A SHARP UPPER BOUND FOR THE SUM OF RECIPROCALS OF LEAST COMMON MULTIPLES I[I](#page-0-0)

SIAO HON[G](https://orcid.org/0000-0002-5019-5999) \mathbb{D}^{\boxtimes} , ME[I](https://orcid.org/0000-0002-2400-8897)LING HUANG \mathbb{D} and YUANLIN LI

(Received 27 March 2022; accepted 26 April 2022; first published online 9 June 2022)

Abstract

Let *n* and *k* be positive integers with $n \geq k + 1$ and let $\{a_i\}_{i=1}^n$ be a strictly increasing sequence of positive integers. Let $S_{n,k} := \sum_{i=1}^{n-k} 1/(\text{lcm}(a_i, a_{i+k}))$. In 1978, Borwein ['A sum of reciprocals of least common multiples', *Canad. Math. Bull.* **20** (1978), 117–118] confirmed a conjecture of Erdős by showing that $S_{n,1} \leq 1 - 1/2^{n-1}$. Hong ['A sharp upper bound for the sum of reciprocals of least common multiples', *Acta Math. Hungar.* **160** (2020), 360–375] improved Borwein's upper bound to $S_{n,1} \le a_1^{-1}(1-1/2^{n-1})$
and derived optimal upper bounds for $S_{n,2}$ and $S_{n,2}$. In this paper, we present a sharp upper bound for $S_{n,2$ and derived optimal upper bounds for $S_{n,2}$ and $S_{n,3}$. In this paper, we present a sharp upper bound for $S_{n,4}$ and characterise the sequences ${a_i}_{i=1}^n$ for which the upper bound is attained.

2020 *Mathematics subject classification*: primary 11A05; secondary 11B65.

Keywords and phrases: least common multiple, reciprocal, upper bound, prime number theorem.

1. Introduction

Chebyshev [\[4\]](#page-10-0) investigated the least common multiple of consecutive positive integers when he made the first important attempt to prove the prime number theorem stating that $\log \text{lcm}(1, 2, \ldots, n) \sim n$ as *n* goes to infinity (see, for example, [\[13\]](#page-11-0)). Hanson [\[8\]](#page-10-1) and Nair $[14]$ gave upper and lower bounds for $lcm(1, 2, \ldots, n)$ and Nair's lower bound was extended in [\[6,](#page-10-2) [11\]](#page-11-2). Goutziers [\[7\]](#page-10-3) studied the asymptotic behaviour of the least common multiple of a set of integers not exceeding *N*. Bateman *et al.* [\[1\]](#page-10-4) obtained an asymptotic estimate for the least common multiple of arithmetic progressions that is generalised in [\[12\]](#page-11-3) to products of linear polynomials. In another direction, Behrend [\[2\]](#page-10-5) strengthened an inequality of Heilbronn [\[9\]](#page-10-6) and Rohrbach [\[15\]](#page-11-4). Erdős and Selfridge [[5\]](#page-10-7) proved a remarkable old conjecture that predicts that the product of any two or more consecutive positive integers is never a perfect power.

Erdős observed another interesting phenomena related to least common multiples. Let *n* and *k* be positive integers with $n \geq k + 1$ and let $\{a_i\}_{i=1}^n$ be a strictly increasing

This work was supported in part by research grants from the Natural Sciences and Engineering Research Council of Canada (Grant No. DDG-2019-04206 and RGPIN 2017-03903).

[©] The Author(s), 2022. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

sequence of positive integers. Let

$$
S_{n,k} := \sum_{i=1}^{n-k} \frac{1}{\mathrm{lcm}(a_i, a_{i+k})}.
$$

In 1978, Borwein [\[3\]](#page-10-8) confirmed a conjecture of Erdős by showing that $S_{n,1} \leq$ 1 − 1/2^{*n*-1} with equality if and only if $a_i = 2^{i-1}$ for $1 \le i \le n$. Recently, Hong [\[10\]](#page-11-5) improved this upper bound and used the new result to get sharp upper bounds for $S_{n,2}$ and $S_{n,3}$. He also characterised the sequences $\{a_i\}_{i=1}^{\infty}$ for which these upper bounds are attained. In this paper, we concentrate on $S_{n,4}$. We will present an optimal upper bound for $S_{n,4}$ and characterise the sequences $\{a_i\}_{i=1}^n$ for which this upper bound is attained.

As usual, for any real number *x*, we denote by $|x|$ and $[x]$ respectively the largest integer no more than *x* and the smallest integer no less than *x*. For brevity, we write $S_n := S_{n,4}$.

The main result of this paper can be stated as follows.

THEOREM 1.1. Let *n* be an integer with $n \geq 5$ and let $\{a_i\}_{i=1}^n$ be a strictly increasing *sequence of positive integers. Then:*

- (i) *S*₅ \leq 1/5 *with equality if and only if a_i* = *i for all i* \in {1, 2, 3, 4, 5}*;*
- (ii) $S_6 \leq 11/30$ *with equality if and only if* $a_i = i$ *for all i* $\in \{1, 2, 3, 4, 5, 6\}$;
- (iii) $S_7 \leq 43/90$ *with equality if and only if* $a_i = i$ *for all i* $\in \{1, 2, 3, 4, 5, 6\}$ *and a*₇ = 9*;*
- (vi) $S_8 \le 101/180$ *with equality if and only if* $a_i = i$ *for all* $i \in \{1, 2, 3, 4, 5, 6\}$ *,* $a_7 = 9$ *and* $a_8 = 12$ *;*
- (v) *if n* ≥ 9*, then*

