times for αB against acceptance rate in the isotropic setting (top row) and the
correlated target setting (bottom row).

with respect to πd is of interest. Let {f (Xn)} be the mapped process. Similarly to [29], we
assess the choice of proposal variance by the convergence time:

convergence time := −k

log(ρk)
,

where ρk is the lag-k autocorrelation in {f (Xn)}. In each of the following simulations, con-
vergence time is estimated by averaging over 103 replications of Markov chains, each of
length 106 with k = 1. We chose a range of values of l where l is such that σ 2

d = l2/d in
a Gaussian proposal kernel Qd

(
xd, ·)= N

(
xd, σ 2

d Id
)
. Consider first the case of an isotropic

target, πd = Nd(0, Id) with isotropic Gaussian proposals; the conditions of Theorem 1 are sat-
isfied. The estimated convergence time for f (x) = x1 and f (x) = x̄, where x̄ is the mean of
all components x1, . . . , xd, is plotted in Figure 4 (top row). Here, d = 50. For both functions
of interest, the optimal performance, i.e. the minimum convergence time, corresponds to an
acceptance rate of approximately 0.158 for αB and 0.197 for αR

2 ; the slight overestimation is
due to the finite-dimensional setting. Next, we consider πd = Nd(0, �d) where �d is a d × d
matrix with 1 on its diagonal and all other elements are equal to some non-zero ρ. Here, the
assumptions in Theorem 1 are not satisfied. For such a target and for αMH, [29] showed that
the rate of convergence of the algorithm is governed by the eigenvalues of �d. In particular,
the eigenvalues of �d are dρ + 1 − ρ and 1 − ρ, with associated eigenvectors y such that yTx
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yields x̄ and xi − x̄ (for i = 1, . . . , d), respectively. Then, it was shown that the algorithm con-
verges quickly for functions orthogonal to x̄, but much more slowly for x̄. Despite the differing
rates of convergence, the optimal acceptance rate, corresponding to the minimum convergence
time, remains the same. We find this also to be true for αB and αR

2 as illustrated in Figure 4 (bot-
tom row), where we present convergence times for x1 − x̄ and x̄. Once again, d = 50. The large
difference between convergence times for both is quite evident from the y-axis of the two plots.
The minimum again lies in a region around the asymptotic optimal. We note that because of the
slow convergence rate of x̄, the process demonstrates slow mixing, yielding more variable esti-
mates of the convergence time. For both simulation settings, we see the expected improvement
in the convergence time for αR

2 compared to αB.

4.1. A Bayesian logistic regression example

We consider fitting a Bayesian logistic regression model to the famous Titanic dataset,
which contains information on crew and passengers aboard the 1912 RMS Titanic. Let y denote
the response vector (indicating whether each person survived or not), and let X denote the
n × d model matrix; here d = 10. We assume a multivariate zero-mean Gaussian prior on β

with covariance 100I10. The resulting target density is

π (β | y) ∝ exp

{
−βTβ

2

n∏
i=1

exp
(−xT

i β
)1−yi

1 + exp
(−xT

i β
)
}

.

For the Titanic dataset, the resulting posterior has a complicated covariance structure, with
many components exhibiting an absolute mutual correlation of beyond .50. The posterior
is also ill-conditioned, with the condition number of the estimated target covariance matrix
being ≈ 105. As seen in the bottom row of Figure 4, in such situations an isotropic proposal
kernel might perform poorly for most functions. We instead consider a Gaussian proposal
scheme where the proposal covariance matrix is taken to be proportional to the target covari-
ance matrix. This is a common strategy for dealing with targets with correlated components
and forms the basis for many adaptive MCMC kernels [30]. We implement Barker’s algo-
rithm to sample from the posterior. Let �d denote the covariance matrix associated with the
posterior distribution of β; then the proposal kernel Qd

(
xd, ·)= N

(
xd, σ 2

d �d
)
. Since �d is

unavailable, we estimate it from a pilot MCMC run of size 107. We then consider various
values of σ 2

d = l2/d.
The performance of the algorithm for different functions of interest is plotted in Figure 5.

