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Abstract

Sperm infertility or subfertility is detrimental to the precious highland germplasm like yak
whose population has been gradually declining in India. Understanding the ‘omic’ landscape of
infertile or subfertile yak sperm can reveal some interesting insights. In an attempt to do the
same, this study considered the semen of infertile or subfertile yak bulls for whole-genome and
transcriptome evaluations. DNA sequencing revealed that the yak sperm genome contains the
necessary genes to carry out all the important biological processes related to the growth,
development, survival and multiplication of an organism. Interestingly, RNA Seq results
highlighted that genes like VAMP7, MYLK, ARAP2 and MARCH6 showed increased
expression, while biological processes related to immune response (GO:0043308, GO:0002447,
GO:0002278, GO:0043307, GO:0043312, GO:0002283, GO:0043299 and GO:0002446) were
significantly overrepresented. These findings hint at a possible role played by immune system in
regulating infertility or subfertility in yaks. Further, in-depth studies can validate these findings
and help in improving our biological understanding in this area.

Introduction

Bull infertility or subfertility critically regulates the herd reproductive performance and
consequently, the economics of a dairy farm (Amann and DeJarnette, 2012, Taylor et al., 2018,
Butler et al., 2020). It has a significant effect on themajor performance traits including days open
(Hagiya et al., 2018), daughter pregnancy rate (Raheja et al., 1989), average daily gain (Raidan
et al., 2017), in vitro seminal parameters (Oliveira et al., 2012, Mapel et al., 2022) and sperm
defects (Leite et al., 2022). The ‘omics’ revolution in animal breeding has brought new insights
into the genetic make-up of sperm and its variability in individuals (Taylor et al., 2018), thus
bringing more clarity into the cases of bull infertility or subfertility (Han and Peñagaricano,
2016, Rezende et al., 2018, Das et al., 2020, Kumaresan et al., 2021). It has been found that sperm
infertility is modulated by the immunological milieu in the male reproductive tract.

Spermatogenesis (and the consequent sperm fertility) is crucially regulated by the
inflammatory and non-inflammatory responses induced by the immune cells (Ye et al.,
2021). Physiological and pathological injuries activate the immune regulatory molecules which,
though, offer protection to the sperm against these attacks but end up having a detrimental effect
on its fertility (Archana et al., 2019). Oxidative stress produced as a result of microbial and viral
attack on the sperm can also cause anatomical changes in the male reproductive tract including
testicular damage, reduction in Leydig cell mass and atrophy of seminiferous tubules and Sertoli
cells (Akhigbe et al., 2022, Das et al., 2022a). Immune response-related genes like IL6, IL8, IL1A
(Robertson and Sharkey, 2016), IFN (Hansen, 2007), HLA-DRA, HLA-DRB1, TNFRSF14 and
VRK1 (Salvi et al., 2022, Cerván-Martín et al., 2022) have been usually implicated in sperm
infertility or subfertility resulting from immunological causes.

Yak (Bos grunniens) is a seasonal breeder owing to the pastoral management system that
offers rich forages and nutrition for breeding in the high altitudes during summers, whereas
scarcity of vegetation renders them reproductively anestrous during winters (Prakash et al.,
2005, Das et al., 2022b). This production system renders the species highly vulnerable to the
dangers of extinction (Das et al., 2020, Kour et al., 2022). In this scenario, culling of infertile or
subfertile bulls is crucial for continued economic viability and conservation of this unique
germplasm. Infertility studies in yaks have been majorly directed at improving the
understanding of hybrid male sterility seen in cattle yak (Tumennasan et al., 1997; Wang
et al., 2012). Most of these studies have been conducted by comparing mRNA expression
between hybrids and their parents (Wang et al., 2012; Cai et al., 2017;Wu et al., 2019; Zhao et al.,
2022), while others have focused on DNAmethylome of the male hybrids to reveal the probable
epigenetic roles (Liu et al., 2011; Luo et al., 2022). Some of the workers have pursued a candidate
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gene approach targeting Y-chromosome linked genes, namely,
MSY, TSPY, TSPY2, PRAMEY, UTY, OFD1Y, USP9Y and SCYP3
to identify their roles in regulating yak bull fertility (Wang et al.,
2012; Zhang et al., 2019; Wu et al., 2019). Das and co-workers
(2020) deduced the involvement of small non-coding RNAs like
miRNA19a,miRNA142 andmiRNA143 in determining subfertility
in Arunachali yak bulls.

This study particularly aimed at understanding the omic
backgrounds of infertile or subfertile yak bulls. Therefore, infertile
or subfertile yak sperm was subjected to genomic and tran-
scriptomic evaluations to unveil the genes and biological processes
regulating infertility or subfertility in yak bulls. This study
provided initial leads for further detailed investigations in the area.