$$
S_n \le \frac{493}{420} - \frac{533}{105} \cdot \frac{1}{2^{\lfloor n/4 \rfloor + 1}} + \frac{\epsilon_n}{2^{\lfloor n/4 \rfloor}},\tag{1.1}
$$

where

$$
\epsilon_n := \begin{cases}\n0 & \text{if } n \equiv 0 \pmod{4}, \\
\frac{2}{5} & \text{if } n \equiv 1 \pmod{4}, \\
\frac{11}{15} & \text{if } n \equiv 2 \pmod{4}, \\
\frac{107}{105} & \text{if } n \equiv 3 \pmod{4},\n\end{cases}
$$

and equality in [\(1.1\)](#page-1-0) occurs if and only if $a_i = i$ *for all i* $\in \{1, 2, 3, 4\}$ *and* $a_{4i+1} = 5 \times 2^{i-1}$ (1 ≤ *i* ≤ [(*n* − 1)/4]), $a_{4i+2} = 3 \times 2^i$ (1 ≤ *i* ≤ [(*n* − 2)/4]), $a_{4i+3} = 7 \times 2^{i-1}$ (1 ≤ *i* ≤ [(*n* − 3)/4]) and $a_{1i+3} = 2^{i+2}$ (1 ≤ *i* ≤ | *n*/4] − 1) $7 \times 2^{i-1}$ $(1 \le i \le \lfloor (n-3)/4 \rfloor)$ *and* $a_{4i+4} = 2^{i+2}$ $(1 \le i \le \lfloor n/4 \rfloor - 1)$ *.*

The rest of the paper is organised as follows. In Section [2,](#page-2-0) we prove several preliminary lemmas. In Section [3,](#page-7-0) we provide a proof for our main result.

2. Auxiliary lemmas

In this section, we supply several auxiliary lemmas that are needed in the proof of Theorem [1.1.](#page-1-1) The first is Hong's upper bound [\[10,](#page-11-5) Theorem 1.2] which improves Borwein's upper bound [\[3\]](#page-10-8).

LEMMA 2.1 [\[10,](#page-11-5) Theorem 1.2]. Let *n* be an integer with $n \ge 2$ and let $\{a_i\}_{i=1}^n$ be a *strictly increasing sequence of positive integers. Then*

$$
\sum_{i=1}^{n-1} \frac{1}{\text{lcm}(a_i, a_{i+1})} \le \frac{1}{a_1} \left(1 - \frac{1}{2^{n-1}} \right) \tag{2.1}
$$

with equality in [\(2.1\)](#page-2-1) if and only if $a_i = 2^{i-1}a_1$ *for all integers i with* $1 \le i \le n$.

LEMMA 2.2. Let *m* be an integer with $m \geq 3$. Then

$$
\frac{1}{7} + \frac{1}{9} + \frac{1}{9} \left(1 - \frac{1}{2^{m-2}} \right) < \frac{1}{5} + \frac{1}{21} + \frac{1}{5} \left(1 - \frac{1}{2^{m-2}} \right)
$$

and

$$
\frac{1}{9} + \frac{1}{12} + \left(\frac{1}{9} + \frac{1}{10}\right)\left(1 - \frac{1}{2^{m-2}}\right) < \frac{1}{8} + \frac{1}{21} + \left(\frac{1}{7} + \frac{1}{8}\right)\left(1 - \frac{1}{2^{m-2}}\right).
$$

PROOF. Since $m \geq 3$, a direct computation gives the desired inequalities.

LEMMA 2.3. *Let Sn be given as above. Then:*

- (i) $S_5 \le 1/5$ *with equality if and only if a_i = <i>i for all i* $\in \{1, 2, 3, 4, 5\}$;
(ii) $S_6 \le 11/30$ *with equality if and only if a_i = <i>i for all i* $\in \{1, 2, 3, 4, 5\}$
- $S_6 \leq 11/30$ *with equality if and only if* $a_i = i$ *for all i* $\in \{1, 2, 3, 4, 5, 6\}$ *;*

(iii) *S*₇ \leq 43/90 *with equality if and only if a_i* = *i for all i* \in {1, 2, 3, 4, 5, 6} *and a*₇ = 9.

PROOF. We first deal with *S*₅. Since $lcm(a_1, a_4) \ge a_5 \ge 5$,

$$
S_5 = \frac{1}{\text{lcm}(a_1, a_5)} \le \frac{1}{5}.\tag{2.2}
$$

The equality in [\(2.2\)](#page-2-2) holds if and only if $lcm(a_1, a_5) = 5$, which is true if and only if $a_1 = 1$ and $a_5 = 5$. However, $a_1 < a_2 < a_3 < a_4 < a_5$. So the equality in [\(2.2\)](#page-2-2) holds if and only if $a_i = i$ for all $i \in \{1, 2, 3, 4, 5\}.$

Now consider S_6 . Since $a_2 \geq 2$, $a_2 \mid \text{lcm}(a_2, a_6)$ and $\text{lcm}(a_2, a_6) \geq a_6 \geq 6$, we deduce that $lcm(a_2, a_6) \ge 6$ with equality if and only if $a_2 = 2$ and $a_6 = 6$. So

$$
S_6 = \frac{1}{\text{lcm}(a_1, a_5)} + \frac{1}{\text{lcm}(a_2, a_6)} \le \frac{1}{5} + \frac{1}{6} = \frac{11}{30},\tag{2.3}
$$

with equality in [\(2.3\)](#page-2-3) if and only if $lcm(a_1, a_5) = 5$ and $lcm(a_2, a_6) = 6$, which is true if and only if $a_1 = 1$, $a_2 = 2$, $a_5 = 5$ and $a_6 = 6$, which is true if and only if $a_i = i$ for all $i \in \{1, 2, 3, 4, 5, 6\}.$

Finally, we consider *S*₇. Since $a_3 \geq 3$, $a_3 \mid \text{lcm}(a_3, a_7)$ and $\text{lcm}(a_3, a_7) \geq a_7 \geq 7$, we deduce that either $lcm(a_3, a_7) = 8$ which is true if and only if $a_3 = 4$ and $a_7 = 8$, or

lcm(a_3 , a_7) = 9 which is true if and only if $a_3 = 3$ and $a_7 = 9$, or lcm(a_3 , a_7) ≥ 10 . We divide the rest of the proof into three cases.