Since this is a 10-dimensional problem, the optimal acceptance rate from Figure 2 is approxi-
mately 0.18. The convergence times for both, β1 − β̄ and β̄, are similar. Furthermore, both are
minimized at approximately the same acceptance rate of 0.18. It is natural here to be interested
in estimating the posterior mean vector. Thus, we also study the properties of the vector β, with
efficiency measured via the multivariate effective sample size (ESS) [38]. The ESS returns the
equivalent number of i.i.d. samples from π that would yield the same variability in estimating
the posterior mean as the given set of MCMC samples. In Figure 5, we see that the optimal
acceptance rate, corresponding to the highest ESS values, is achieved around 0.18.

5. Conclusions

We have obtained optimal scaling and acceptance rates for a large class of acceptance func-
tions. In doing so, we have found that the scaling factor of 1/d for the proposal variance holds
for all acceptance functions, indicating that the acceptance functions are not likely to affect
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FIGURE 5. Convergence times for αB (left and middle) and multivariate ESS for the posterior mean
vector (right) against acceptance rate.

the rate of convergence, just the constants associated with that rate. Thus, practitioners need
not hesitate in switching to other acceptance functions when the MH acceptance probability
is not tractable, as long as Corollary 1 is used to tune their algorithm accordingly. There is
also an inverse relationship between optimal variance and AOAR (see Table 1), implying that
when dealing with sub-optimal acceptance functions, the algorithm seeks larger jumps. The
computational cost of the Bernoulli factory that we present for αR

r in Appendix D increases
with r. Given the large jump in the optimal acceptance probability from r = 1 to r = 2, the
development of more efficient Bernoulli factories is an important problem for future work.
The assumption of starting from stationarity is a restrictive one. For MH with Gaussian pro-
posals, the scaling factor of 1/d is still optimal when the algorithm is in the transient phase
[6, 16, 17]. The optimal acceptance probability may vary depending on the starting distribu-
tion. We envision that similar results are viable for the general class of acceptance functions,
and this is important future work. Our results are limited to only Gaussian proposals and triv-
ially decomposable target densities. Other proposal distributions may make use of the gradient
of the target, e.g. the Metropolis-adjusted Langevin algorithm [31] and Hamiltonian Monte
Carlo [9]. In problems where αMH cannot be used, the gradient of the target density is likely
unavailable; thus it is reasonable to limit our attention to a Gaussian proposal. On the other
hand, generalizations to other target distributions are important. For MH algorithms, [3, 34]
relax the independence assumption, while [29] relax the identically distributed assumption.
Additionally, [40] present a proof of weak convergence for MH for more general targets, and
[33] provide optimal scaling results for general Bayesian targets using large-sample asymp-
totics. In these situations, extensions to other acceptance probabilities are similarly possible.
Additionally, we encourage future work in optimal scaling to leverage our proof technique to
demonstrate results for the wider class of acceptance probabilities.

Appendix A. Proof of Theorem 1

The proof is structurally similar to the seminal work of [27], in that we will show that the
generator of the sped-up process, Zd, converges to the generator of an appropriate Langevin
diffusion. Define the discrete-time generator of Zd as

GdV
(
xd)= d ·EYd

[(
V
(
Yd)− V

(
xd))α(xd, Yd)] , (11)
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for all those V for which the limit exists. Since our interest is in the first component of Zd,
we consider only those V which are functions of the first component only. Now, define the
generator of the limiting Langevin diffusion process with speed measure hα(l) as

GV(x) = hα(l)

[
1

2
V ′′(x) + 1

2

d

dx
(log f )(x)V ′(x)

]
. (12)

The unique challenge in our result is identifying the speed measure hα(l) for a general accep-
tance function α ∈A. Proposition 1 is a key result that helps us obtain a form of hα(l) without
resorting to approximations.