Materials and methods

Sample collection

Three adult healthy Arunachali yak bulls with true to the breed
characters (Das et al., 2022b) and showing infertility or subfertility
were considered for the study. Animals were kept in the bull shed
of the experimental yak farm of the Indian Council of Agricultural
Research (ICAR)-National Research Centre on Yak at
Nyukmadung, Arunachal Pradesh, at an elevation of 9000 ft
above mean sea level (Figure 1). Animals were housed in open
shelters (CGI roof) with concrete floors and were fed concentrate
feed at 2–3% of their body weight. This was supplemented with
green grass and paddy straw (roughages) and an ad libitum supply
of drinking water. All the bulls were apparently healthy and were
regularly vaccinated against major diseases. Semen was generally
collected at fortnightly intervals using a teaser bull and was
microscopically evaluated for its quality before being used for
insemination. A bull was considered infertile when its conception
rate was zero after being successively used for breeding for 2 years,
and a bull was considered subfertile when its conception rate was
less than 5% after being used successively for 5 years in the herd.

Fresh ejaculates were collected from three infertile or subfertile
yak bulls by artificial vagina method using the Missouri model
(Das et al. 2013). Semen samples were collected in accordance with
the approval of the Institute Animal Ethics Committee of the
ICAR-National Research Centre on Yak, Dirang, India, and the
approved animal use protocol number was 4(17)/NRCY/IAEC-02.
Subsequently, semen samples were processed and purified (Das
et al. 2013) and stored at –80oC until further use. DNAwas isolated
using a protocol developed by Wu et al. (2015) with slight
modification. RNA from sperm was isolated using a published
protocol with the help of a 27 gauge needle and Trizol (Das
et al. 2010).

Whole-genome and transcriptome sequencing

1 ng of sperm DNA concentration was used to prepare libraries
using Illumina’s Nextera XT DNA (Catalog no: FC-131-1024) and
Nextera DNA Flex (Catalog no: 20018704) library preparation kits.
Each pool of libraries with raw cluster densities of 202 and 189 for
Nextera XT and Nextera DNA Flex, respectively, were loaded and
sequenced separately on a NextSeq 500 System. Finally, paired-end
reads of 2 × 151 bp were generated for further analysis.

Total RNA from the sperm of three infertile or subfertile yak
bulls was pooled together and used for next-generation sequencing
on the Roche platform. RNA concentration was measured using
Nanodrop and the integrity of RNAwas checked by Bioanalyzer. A
cDNA library was prepared from the sperm RNA involving

the following steps: fragmentation of nucleic acids to 300–400 bp
lengths followed by end repair, ligation of adapters to ends of target
sequences, library amplification and quantification, selection of
appropriate fragments and removal of adapter dimers. Roche
single-end RNA sequencing was performed using library frag-
ments constructed according to the Roche protocol.

Data analysis

DNA sequencing data
The generated data were demultiplexed using bcl2fastq (version
v2.17.1.14; Illumina), and the final sequence reads were trimmed
using trimmomatic (version 0.38) (Bolger et al., 2014) using default
parameters (illuminaclip :2:30:10). The sequenced contigs data
were processed in mpiBLAST (Darling et al., 2003) to generate an
xml file. This file was subsequently used to search for similarity in
BLAST2GO software (Götz et al., 2008), and contigs with
similarity mean >80% were considered for further mapping and
annotation. Gene ontology (GO) IDs associated with the data were
analysed in PANTHER (Mi et al., 2010) to find out the statistical
overrepresentation of particular biological processes in yak sperm
DNA at False Discovery Rate (FDR)≤ 0.01.

RNA-sequencing data
The raw reads obtained by RNA sequencing were converted to
fastq format, and the quality check was performed. The quality of
the reads was evaluated using FASTQC (Andrews, 2010), and
PRINSEQ lite v0.20.4 (Schmieder and Edwards, 2011) was used to
trim the adaptor tags from the single-end reads. Thereafter, Bos
taurus (assembly ARS-UCD1.2), as well as Bos grunniens
(GCA_005887515.2 BosGru v3.0) reference genome, was down-
loaded and indexed, and reads were aligned to both the genomes
using Hisat2 (Kim et al., 2015). The .sam file containing the
mapped reads was sorted with the help of SAMtools (Li et al, 2009)
and, subsequently assembled using StringTie (Pertea et al., 2015).
StringTie was also used to estimate the gene abundance of the
transcripts assembled from both Bos taurus and Bos grunniens
reference genomes. The transcripts with gene coverage ≥1 were
selected for further gene annotation and ontology. The retrieved
gene list was fed into PANTHER (Mi et al., 2010) to identify
statistically overrepresented GO terms (FDR≤ 0.01).