If $lcm(a_3, a_7) \geq 10$, then

$$
S_7 = \frac{1}{\text{lcm}(a_1, a_5)} + \frac{1}{\text{lcm}(a_2, a_6)} + \frac{1}{\text{lcm}(a_3, a_7)} \le \frac{11}{30} + \frac{1}{10} < \frac{43}{90}
$$

as desired.

If $lcm(a_3, a_7) = 8$, then $a_3 = 4$ and $a_7 = 8$. This implies that $a_4 = 5, a_5 = 6$ and $a_6 = 7$. Since $(a_1, a_2) \in \{(1, 2), (1, 3), (2, 3)\}$, we have $lcm(a_1, a_5) = 6$ and $lcm(a_2, a_6) \in$ {14, 21}. It then follows that

$$
S_7 \le \frac{1}{6} + \frac{1}{14} + \frac{1}{8} < \frac{43}{90}.
$$

If $lcm(a_3, a_7) = 9$, then we must have $a_3 = 3$ and $a_7 = 9$. So $lcm(a_3, a_7) = 9$. It then follows that

$$
S_7 = S_6 + \frac{1}{\text{lcm}(a_3, a_7)} \le \frac{11}{30} + \frac{1}{9} = \frac{43}{90},\tag{2.4}
$$

with equality in [\(2.4\)](#page-3-0) if and only if $a_i = i$ for all $i \in \{1, 2, 3, 4, 5, 6\}$ and lcm(a_3 , a_7) = 9, if and only if $a_i = i$ for all $i \in \{1, 2, 3, 4, 5, 6\}$ and $a_7 = 9$ as required.

This completes the proof of Lemma [2.3.](#page-2-4) \Box

LEMMA 2.4. Let m be a positive integer with $m \geq 2$ and $\mathcal{A} = \{a_i\}_{i=1}^8$ a strictly *increasing sequence of eight positive integers. Let*

$$
\Box_m = \Box_m(\mathcal{A}) := \sum_{i=1}^4 \left(\frac{1}{\text{lcm}(a_i, a_{i+4})} + \frac{1}{a_{i+4}} \left(1 - \frac{1}{2^{m-2}} \right) \right).
$$
 (2.5)

Then both of the following statements are true.

- (i) *Either* $\Box_2 = 101/180$ *which is true if and only if a_i* = *i for all i* ∈ {1, 2, 3, 4, 5, 6}*,*
 $a_2 = 9$ *and* $a_8 = 12$ *or* $\Box_2 = 389/720$ *which holds if and only if a* = *i for all* $a_7 = 9$ *and* $a_8 = 12$, or $\Box_2 = 389/720$ *which holds if and only if* $a_i = i$ *for all integers i* \in {1 2 3 4 5 6} $a_7 = 9$ *and* $a_8 = 16$ or $\Box_2 = 453/840$ *which is true if integers i* ∈ {1, 2, 3, 4, 5, 6}*, a*₇ = 9 *and a*₈ = 16*, or* \Box ₂ = 453/840 *which is true if a*nd *only if* $a_1 =$ *i for all integers i* ∈ {1, 2, 3, 4, 5, 6, 7, 8}, *or* \Box ₂ < 453/840 *and only if a_i* = *i for all integers i* $\in \{1, 2, 3, 4, 5, 6, 7, 8\}$ *, or* \Box ₂ < 453/840*.*
If m > 3 *then*
- (ii) *If* $m \geq 3$ *, then*

$$
\Box_m \le \frac{493}{420} - \frac{533}{105} \cdot \frac{1}{2^{m+1}},\tag{2.6}
$$

with equality in [\(2.6\)](#page-3-1) if and only if $a_i = i$ *for all integers i with* $1 \le i \le 8$ *.*

PROOF

(i). Evidently, $\Box_2 = \sum_{i=1}^4 1/ \text{lcm}(a_i, a_{i+4})$. We consider the following cases.

Case 1: $a_5 \ge 6$. Then $a_8 \ge 9$. If $a_8 \ge 10$, then by the fact $lcm(a_i, a_{i+4}) \ge a_{i+4}$ for all $i \in \{1, 2, 3, 4\}$, we derive

$$
\square_2 \le \frac{1}{a_5} + \frac{1}{a_6} + \frac{1}{a_7} + \frac{1}{a_8} \le \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{10} < \frac{1}{5} + \frac{1}{6} + \frac{1}{8} + \frac{1}{21} = \frac{453}{840}.
$$

If $a_8 = 9$, then $a_5 = 6$, $a_6 = 7$ and $a_7 = 8$. This implies that $a_1 \in \{1, 2\}$, $a_2 \in \{1, 2\}$ {2, 3}, $a_3 \in \{3, 4\}$ and $a_4 \in \{4, 5\}$. It follows that lcm(a_1, a_5) = 6, lcm(a_2, a_6) ∈ $\{14, 21\}, \text{lcm}(a_3, a_7) = \text{lcm}(a_3, 8) \in \{8, 24\}$ and $\text{lcm}(a_4, a_8) = \text{lcm}(a_4, 9) \in \{36, 45\}$. So

$$
\square_2 \le \frac{1}{6} + \frac{1}{14} + \frac{1}{8} + \frac{1}{36} < \frac{1}{5} + \frac{1}{6} + \frac{1}{8} + \frac{1}{21} = \frac{453}{840}.
$$