To prove Theorem 1, we will show that there are events Fd ⊆R
d such that for all t,

P
[
Zd

s ∈ Fd, 0 ≤ s ≤ t
]→ 1 as d → ∞ and

lim
d→∞ sup

xd∈Fd

|GdV
(
xd)− GV

(
xd

1

)| = 0 ,

for a suitably large class of real-valued functions V . Moreover, because of the conditions of
Lipschitz continuity on f ′/f , a core for the generator G has domain C∞

c , the class of infinitely
differentiable functions with compact support [10, Theorem 2.1, Chapter 8]. Thus, we can limit
our attention to only those V ∈ C∞

c that are a function of the first component.
Consider now the setup of Theorem 1. Let w = log f and α ∈A with the balancing function

gα . Let w′ and w′′ be the first and second derivatives of w, respectively. Define the sequence of
sets {Fd ⊆R

d, d > 1} by

Fd = {|Rd(x2, . . . , xd) − I| < d−1/8}∩ {|Sd(x2, . . . , xd) − I| < d−1/8}, where

Rd(x2, . . . , xd) = 1

d − 1

d∑
i=2

[log(f (xi))
′]2 = 1

d − 1

d∑
i=2

[w′(xi)]
2 and

Sd(x2, . . . , xd) = −1

d − 1

d∑
i=2

[log(f (xi))
′′] = −1

d − 1

d∑
i=2

[w′′(xi)] .

The following results from [27] will be needed.

Lemma 1. ([27].) Let Assumption 1 hold. If Xd
0 ∼ πd for all d, then, for a fixed t, P[Zd

s ∈
Fd, 0 ≤ s ≤ t] → 1 as d → ∞ .

Lemma 2. ([27].) Let Assumption 1 hold. Also, let

Wd(x1, . . . , xd) =
d∑

i=2

(
1

2
w′′(xi)(Yi − xi)

2 + l2

2(d − 1)
w′(xi)

2
)

,

where Yi
ind∼ N

(
xi, σ 2

d

)
, i = 2, . . . , d. Then supxd∈Fd

E
[∣∣Wd

(
xd
)∣∣]→ 0 .

Lemma 3. ([27].) For Y ∼ N
(
x, σ 2

d

)
and V ∈ C∞

c ,

lim sup
d→∞

sup
x∈R

d|E[V(Y) − V(x)]| < ∞ .

For the following proposition, we will utilize the property (2) imposed on A. This proposition
is the key to obtaining our main result in such generality.
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Proposition 1. Let X ∼ N(−θ/2, θ ) for some θ > 0. Let α ∈A with the corresponding balanc-
ing function gα . Then E

[
Xgα

(
eX
)]= 0.

Proof. We have ∣∣E[Xgα

(
eX)] ∣∣≤E

[|Xgα

(
eX)|]≤E[|X|] < ∞;

the second inequality follows from the assumption that gα lies in [0, 1]. Hence, the expectation
exists and is equal to the integral∫

R

x gα

(
ex) 1√

2πθ
exp

{−(x + θ/2)2

2θ

}
dx =:

∫
R

h(x)dx .

Observe that, using (2),

h(−x) = −x gα

(
e−x) 1√

2πθ
exp

{−(−x + θ/2)2

2θ

}

= −x gα

(
e−x) 1√

2πθ
exp

{−1

2θ

(
x2 + θ2

4
− xθ

)}

= −xe−xgα

(
ex) 1√

2πθ
exp

{−1

2θ

(
x2 + θ2

4
− xθ

)}

= −x gα

(
ex) 1√

2πθ
exp

{−1

2θ

(
x2 + θ2

4
+ xθ

)}

= −x gα

(
ex) 1√

2πθ
exp

{−(x + θ/2)2

2θ

}
= −h(x).

Hence, the result follows. �
Lemma 4. Suppose V ∈ C∞

c is restricted to only the first component of Zd. Then

sup
xd∈Fd

|GdV
(
xd)− GV

(
xd

1

)| → 0 as d → ∞.