Results

The total 36,542 contigs obtained through sperm genome sequencing
were blasted, mapped and annotated to reveal GO IDs corresponding
to >80% similarity mean. These GO IDs were fed into Ensembl
Biomart to retrieve a list of 8,337 protein-coding genes
(Supplementary Table 1). Gene ontology analysis highlighted 1,089
statistically overrepresented biological processes (Figure 2). The
complete list of statistically significant GO terms has been presented
in Supplementary Table 2. The significant biological processes could
be majorly categorized into parent groups, namely, biological
regulation (GO: 0044848), cellular process (GO: 0009987), localiza-
tion (GO: 0051179), metabolic process (GO: 0008152), response to
stimulus (GO: 0050896) and signalling (GO: 0023052). Significant
biological processes related to immunity included immune system
development (GO:0002520), immune system process (GO:0002376),
regulation of immune response (GO:0050776), regulation of T cell
(GO:0050863) and lymphocyte activation (GO:0051249), natural
killer cell activation involved in immune response (GO:0002323),
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regulation of cytokine production involved in immune response
(GO:0002718) etc.

A cDNA library was prepared from the sperm samples of
Arunachali yak and raw reads were generated. After alignment of
the reads with Bos grunniens and Bos taurus genomes, assembled

transcripts from both genomes were evaluated for gene abundance,
and those with gene coverage ≥1 were highlighted. However,
transcripts assembled from cattle genome corresponded to a
number of protein-coded genes including VAMP7, MYLK, ARAP2
andMARCH6.All the protein-coding genes were subjected to gene

Figure 1. Arunachali yak bull housed at the ICAR-National
Research Centre on Yak.
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Figure 2. Network map of gene ontology terms related to biological processes in sperm DNA.
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ontology analysis for reflecting statistically overrepresented
biological processes (FDR≤ 0.01). The GO terms for significant
biological processes were all related to immune responses and have
been presented in Table 1. Since we did not perform a comparative
transcriptomic study in fertile bulls, it may be possible that bulls
considered in this study may be suffering from some underlying
infection or inflammation at the time of sampling due to which
immune response was overrepresented. Although there was no
clinical history of any disease or infection at the time of sampling,
we cannot ignore this reason. This is also possible since biological
processes related to immune responses were only found to be
significantly overrepresented.

Discussion

The infertile yak sperm genome is comprised of all the cellular
components, molecular functions and biological processes
necessary for the growth, development, survival, immunity and
multiplication of an organism. This is quite obvious given the fact
that sperm, being a gamete, possesses one complete set of genes
that combines with the other set from the ovum to produce a
diploid individual with normal bodily functions and development.

The transcriptome of infertile or subfertile yak sperm high-
lighted that the GO terms related to immune-related processes
were highly significant. Though this study suffered from a
limitation that differential expression and transcriptome com-
parison with fertile yak sperm was not carried out, nonetheless, it
provided insights into the genomic and transcriptomic landscape
of infertile or subfertile yak sperm. These findings will definitely
help in designing further detailed downstream studies in the future.

Based on RNA Seq results, granulocytes-mediated immune
response was found to be significant in infertile yak sperm
granulocytes or polymorphonuclear leukocytes (PMN), namely,
eosinophils, neutrophils and basophils, constituting the most
prevalent white blood cells in semen followed by macrophages and
T-lymphocytes (Wolff, 1995). Additionally, granulocytes in semen
are negatively correlated with normal sperm morphology and
positively with mid-piece abnormalities, thus highlighting their
role in male infertility or subfertility (Thomas et al., 1997).
Specifically, neutrophil activation results in the production of
reactive oxygen species, which severely dents the sperm motility
(Kovalski et al., 1992). Being the first-line innate immune defense
system, PMNs release bactericidal enzymes by degranulation to
form neutrophil extracellular traps (NETs) and, hence,

phagocytosis (Brinkmann et al., 2004; Borregaard, 2010). When
the blood-testis barrier is breached, antigens on the sperm surface
induce PMN activation, thus extruding their DNA and resulting in
the trapping of sperm in NETs, thus hindering sperm motility.
However, neutrophil activation does not necessarily indicate
deterioration of sperm function as DNAse activity of seminal
plasma proteins helps in the digestion of extruded DNA and frees
the entangled spermatozoa, greatly boosting the chances of
conception in the female reproductive tract (Alghamdi and
Foster, 2005). Also, recent evidence suggests that the phagocytic
activity executed by PMNs is crucial for the therapeutic activity of
the sperm head in the female reproductive tract (Pakravan
et al., 2021).