Case 2: $a_5 = 5$. Then $a_i = i$ for all integers *i* with $1 \le i \le 4$. If $a_6 \ge 7$, then $a_7 \ge 8$ and $a_8 \ge 9$. So lcm(a_1, a_5) = 5, lcm(a_2, a_6) ≥ 8 , lcm(a_3, a_7) ≥ 9 and lcm(a_4, a_8) ≥ 12 . However, $1/9 + 1/12 < 1/6 + 1/21$. Thus

$$
\Box_2 \leq \frac{1}{5} + \frac{1}{8} + \frac{1}{9} + \frac{1}{12} < \frac{1}{5} + \frac{1}{6} + \frac{1}{8} + \frac{1}{21} = \frac{453}{840}.
$$

In what follows, we let $a_6 = 6$. If $a_7 \ge 10$, then $a_8 \ge 11$. It follows that $lcm(a_3, a_7) \ge$ 12 with equality holding if and only if $a_7 = 12$, and $lcm(a_4, a_8) \ge 12$ with equality occurring if and only if $a_8 = 12$. Since $a_7 < a_8$,

$$
\square_2 < \frac{1}{5} + \frac{1}{6} + \frac{1}{12} + \frac{1}{12} < \frac{1}{5} + \frac{1}{6} + \frac{1}{8} + \frac{1}{21} = \frac{453}{840}.
$$

It remains to consider the case $a_7 \in \{7, 8, 9\}$. We consider three subcases.

Subcase 2.1: $a_7 = 7$. Then $lcm(a_3, a_7) = 21$ and $lcm(a_4, a_8) = lcm(4, a_8) \ge 8$ with equality if and only if $a_8 = 8$. So

$$
\Box_2 \le \frac{1}{5} + \frac{1}{6} + \frac{1}{21} + \frac{1}{8} = \frac{453}{840}
$$

with equality if and only if $a_i = i$ for all integers *i* with $1 \le i \le 8$.

Subcase 2.2: $a_7 = 8$. Then $a_8 \geq 9$. Hence

$$
\square_2 \le \frac{1}{5} + \frac{1}{6} + \frac{1}{24} + \frac{1}{12} < \frac{1}{5} + \frac{1}{6} + \frac{1}{8} + \frac{1}{21} = \frac{453}{840}.
$$

Subcase 2.3: $a_7 = 9$. Then $a_8 \ge 10$. It follows that either $lcm(a_4, a_8) = 12$ which is true if and only if $a_8 = 12$, or $lcm(a_4, a_8) = 16$ which is true if and only if $a_8 = 16$, or $lcm(a_4, a_8) \geq 20$. We then deduce that either

$$
\Box_2 = \frac{1}{5} + \frac{1}{6} + \frac{1}{9} + \frac{1}{12} = \frac{101}{180}
$$

which is true if and only if $a_i = i$ for all $i \in \{1, 2, 3, 4, 5, 6\}$, $a_7 = 9$ and $a_8 = 12$, or

$$
\Box_2 = \frac{1}{5} + \frac{1}{6} + \frac{1}{9} + \frac{1}{16} = \frac{389}{720}
$$

which holds if and only if $a_i = i$ for all $i \in \{1, 2, 3, 4, 5, 6\}$, $a_7 = 9$ and $a_8 = 16$, or

$$
\square_2 \le \frac{1}{5} + \frac{1}{6} + \frac{1}{9} + \frac{1}{20} < \frac{1}{5} + \frac{1}{6} + \frac{1}{8} + \frac{1}{21} = \frac{453}{840}
$$

as expected. This completes the proof of part (i).

(ii). Let $m \geq 3$. Since $lcm(a_i, a_{i+4}) \geq a_{i+4}$ for all integers *i* with $1 \leq i \leq 4$,

$$
\Box_m \le \sum_{i=1}^4 \left(\frac{1}{a_{i+4}} + \frac{1}{a_{i+4}} \left(1 - \frac{1}{2^{m-2}} \right) \right) = \left(2 - \frac{1}{2^{m-2}} \right) \sum_{i=5}^8 \frac{1}{a_i}
$$
 (2.7)

with equality in [\(2.7\)](#page-5-0) if and only if $a_i | a_{i+4}$ for all integers $i \in \{1, 2, 3, 4\}$. Let $S_0 :=$ ⁴⁹³/⁴²⁰ [−] ⁵³³/¹⁰⁵ · ¹/(2*^m*+1). We divide the rest of the proof into two cases.

Case 1: $a_5 \ge 6$. Then $a_6 \ge 7$, $a_7 \ge 8$ and $a_8 \ge 9$. So by [\(2.7\)](#page-5-0) and Lemma [2.2,](#page-2-5)

$$
\Box_m \le \left(2 - \frac{1}{2^{m-2}}\right) \sum_{i=5}^8 \frac{1}{a_i} \le \left(\frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9}\right) \left(2 - \frac{1}{2^{m-2}}\right)
$$

$$
< \frac{1}{5} + \frac{1}{6} + \frac{1}{8} + \frac{1}{21} + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right) \left(1 - \frac{1}{2^{m-2}}\right) = S_0
$$

since $m \geq 3$. This gives the desired result for Case 1.