Proof. In the expression for GdV
(
xd
)

given in (11), we can decompose the proposal Yd into
(Yd

1 , Yd−) and thus rewrite the expectation as follows:

GdV
(
xd)= dEYd

1

[(
V
(
Yd

1

)− V
(
xd

1

))
EYd−

[
α
(
xd, Yd) | Yd

1

]]
. (13)

Let Ed,α denote the inner expectation in (13) and define Ed,α
lim as

Ed,α
lim =EYd−

[
gα

(
exp

{
log

f
(
Yd

1

)
f
(
xd

1

) +
d∑

i=2

(
w′(xd

i

)(
Yd

i − xd
i

)− l2w′(xd
i

)2
2(d − 1)

)}) ∣∣∣∣Yd
1

]
. (14)

Also, a Taylor series expansion of w about xd
i for i = 2, . . . , d gives

Ed,α =EYd−

[
gα

(
exp

{
log

f
(
Yd

1

)
f
(
xd

1

) +
d∑

i=2

w′(xd
i

)(
Yd

i − xd
i

)

+1

2
w′′(xd

i

)(
Yd

i − xd
i

)2 + 1

6
w′′′(Zi)

(
Yd

i − xd
i

)3}) ∣∣∣∣Yd
1

]
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for Zi lying between xd
i and Yd

i . Hence, the triangle inequality and Lipschitz continuity of g(ez)
give, for some Lipschitz constant K < ∞,

∣∣Ed,α − Ed,α
lim

∣∣≤ KEYd−

[∣∣∣∣∣
d∑

i=2

1

2
w′′(xd

i

)(
Yd

i − xd
i

)2 + 1

6
w′′′(Zi)

(
Yd

i − xd
i

)3 + l2w′(xd
i

)2
2(d − 1)

∣∣∣∣∣
]

≤ KEYd−
[∣∣∣Wd

(
xd)∣∣∣]+ K sup

z∈R
|w′′′(z)| l3

(d − 1)1/2
, (15)

where Wd
(
xd
)

is as defined in Lemma 2. From Lemma 2, Lemma 3, and (15),

sup
xd∈Fd

∣∣∣GdV
(
xd)− dEYd

1

[(
V
(
Yd

1

)− V
(
xd

1

))
Ed,α

lim

]∣∣∣→ 0 as d → ∞. (16)

Now let ε(y) = log f (y) − log f
(
xd

1

)
. Also, from (14), it is clear that given xd, Ed,α

lim is a function
of Yd

1 alone, to wit,

(Md,α ◦ ε)
(
Yd

1

)
:= Ed,α

lim =E
[
gα

(
eBd
)]

, (17)

where Bd ∼ N(μd, �d) with μd = ε
(
Yd

1

)− l2Rd/2 and �d = l2Rd. Thus, by (15), it is enough
to consider the asymptotic behaviour of

dEYd
1

[(
V
(
Yd

1

)− V
(
xd

1

))
Md,α

(
ε
(
Yd

1

))]
.

Let Nd,α = Md,α ◦ ε and apply Taylor series expansion on the inner term to obtain(
V
(
Yd

1

)− V
(
xd

1

))
Md,α

(
ε
(
Yd

1

))
=
(

V ′(xd
1

)(
Yd

1 − xd
1

)+ 1

2
V ′′(xd

1

)(
Yd

1 − xd
1

)2 + 1

6
V ′′′(Kd)

(
Yd

1 − xd
1

)3)

×
(

Nd,α

(
xd

1

)+ N′
d,α

(
xd

1

)(
Yd

1 − xd
1

)+ 1

2
N′′

d,α(Ld)
(
Yd

1 − xd
1

)2)
,

where Kd, Ld ∈ [Yd
1 , xd

1

]
or
[
xd

1, Yd
1

]
, and

Nd,α

(
xd

1

)= Md,α

(
ε
(
xd

1

))= Md,α

(
log

f
(
xd

1

)
f
(
xd

1

)
)

= Md,α(0),

N′
d,α

(
xd

1

)= M′
d,α

(
ε
(
xd

1

))
ε′(xd

1

)= M′
d,α(0)w′(xd

1

)
. (18)

Now, for all d,

Md,α(ε) =E
[
gα

(
eBd
)]= ∫

R

gα

(
eb) 1√

2π l2Rd

exp

{
−(b − ε + l2Rd/2

)2
2l2Rd

}
db.

