A NOTE ON HOMOGENEOUS DENDRITES
Z.A. Melzak *

(received June 27, 1967)

1. In graph-theoretic terms a homogeneous p-dendrite,
p> 2, is defined as a finite singly-rooted tree in which the
root has valency 1 while every other vertex has valency 1 or p.
More descriptively, a homogeneous p-dendrite may be imagined
to start from its root as the main, or Oth order, branch which
proceeds to the first-order branch point where it gives rise to
p first-order branches. Each of these either terminates at its
other end (which is a second-order branch point) or it splits
there again into p branches (which are of third order), and so
on. The order of the dendrite is the highest order of a branch
present in it. For completeness, a 0-th order dendrite is also
allowed, this consists of the 0-th order branch alone.

Alternatively, if we consider a development in time
rather than a structure in space, a homogeneous p-dendrite
represents a history in which a single individual fissions into
p identical individuals each of which either dies without
descendants or else, fissions into p new indistinguishable
individuals again.

We shall be interested here in the number f (n) of
P

(topologically) distinct n-th order p-dendrites. Ourinterest
is motivated partly by biological and physical considerations
relative to certain simple branching processes (number of
various family-histories, number of distinct dendrites of a
neuron, particle-showers, etc.) and partly by pure
combinatorics.
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2. Here we determine the number fZ(n) = f(n) of binary

dendrites. To begin with, we have
(1) £(0) = 1, £(1) = 1.

Let n> 0 and consider an (n+1)-st order binary dendrite.
There is here one first-order branch point, as shown in

Figure 1, and this is followed by two structures one of which is
an n-th order dendrite (position 1) and the other one an m-th
order dendrite (position 2), with m < n.

/< o position 1

root

\‘ < position 2

FIGURE 1

Suppose first that m < n. Then position 1 can be filled by any
one of the f(n) distinct n-th order dendrites and, independently,
position 2 by any one of the f(m) m-th order ones. Hence the
total number of (n+1)-st order dendrites with m < n is

n-1
(2) N, = f(n) Z f(i)
1 .
i=0
When m =n, the n-th order dendrites in positions 1 and 2 can
be identical, and this can occur in f(n) ways, or they canbe
distinct, which can occur in

f(n)[f(n) - 1]/2

ways. Therefore the total number of (n+1)-st order dendrites
with m = n is
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N2 = f(n)[f(n) + 1]/2.

Adding N1 and N2 we get the total number f(n+1) of distinct

(n+1)-st order dendrites:

(3) f(n+1) = f(n) n; f(i) + (1 +£(n))/2| ,
i=0
which may be written as
n-1
(@) f(fr;:;) _ +2f(n) ) fo £(i).

Copying this equation with n replaced by n-1, subtracting
from (4), and re-arranging, we get a nonlinear second-order
recursion for f:

f(n) f(n) + f(n-1)
f(n-1) 2

(5) f(n+1) = f(n)

From this and (1) we compute successively
f(2) = 2, £(3) = 7, f(4) = 56, f(5) = 22412, {(6) = 2595782
and so on. It would be useful to have an explicit formula for

f(n) but this does not appear to be easy to get. Some rough
bounds on f(n) can be obtained as follows. By (5) we have

(6) fz(n )J/2<f(n +1) < Zfz(n );
(o] o (o]
therefore
(5(n )/21%/2 < £(n_+2) < 2[2t%(n )]°
(o] - (0] (o]

and generally for arbitrary n and any fixed n
o

n n n n
(7) (£ (n)1/2% < fnin )< 28 TR )]
(o] - (o] (0]
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3. Throughout this section we assume that p = 3 and we
get a formula analogous to (5) for the case of ternary splitting.
Let f3(n) = f(n), put n>2 and consider an (n+1)-st order

ternary dendrite. In analogy to Figure 1 we have now three
positions to be filled by ternary dendrites of orders n, m, and k,
with 0 < k< m < n. Suppose first that k< m < n, then any

k-th order, m-th order, and n-th order dendrites can fill,
independently, their respective positions and so the number N1

of ternary dendrites of (n+1)-st order, with k< m< n. is

(8) N1 = f(n) = = f(k)f(m)
m=1 k=0
When k< m =n the corresponding number is
n-1
(9) N, = f(n) [f—(ﬂ;—i] = (k).
k=0

When k =m =n, there are three cases to consider because
among the n-th order dendrites filling the three positions there
may be one, two or three distinct ones. The total number N2

is here

(10) N,

f(n) +f(n)[f(n) - 1] + {(n)[f(n) - 1][f(n) - 2]/6

((m)[£5(n) + 36(n) + 2]/6.

1

Finally, when k = m < n, the contribution to the total is

n-1
(11) N = % f(k)[f(k) +1].

4 k=0

Adding the numbers Ni' N., N 'N4 from the equations (8), (9).

2’73
(10), (11) we get
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n-1 m-1 n-1
fn+1) = fn) T T f(m)f(k) + 0 f(r;) t1 £(k)
m=1 k=0 k=0
f(n) P21 f(n) .2
+—— T {(k)[f(k) +1] +—— [f (n) + 2f(n) + 2].
2 6
k=0
Therefore
(13)
f(nt1) %(n) + 36(n) + 2 “; 2’1 (i) 4 L)+ 1 “; ()
f(n) 6 m=1 k=0 2 k=0
1 n-1
+E z f(k)[f(k) +1].
k=0

Denote the left-hand side of (13) by F(n); taking first differences,

we get
n-2 n-2
F(n) - F(n-1) = f(n-1) = f(k)+f(—n)2—-uf(n-1)+w > f(k)
k=0 k=0
+ %f(n—i)[f(n—i) +1]
so that
(14)
n-2
F(n) - F(n-1) - f(nz—i) [f(n) + f(n-1)] - f(n-1) = f(_n)_+_2£(_n_~_1) T f(k).
k=0

Denote the left-hand side of (14) by G(n) and put

2G(n)

Hn) = 2+ foo 1)

so that (14) is now simply
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H(n) = = f(k);
taking first differences again, we eliminate all the sums and
get
H(n) - H(n-1) = f(n-2).