Case 2: $a_5 = 5$ *. Then* $a_i = i$ *for all* $i \in \{1, 2, 3, 4\}$ *. We consider three subcases. Subcase 2.1:* $a_6 = 6$. Then $a_7 \ge 7$ and $lcm(a_3, a_7) = lcm(3, a_7) \ge 9$. So

$$
\Box_m = \frac{1}{\text{lcm}(1,5)} + \frac{1}{\text{lcm}(2,6)} + \frac{1}{\text{lcm}(3,a_7)} + \frac{1}{\text{lcm}(4,a_8)} + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{a_7} + \frac{1}{a_8}\right)\left(1 - \frac{1}{2^{m-2}}\right). \tag{2.8}
$$

If $a_7 = 7$, then it follows from $a_8 \ge 8$ that lcm(4, a_8) ≥ 8 with equality if and only if $a_8 = 8$. Therefore,

$$
\Box_m = \frac{1}{5} + \frac{1}{6} + \frac{1}{21} + \frac{1}{1 \text{cm}(4, a_8)} + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{a_8}\right)\left(1 - \frac{1}{2^{m-2}}\right)
$$

$$
\leq \frac{1}{5} + \frac{1}{6} + \frac{1}{21} + \frac{1}{8} + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right)\left(1 - \frac{1}{2^{m-2}}\right) = S_0
$$

with equality if and only if $a_i = i$ for all integers *i* with $1 \le i \le 8$.

If $a_7 = 8$, then $a_8 \ge 9$ and so lcm(4, $a_8 \ge 12$. Thus by [\(2.8\)](#page-5-1),

$$
\square_m < \frac{1}{5} + \frac{1}{6} + \frac{1}{24} + \frac{1}{12} + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{8} + \frac{1}{9}\right)\left(1 - \frac{1}{2^{m-2}}\right) < S_0.
$$

If $a_7 = 9$, then lcm(3, a_7) = 9, $a_8 \ge 10$ and so lcm(4, a_8) ≥ 12 . Since $m \ge 3$ and by Lemma [2.2,](#page-2-5)

$$
\Box_m < \frac{1}{5} + \frac{1}{6} + \frac{1}{9} + \frac{1}{12} + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{9} + \frac{1}{10}\right)\left(1 - \frac{1}{2^{m-2}}\right) \\
&< \frac{1}{5} + \frac{1}{6} + \frac{1}{8} + \frac{1}{21} + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right)\left(1 - \frac{1}{2^{m-2}}\right) = S_0.
$$

If $a_7 \ge 10$, then $a_8 \ge 11$. Hence $\text{lcm}(3, a_7) \ge 12$ with equality holding if and only if $a_7 = 12$, and lcm(4, $a_8 \ge 12$ with equality occurring if and only if $a_8 = 12$. Since $a_7 < a_8$ and $m \geq 3$,

$$
\Box_m < \frac{1}{5} + \frac{1}{6} + \frac{1}{12} + \frac{1}{12} + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{10} + \frac{1}{11}\right)\left(1 - \frac{1}{2^{m-2}}\right) \\
&< \frac{1}{5} + \frac{1}{6} + \frac{1}{21} + \frac{1}{8} + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right)\left(1 - \frac{1}{2^{m-2}}\right) = S_0.
$$

Subcase 2.2: $a_6 = 7$. Then $a_7 \ge 8$ and $a_8 \ge 9$. So lcm(3, a_7) ≥ 9 with equality if and only if $a_7 = 9$, and lcm(4, a_8) ≥ 12 with equality if and only if $a_8 = 12$. Since $1/14 +$ $1/9 + 1/12 < 1/6 + 1/8 + 1/21$, it then follows immediately that

$$
\Box_m = \frac{1}{\text{lcm}(1,5)} + \frac{1}{\text{lcm}(2,7)} + \frac{1}{\text{lcm}(3,a_7)} + \frac{1}{\text{lcm}(4,a_8)}
$$

+ $\left(\frac{1}{5} + \frac{1}{7} + \frac{1}{a_7} + \frac{1}{a_8}\right)\left(1 - \frac{1}{2^{m-2}}\right)$
< $\frac{1}{5} + \frac{1}{14} + \frac{1}{9} + \frac{1}{12} + \left(\frac{1}{5} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9}\right)\left(1 - \frac{1}{2^{m-2}}\right)$
< $\frac{1}{5} + \frac{1}{6} + \frac{1}{21} + \frac{1}{8} + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right)\left(1 - \frac{1}{2^{m-2}}\right) = S_0.$

Subcase 2.3: $a_6 \ge 8$. Then $a_7 \ge 9$ and $a_8 \ge 10$. Thus $\text{lcm}(a_2, a_6) = \text{lcm}(2, a_6) \ge 8$, lcm(*a*₃, *a*₇) = lcm(3, *a*₇) ≥ 9 and lcm(*a*₄, *a*₈) = lcm(4, *a*₈) ≥ *a*₈ ≥ 10 which implies that $lcm(a_4, a_8) \ge 12$ since $4 | lcm(a_4, a_8)$. It then follows from the inequality $1/9 + 1/12 < 1/6 + 1/21$ that

$$
\Box_m = \frac{1}{\text{lcm}(1,5)} + \frac{1}{\text{lcm}(2, a_6)} + \frac{1}{\text{lcm}(3, a_7)} + \frac{1}{\text{lcm}(4, a_8)} + \left(\frac{1}{5} + \frac{1}{a_6} + \frac{1}{a_7} + \frac{1}{a_8}\right)\left(1 - \frac{1}{2^{m-2}}\right)
$$

$$
\leq \frac{1}{5} + \frac{1}{8} + \frac{1}{9} + \frac{1}{12} + \left(\frac{1}{5} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10}\right)\left(1 - \frac{1}{2^{m-2}}\right)
$$

$$
< \frac{1}{5} + \frac{1}{6} + \frac{1}{21} + \frac{1}{8} + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right)\left(1 - \frac{1}{2^{m-2}}\right) = S_0.
$$

This completes the proof of part (ii).