Eosinophils also play an important role in the bodily immune
response by protecting against allergens and parasitic infestation
(Shamri et al., 2011). Eosinophilic degranulation is exacerbated in
response to infections and inflammation, and an RNAse-mediated
positive feedback loop is established between eosinophils and mast
cells in which the former induces mast cell activation by secretion
of RNase and mast cells, in turn, secrete cytokines like IL-5, which
further stimulate RNase release from eosinophils (Bystrom et al.,
2011). Subsequently, eosinophilic activation is mediated by these
RNases through the toll-like receptor signalling pathway and
results in the release of cytokines and various immune regulatory
molecules (Rudd et al., 2005; Phipps et al., 2007). It has been
reported that eosinophilic degranulation is observed in female
cervical mucosa on exposure to IgA antibodies, thus evoking an
allergenic reaction and disrupting immune tolerance (Brazdova
et al., 2016). This may be an important mechanism underpinning
sperm infertility or subfertility in the female reproductive tract.

Another probable proposition for the increased expression of
immune response in infertile or subfertile yak spermatozoa could
be the presence of antisperm antibodies (ASAs). Autoimmunity to
spermatozoa or the presence of ASAs is increasingly being
implicated as a major cause underlying human male infertility or
subfertility (Archana et al., 2019). Though the testis is an immune-
privileged site and protects the spermatozoa against autoimmune
attack, the blood-testis barrier provided by the organ is not
invincible (Wang and Holstein, 1983) as ASAs have been reported
in around 18% of the infertile males (Bozhedomov and
Teodorovich, 2005). Antigenic interaction between microorgan-
isms and sperm (Bozhedomov and Teodorovich, 2005), inflam-
matory conditions (Marconi et al., 2009), tumors (Bronson et al.,
1992) and reduced levels of cellular and humoral immunomodu-
latory factors in seminal plasma (Cooley et al., 2016) pose a grave
challenge to the immunosuppressive environment provided by the
testis. These insults lead to the production of cytokines, leukocytes
and T-cell activators, all of which subsequently impact the
fertilizing ability of sperm (Bohring and Krause, 2003). This has
been further validated by improvements seen in sperm motility,
sperm concentration and overall conception rate on the
administration of immune-suppressive corticosteroid therapy in
infertile humanmales (Skau and Folstad, 2005). Although there is a
paucity of research in this area concerning farm animals, a
significant association has been reported between ASAs in serum
or seminal plasma and fertility in cattle bulls (Zodinsanga et al.,
2015; Ferrer et al., 2015). Sperm-bound ASAs were reported to be
associated with poor post-thawmotility and breeding soundness in
stallions (Ferrer and Miller, 2018; Ferrer et al., 2021). Though we
did not test for the presence of ASAs in the sperm of infertile or
subfertile bulls considered in the study, this cause cannot be ruled
out completely.

Table 1. Significant gene ontology (GO) terms for biological processes in yak
sperm cDNA

S. no. Biological processes GO term FDR

1. Eosinophil degranulation GO:0043308 0.002

2. Eosinophil mediated immunity GO:0002447 0.002

3. Eosinophil activation involved in
immune response

GO:0002278 0.005

4. Eosinophil activation GO:0043307 0.001

5. Neutrophil degranulation GO:0043312 0.002

6. Neutrophil activation involved in
immune response

GO:0002283 0.008

7. Leukocyte degranulation GO:0043299 0.01

8. Neutrophil mediated immunity GO:0002446 0.01
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Genes like VAMP7, MYLK, ARAP2 and MARCH6 showed
increased expression in infertile or subfertile yak bulls. Over-
expression of VAMP7 has been associated with increased
transcription of oestrogen receptors resulting in reduced sperm
motility and spermatogenic failure (Tannour-Louet et al., 2014).
MYLK gene plays a crucial role in upregulation of AGBL4 gene
which subsequently, results in teratozoospermia in males (Wu
et al., 2015, Han et al., 2021). CENTD1 gene (analogue of human
ARAP2 gene) is significantly downregulated in the presence of
miR-10a which causes acute myeloid leukaemia in humans (Bryant
et al., 2012).MARCH6 was identified as a differentially methylated
gene in infertile sperm samples and could be postulated as a novel
biomarker gene for male infertility (Cassuto et al., 2021). This
indicates that the reduction in DNA methylation in immune-
related genes can lead to increased transcript expression of these
genes in infertile males (Schütte et al., 2013). Though this study
suffered from some limitations, it explored the ‘omic’ landscape of
infertile or subfertile yak sperm. Further functional studies can be
carried out to validate our findings and to bring out interesting
insights.

Conclusions

‘Omic’ analysis of infertility or subfertility in yak sperm highlighted
that genes including VAMP7, MYLK, ARAP2 and MARCH6 were
regulating the phenotype. Furthermore, immune-related biological
processes (GO:0043308, GO:0002447, GO:0002278, GO:0043307,
GO:0043312, GO:0002283, GO:0043299 and GO:0002446) were
significantly overrepresented (FDR≤ 0.01). These findings may be
indicative of a crucial role being played by genotype-environment
interactions in determining infertility or subfertility in male yaks.
However, further downstream studies in this direction can validate
our findings and propositions.
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