Substituting successively for H. G, F, we get after some
tedious algebra

(15)
f(n+1) = f(n)[f(n) + f(n-1)][f(n) + f(n-1) + f(n-2)]/6

f(n) + f(n-1) f(n) f(n-1)
(n-1) + f(n-2) f(n-1) f(n-2)

+ f(n) ; +f2(n)/f(n—1).

Direct inspection shows that f(0) =1, (1) =1, f(2) = 3, now
the recursion formula (15) yields

£(3) = 341, f(4) = 8401, f{f(5) = 4100130 704 103 etc.

4., It is possible to obtain in the same way successive

formulas, analogous to (5) and (15), for f4(n), f5(n), etc.

However their complexity grows very rapidly, and a recursion
formula valid fora general fp(n) appears to be difficult to get.

We shall obtain instead the general analogue of () and (12).

Consider an (n+1)-st order p-dendrite. Referring to
Figure 1. we have here p positions to fill instead of two,
and we suppose that the j-th position contains a p-dendrite of
order kj. To meet the enumerative conditions we must have

(16) 0<k <k _<...<k = n.
2= TP

It is important to know where the strict inequality occurs between

. -1

k. and k,+1, i=14,...,p-1. There are Zp sequences of
i i

p-1 signs each of whichis '"<' or "='"; any such sequence

will be denoted by r and called an ordering, and the set of all

-1
2P orderings will be denoted by R. Once an ordering r ¢ R
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is given, the monotonicity properties of (16) are known; further,
irrespectlve of the values of the indices k., two different
i

orderings will lead to different (n+1)-st order dendrites.
Let r ¢ R, if in r we find a sequence such as

or ... <k = k = ... =k
p-m+1 p-m+2 p

we call it a step of length m. In particular,

k, < ...,...
1 g i p

are steps of length 1. Let g = g(r) be the total number of
steps in r and let rn.j = mj(r) be the length of the j-th

consecutive one (j =1,2....,¢g(r)) so that
g(r)
1<g(r)<p, % m/(r) = p.
j=1

Consider now the j-th step, of length mj(r); this corresponds
to filling m.(r) positions with p-dendrites of the same order,
J
say s.. By the enumeration conditions of the problem we deal
J

here with combinations in which repetitions are allowed. and
there are f (s.) possibilities of filling each position. Therefore
P

the mj(r) positions can be filled in

f (s.) +m.(r) -1
P J J

m (r)
J

ways. Hence the number of ways in which all the positions can
be filled, once the ordering r as well as the values of the
indices Sj are fixed, is

g(r)

I fp(sj) +mj(r) -1

j=1 mj(r)
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Allowing for suitable variation of indices s, corresponding to
J

the same ordering r, we {ind that the total number of ways of
filling all the positions for a fixed ordering r is

s -4 s_-1s_-1
n-1 3 g(r)
f + -1
= o2 oz oz on |l eyt
sg(r)_izg(r)—z 5322 52:15120 i=1 m (1)

p-1

Summing over all the 2 orderings to get the grand total

number of ways of filling all the positions we get finally

(17)
n-1 54_1 83_1 S2—1g(r) f (s)4+m (r)-1
(o) = = = .. = = n|°P rjn(r)J
r ¢eR sg(r)_izg(r)—Z 53:2 52:1 5120 j=1 j

which generalizes (3) and (12) to arbitrary p.

Of the Zp_1 terms in the square brackets there is exactly
one, namely

f(n)+p-1
p
P

containing no summation; this corresponds to having all p
positions filled with maximal (n-th order) dendrites. Therefore

(18)
f +p-1 s -1 1 -1
pl™ P n-1 ST %3 1 %7 o(r)
fp(n+1)— . = = L.z > = I fp(sj) + Qp 5
=-D- =2 =1 =0 j= -
Sp—i p-2 Sq s, S1 j=1

where the first term on the right corresponds to all p positions
having dendrites of different orders (assuming that n is large
enough) and has p-1 summations, while Q > is the sum of all

the other terms, each of which has < p-2 summations. Denote
the ‘left-hand side. of (18) by F(n); taking first differences one
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finds that F(n) - F(n-1) is of the form

(19) f(n-i)S1+T + T +...+T1+T

p p-3 p-4 0

where S1 is a single term with p-2 summations, and T. is a
1

sum of terms with i summations. One repeats now the same
number-of- summations reduction procedure by taking the first
difference of

Gr) = [F(m) - F(n-1) - T(l/1 (n-1)

to get an expression similar to (19):

G(n) - G(n-1) = cp[fp(n), fp(n—i)]S'1 + TI'3'4 + ...+ Tb

where ¢ is a rational function. The whole process is carried
out p-1 times and one ends up with a nonlinear p-step recurrence
relation

f (nt1) = R[f (n).f (n-1). ..., f (n-p+1)]
P p P P

where R 1is a rational function with integer coefficients.
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