3. Proof of Theorem 1.1

Let $m \ge 2$ be an integer and let \Box_m be defined as in [\(2.5\)](#page-3-2). Then $\Box_2 = S_8$, so the results for parts (i) to (iv) follow from Lemmas [2.3](#page-2-4) and [2.4.](#page-3-3) It remains to prove (v).

We first deal with the upper bounds for S_9 , S_{10} and S_{11} . For $r \in \{1, 2, 3\}$,

$$
S_{8+r} = \Box_2 + \sum_{i=1}^r \frac{1}{\text{lcm}(a_{4+i}, a_{8+i})}.
$$

By Lemma [2.4,](#page-3-3) either $\Box_2 = 101/180$ which is true if and only if $a_i = i$ for all $i \in \{1, 2, 3, 4, 5, 6\}$, $a_2 = 9$ and $a_0 = 12$ or $\Box_2 = 389/720$ which holds if and only if $a_1 = i$ $\{1, 2, 3, 4, 5, 6\}, a_7 = 9 \text{ and } a_8 = 12, \text{ or } \square_2 = 389/720 \text{ which holds if and only if } a_i = i_0 \text{ or all integers } i \in \{1, 2, 3, 4, 5, 6\}, a_7 = 9 \text{ and } a_8 = 16 \text{ or } \square_2 = 453/840 \text{ which is true.}$ for all integers $i \in \{1, 2, 3, 4, 5, 6\}$, $a_7 = 9$ and $a_8 = 16$, or $\Box_2 = 453/840$ which is true
if and only if $a_1 = i$ for all integers $i \in \{1, 2, 3, 4, 5, 6, 7, 8\}$ or $\Box_2 < 453/840$ if and only if $a_i = i$ for all integers $i \in \{1, 2, 3, 4, 5, 6, 7, 8\}$, or \Box ₂ < 453/840.
If \Box ₂ < 453/840, then it follows from $\mathrm{lcm}(a_i, a_0) > 10$ $\mathrm{lcm}(a_i, a_0)$.

If \Box ₂ < 453/840, then it follows from $\text{lcm}(a_5, a_9) \ge 10, \text{lcm}(a_6, a_{10}) \ge 12$ and $\text{lcm}(a_7, a_{11}) > 14$ that lcm(*a*₇, *a*₁₁) ≥ 14 that

$$
S_9 < \frac{453}{840} + \frac{1}{1 \text{cm}(a_5, a_9)} \le \frac{453}{840} + \frac{1}{10} = \frac{537}{840},
$$
\n
$$
S_{10} < \frac{453}{840} + \sum_{i=1}^{2} \frac{1}{1 \text{cm}(a_{4+i}, a_{8+i})} \le \frac{453}{840} + \frac{1}{10} + \frac{1}{12} = \frac{607}{840},
$$
\n
$$
S_{11} < \frac{453}{840} + \sum_{i=1}^{3} \frac{1}{1 \text{cm}(a_{4+i}, a_{8+i})} \le \frac{453}{840} + \frac{1}{10} + \frac{1}{12} + \frac{1}{14} = \frac{667}{840}.
$$

If \Box ₂ = 101/180, then by Lemma [2.4,](#page-3-3) we must have $a_i = i$ for all integers *i*^t \Box *i* \Box *i* with $1 \le i \le 6$, $a_7 = 9$ and $a_8 = 12$. So $a_9 \ge 13$, $a_{10} \ge 14$ and $a_{11} \ge 15$. This implies that $lcm(a_5, a_9) = lcm(5, a_9) \ge 15$ with equality if and only if $a_9 = 15$, $lcm(a_6, a_{10}) =$ lcm(6, a_{10}) ≥ 18 with equality if and only if $a_{10} = 18$, and lcm(a_7 , a_{11}) = lcm(9, a_{11}) ≥ 18 with equality if and only if $a_{11} = 18$. Hence

$$
S_9 = \frac{101}{180} + \frac{1}{1 \text{cm}(a_5, a_9)} \le \frac{101}{180} + \frac{1}{15} = \frac{113}{180} < \frac{537}{840},
$$
\n
$$
S_{10} = \frac{101}{180} + \sum_{i=1}^{2} \frac{1}{1 \text{cm}(a_{4+i}, a_{8+i})} \le \frac{101}{180} + \frac{1}{15} + \frac{1}{18} = \frac{123}{180} < \frac{607}{840},
$$

 \Box

$$
S_{11} = \frac{101}{180} + \sum_{i=1}^{3} \frac{1}{\text{lcm}(a_{4+i}, a_{8+i})} < \frac{101}{180} + \frac{1}{15} + \frac{1}{18} + \frac{1}{18} = \frac{133}{180} < \frac{667}{840}
$$

as desired.

If \Box ₂ = 389/720, then by Lemma [2.4,](#page-3-3) we must have $a_i = i$ for all integers *i*
th $1 \le i \le 6$ $a_n = 9$ and $a_n = 16$ So $a_0 > 17$ $a_{10} > 18$ and $a_{11} > 19$ which implies with $1 \le i \le 6$, $a_7 = 9$ and $a_8 = 16$. So $a_9 \ge 17$, $a_{10} \ge 18$ and $a_{11} \ge 19$ which implies that $lcm(a_5, a_9) = lcm(5, a_9) \ge 20$ with equality if and only if $a_9 = 20$, $lcm(a_6, a_{10}) =$ lcm(6, a_{10}) ≥ 18 with equality if and only if a_{10} = 18 and lcm(a_7 , a_{11}) = lcm(9, a_{11}) ≥ 27 with equality if and only if $a_{11} = 27$. One then deduces that