So Md,α(0) =
∫
R

gα

(
eb) 1√

2π l2Rd

exp

{
−(b + l2Rd/2

)2
2l2Rd

}
db.

Also, M′
d,α(ε) = d

dε

(∫
R

gα

(
eb) 1√

2π l2Rd

exp

{
−(b − ε + l2Rd/2

)2
2l2Rd

}
db

)
.
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The derivatives and integral here can be exchanged thanks to the dominated convergence
theorem, which yields

M′
d,α(ε) =

∫
R

gα

(
eb) 1√

2π l2Rd

(
2
(
b − ε + l2Rd/2

)
2l2Rd

)
exp

{
−(b − ε + l2Rd/2

)2
2l2Rd

}
db.

So M′
d,α(0) =

∫
R

gα

(
eb) 1√

2π l2Rd

((
b + l2Rd/2

)
l2Rd

)
exp

{
−(b + l2Rd/2

)2
2l2Rd

}
db

= 1

l2Rd

∫
R

b gα

(
eb) 1√

2π l2Rd

exp

{
−(b + l2Rd/2

)2
2l2Rd

}
db

+ 1

2

∫
R

gα

(
eb) 1√

2π l2Rd

exp

{
−(b + l2Rd/2

)2
2l2Rd

}
db

= 1

2
Md,α(0) ,

where the first term vanishes by Proposition 1. Hence, for all d,

2M′
d,α(0) = Md,α(0) =

∫
R

gα

(
eb) 1√

2π l2Rd

exp

{
−(b + l2Rd/2

)2
2l2Rd

}
db. (19)

Now, we plug the expressions obtained above into the Taylor series expansion of(
V
(
Yd

1

)− V
(
xd

1

))
Md,α(ε

(
Yd

1

)
). The rest of the proof, with the help of Assumption 1, follows

similarly as in [27, Lemma 2.6]. �
Proof of Theorem 1. From Lemma 4, we have uniform convergence of generators on the

sequence of sets with limiting probability 1. Thus, by Corollary 8.7 in [10, Chapter 4], we have
the required result of weak convergence (the condition that C∞

c separates points was verified
by [27]). �

Appendix B. Proof of Corollary 1

Lemma 5. Let Ed,α be the inner expectation in (13), and let Ed,α
lim be from (14). Then

Eπd

[
EY1

[
Ed,α − Ed,α

lim

∣∣∣∣ xd
]]

→ 0 as d → ∞.

Proof. Consider∣∣∣∣Eπd

[
EYd

1

[
Ed,α − Ed,α

lim

∣∣∣∣ xd
]]∣∣∣∣≤

∣∣∣∣Eπd

[
EYd

1

[
Ed,α − Ed,α

lim

∣∣∣∣ xd ∈ Fd

]]
P
(
xd ∈ Fd

)∣∣∣∣
+
∣∣∣∣Eπd

[
EYd

1

[
Ed,α − Ed,α

lim

∣∣∣∣ xd ∈ FC
d

]]
P
(
xd ∈ FC

d

)∣∣∣∣ .
The second term goes to 0, since the expectation is bounded and by construction
P
(
xd ∈ FC

d

)→ 0 as d → ∞. Also, following [27],

sup
xd∈Fd

∣∣Ed,α − Ed,α
lim

∣∣→ 0 as d → ∞.
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Then ∣∣∣∣Eπd

[
EYd

1

[
Ed,α − Ed,α

lim

∣∣∣∣ xd ∈ Fd

]]
P
(
xd ∈ Fd

)∣∣∣∣
≤Eπd

[
EYd

1

[
sup

xd∈Fd

∣∣∣Ed,α − Ed,α
lim

∣∣∣ ∣∣∣∣ xd ∈ Fd

]]
→ 0 . �

Proof of Corollary 1. Consider Equation (17). Using the Taylor series approximation of
second order around x1,

EYd
1

[
Ed,α

lim

]=E[Nd,α

(
Yd

1

)
] = Nd,α

(
xd

1

)+ 1

2
N′′

d,α(Wd,1)
l2

d − 1
,

where Wd,1 ∈ [xd
1, Yd

1

]
or
[
Yd

1 , xd
1

]
. Since N′′ is bounded [27],

α(l) = lim
d→∞ Eπd

[
EYd

1

[
EYd−

[
α
(
Xd, Yd)∣∣∣∣Yd

1 , xd
] ∣∣∣∣ xd

]]

= lim
d→∞ Eπd

[
EYd

1

[
Ed,α

lim + Ed,α − Ed,α
lim

∣∣∣∣xd
]]

.