$$
S_9 = \frac{389}{720} + \frac{1}{1 \text{cm}(a_5, a_9)} \le \frac{389}{720} + \frac{1}{20} = \frac{425}{720} < \frac{537}{840},
$$
\n
$$
S_{10} = \frac{389}{720} + \sum_{i=1}^{2} \frac{1}{1 \text{cm}(a_{4+i}, a_{8+i})} < \frac{389}{720} + \frac{1}{20} + \frac{1}{18} = \frac{465}{720} < \frac{607}{840},
$$
\n
$$
S_{11} = \frac{389}{720} + \sum_{i=1}^{3} \frac{1}{1 \text{cm}(a_{4+i}, a_{8+i})} \le \frac{389}{720} + \frac{1}{20} + \frac{1}{18} + \frac{1}{27} = \frac{465}{720} + \frac{1}{27} < \frac{667}{840}
$$

as desired.

If $\Box_2 = 453/840$, then by Lemma [2.4,](#page-3-3) we must have $a_i = i$ for all integers *i* with
 $\angle i \le 8$, So $a_0 > 9$ which implies that $\text{lcm}(a_5, a_0) > 10$ with equality if and only $1 \le i \le 8$. So $a_9 \ge 9$ which implies that $lcm(a_5, a_9) \ge 10$ with equality if and only if $a_9 = 10$. Furthermore, $\text{lcm}(a_6, a_{10}) \ge 12$ with equality if and only if $a_{10} = 12$ and lcm(a_7 , a_{11}) \geq 14 with equality if and only if $a_{11} = 14$. Thus

$$
S_9 = \frac{453}{840} + \frac{1}{1 \text{cm}(a_5, a_9)} \le \frac{453}{840} + \frac{1}{10} = \frac{537}{840},\tag{3.1}
$$

$$
S_{10} = \frac{453}{840} + \sum_{i=1}^{2} \frac{1}{\text{lcm}(a_{4+i}, a_{8+i})} \le \frac{453}{840} + \frac{1}{10} + \frac{1}{12} = \frac{607}{840},\tag{3.2}
$$

$$
S_{11} = \frac{453}{840} + \sum_{i=1}^{3} \frac{1}{\text{lcm}(a_{4+i}, a_{8+i})} \le \frac{453}{840} + \frac{1}{10} + \frac{1}{12} + \frac{1}{14} = \frac{667}{840},\tag{3.3}
$$

where each equality in [\(3.1\)](#page-8-0) to [\(3.3\)](#page-8-1) holds if and only if $a_i = i$ for all integers *i* with $1 \le i \le 8$, $a_9 = 10$, $a_{10} = 12$ and $a_{11} = 14$. So part (v) is true when $9 \le n \le 11$.

In what follows, we always assume that $n \ge 12$. Then we can write $n = 4m$ or $n = 4m + r$ for some integers *m* and *r* with $m \geq 3$ and $1 \leq r \leq 3$. For any integer *i* with $1 \le i \le 4$, we define

$$
S_m^{(i)} := \sum_{j=1}^{m-2} \frac{1}{\text{lcm}(a_{4j+i}, a_{4j+4+i})}.
$$

Then

$$
S_{4m} = \sum_{i=1}^{4} \left(\frac{1}{\text{lcm}(a_i, a_{i+4})} + S_m^{(i)} \right)
$$
 (3.4)

and

$$
S_{4m+r} = S_{4m} + \sum_{i=1}^{r} \frac{1}{\text{lcm}(a_{4m-4+i}, a_{4m+i})}.
$$
 (3.5)

For any integer *i* with $1 \le i \le 4$, applying Lemma [2.1](#page-2-6) to the subsequence {*ai*+4, *ai*+8, ... , *ai*+4(*m*−1)} yields

$$
S_m^{(i)} = \sum_{j=1}^{m-2} \frac{1}{\text{lcm}(a_{i+4j}, a_{i+4j+4})} \le \frac{1}{a_{i+4}} \left(1 - \frac{1}{2^{m-2}} \right) \tag{3.6}
$$

with equality in [\(3.6\)](#page-9-0) if and only if $a_{i+4j} = a_{i+4} \times 2^{j-1}$ for all integers *j* with $1 \le j \le k$ *m* − 1. Further, for any integer *i* with $1 \le i \le r$, applying Lemma [2.1](#page-2-6) to the subsequence ${a_{4+i}, a_{8+i}, \ldots, a_{4m+i}}$ gives

$$
S_m^{(i)} + \frac{1}{\text{lcm}(a_{4m-4+i}, a_{4m+i})} = \sum_{j=1}^{m-1} \frac{1}{\text{lcm}(a_{4j+i}, a_{4j+4+i})} \le \frac{1}{a_{4+i}} \left(1 - \frac{1}{2^{m-1}}\right) \tag{3.7}
$$

with equality in [\(3.7\)](#page-9-1) if and only if $a_{4j+i} = a_{4+i} \times 2^{j-1}$ for all integers *j* with $1 \le j \le m$. Then by (3.4) and (3.6) ,

$$
S_{4m} \le \sum_{i=1}^{4} \left(\frac{1}{\text{lcm}(a_i, a_{i+4})} + \frac{1}{a_{i+4}} \left(1 - \frac{1}{2^{m-2}} \right) \right) = \square_m \tag{3.8}
$$

with equality in [\(3.8\)](#page-9-3) if and only if $a_{4j+i} = a_{4+i} \times 2^{j-1}$ for all integers *i* and *j* with $1 \le i \le m - 1$ and $1 \le i \le 4$. By [\(3.5\)](#page-9-4), [\(3.6\)](#page-9-0) and [\(3.7\)](#page-9-1),

$$
S_{4m+r} = \sum_{i=1}^{4} \frac{1}{\text{lcm}(a_i, a_{i+4})} + \sum_{i=1}^{r} \left(S_m^{(i)} + \frac{1}{\text{lcm}(a_{4m-4+i}, a_{4m+i})} \right) + \sum_{i=r+1}^{4} S_m^{(i)}
$$