As all expectations exist, we can split the inner expectation and use Lemma 5, so that

α(l) = lim
d→∞ Eπd

[
EYd

1

[
Ed,α

lim

∣∣∣∣xd
]]

+ lim
d→∞ Eπd

[
EYd

1

[
Ed,α − Ed,α

lim

∣∣∣∣ xd
]]

= lim
d→∞ Eπd

[
Md,α(0) + 1

2
N′′

d,α(Wd,1)
l2

d − 1

]

= lim
d→∞ Eπd

[∫
R

gα

(
eb) 1√

2π l2Rd

exp

{
−(b + l2Rd/2

)2
2l2Rd

}
db

]

=
∫
R

gα

(
eb) 1√

2π l2I
exp

{−(b + l2I/2)2

2l2I

}
db = Mα(l) .

The last equality is by the law of large numbers and the continuous mapping theorem. �

Appendix C. Optimizing speed for Barker’s acceptance

We need to maximize hB(l) = l2MB(l). Let I be fixed arbitrarily. Then

hB(l) = 1

I
· l2I ·

∫
R

1

1 + e−b

1√
2π l2I

exp

{−(b + l2I/2)2

2l2I

}
db.

For a fixed I, we can reparametrize the function by taking θ = l2I, and so maximizing hB(l)
over positive l will be equivalent to maximizing h1

B(θ ) over positive θ , where

h1
B(θ ) =

∫
R

θ

1 + e−b

1√
2πθ

exp

{−(b + θ/2)2

2θ

}
db.

We make the substitution z = (b + θ/2)/
√

θ in the integrand to obtain

h1
B(θ ) =

∫
R

θ

1 + exp{−z
√

θ + θ/2}
1√
2π

e−z2/2dz =E

[
θ

1 + exp{−Z
√

θ + θ/2}
]

,
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Algorithm 1: Die-coin algorithm for αR
2 (x, y)

1: Draw D ∼ Categorical

(
c2

y

c2
x + cxcy + c2

y
,

cxcy

c2
y + cxcy + c2

x
,

c2
x

c2
y + cxcy + c2

x

)

2. if D = 1 then

3. Draw C1 ∼ Bern
(
p2

y

)
4. if C1 = 1 then output 1 else go back to Step 1

5. if D = 2 then

6. Draw C1 ∼ Bern
(
pxpy

)
7. if C1 = 1 then output 1 else go back to Step 1

8. if D = 3 then

9. Draw C1 ∼ Bern
(
p2

x

)
10. if C1 = 1 then output 0 else go back to Step 1

where the expectation is taken with respect to Z ∼ N(0, 1). This expectation is not available in
closed form. However, standard numerical integration routines yield the optimal value of θ to
be 6.028. This implies that the optimal value of l, say l∗, is approximately equal to

l∗ ≈ 2.46√
I

(up to 2 decimal places).

Using this l∗ yields an AOAR of approximately 0.158.

Appendix D. Bernoulli factory

To sample events of probability αB, the two-coin algorithm, an efficient Bernoulli factory,
was presented in [13]. Generalizing this to a die-coin algorithm, we present a Bernoulli factory
for αR

r for r = 2; extensions to other r can be done similarly. Let π (x) = cxpx with px ∈ [0, 1]
and cx > 0. Then

αR
2 (x, y) = π (y)2 + π (x)π (y)

π (y)2 + π (x)π (y) + π (x)2
= c2

yp2
y + cxpxcypy

c2
yp2

y + cxpxcypy + c2
xp2

x
.
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