\n
$$
\leq \sum_{i=1}^{4} \frac{1}{\text{lcm}(a_i, a_{i+4})} + \sum_{i=1}^{r} \frac{1}{a_{4+i}} \left(1 - \frac{1}{2^{m-1}} \right) + \sum_{i=r+1}^{4} \frac{1}{a_{4+i}} \left(1 - \frac{1}{2^{m-2}} \right)
$$

\n
$$
= \sum_{i=1}^{4} \left(\frac{1}{\text{lcm}(a_i, a_{i+4})} + \frac{1}{a_{i+4}} \left(1 - \frac{1}{2^{m-2}} \right) \right) + \frac{1}{2^{m-1}} \sum_{i=1}^{r} \frac{1}{a_{4+i}}
$$

\n
$$
= \square_m + \frac{1}{2^{m-1}} \sum_{i=1}^{r} \frac{1}{a_{4+i}}, \tag{3.9}
$$

and equality in [\(3.9\)](#page-9-5) holds if and only if $a_{4j+i} = a_{4+i} \times 2^{j-1}$ for all integers *i* and *j* with 1 ≤ *j* ≤ *m* − 1 and 1 ≤ *i* ≤ 4 and $a_{4m+i} = a_{4+i} \times 2^{m-1}$ for all integers *i* with 1 ≤ *i* ≤ *r*.

Now by Lemma [2.4,](#page-3-3) if $m \geq 3$, then

$$
\Box_m \leq \frac{1}{5} + \frac{1}{6} + \frac{1}{8} + \frac{1}{21} + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right)\left(1 - \frac{1}{2^{m-2}}\right)
$$

= $\frac{493}{420} - \frac{533}{105} \cdot \frac{1}{2^{m+1}} := S_0,$ (3.10)

with equality in [\(3.10\)](#page-10-9) if and only if $a_i = i$ for all integers *i* with $1 \le i \le 8$. Notice that

$$
\sum_{i=1}^{r} \frac{1}{a_{4+i}} \le \sum_{i=1}^{r} \frac{1}{4+i}
$$
\n(3.11)

with equality in [\(3.11\)](#page-10-10) if and only if $a_{4+i} = 4 + i$ for all $1 \le i \le r$. Therefore, by [\(3.8\)](#page-9-3) and [\(3.10\)](#page-10-9), $S_{4m} \leq S_0$ with equality if and only if $a_i = i$ for all $i \in \{1, 2, 3, 4\}$ and $a_{4i+i} =$ $(4 + i) \times 2^{j-1}$ for all integers *i* and *j* with $1 \le j \le m - 1$ and $1 \le i \le 4$. It follows from [\(3.9\)](#page-9-5) and [\(3.11\)](#page-10-10) that

$$
S_{4m+r} \le S_0 + \frac{1}{2^{m-1}} \sum_{i=1}^r \frac{1}{4+i} = \frac{493}{420} - \frac{533}{105} \cdot \frac{1}{2^{m+1}} + \frac{1}{2^{m-1}} \sum_{i=1}^r \frac{1}{4+i},
$$
(3.12)

with equality in [\(3.12\)](#page-10-11) if and only if $a_i = i$ for all $i \in \{1, 2, 3, 4\}$, $a_{4i+i} = (4 + i) \times 2^{j-1}$ for all integers *i* and *j* with $1 \le j \le m - 1$ and $1 \le i \le 4$ and $a_{4m+i} = (4 + i) \times 2^{m-1}$ for $1 \le i \le r$. So part (v) is proved when $n \ge 12$.

This completes the proof of Theorem [1.1.](#page-1-1)

Acknowledgement

This work was carried out during a visit by the first author to Brock University as a postdoctoral fellow. He would like to sincerely thank the host institution for its hospitality and for providing an excellent atmosphere for research.

References

- [1] P. Bateman, J. Kalb and A. Stenger, 'A limit involving least common multiples', *Amer. Math. Monthly* 109 (2002), 393–394.
- [2] F. A. Behrend, 'Generalization of an inequality of Heilbronn and Rohrbach,' *Bull. Amer. Math. Soc. (N.S.)* 54 (1948), 681–684.
- [3] D. Borwein, 'A sum of reciprocals of least common multiples', *Canad. Math. Bull.* 20 (1978), 117–118.
- [4] P. L. Chebyshev, 'Memoire sur les nombres premiers', *J. Math. Pures Appl. (9)* 17 (1852), 366–390.
- [5] P. Erdős and J. Selfridge, 'The product of consecutive integers is never a power', *Illinois J. Math.* 19 (1975), 292–301.
- [6] B. Farhi, 'Nontrivial lower bounds for the least common multiple of some finite sequences of integers', *J. Number Theory* 125 (2007), 393–411.
- [7] C. J. Goutziers, 'On the least common multiple of a set of integers not exceeding *N*', *Indag. Math. (N.S.)* 42 (1980), 163–169.
- [8] D. Hanson, 'On the product of the primes', *Canad. Math. Bull.* 15 (1972), 33–37.
- [9] H. A. Heilbronn, 'On an inequality in the elementary theory of numbers', *Math. Proc. Cambridge Philos. Soc.* 33 (1937), 207–209.

- [10] S. A. Hong, 'A sharp upper bound for the sum of reciprocals of least common multiples', *Acta Math. Hungar.* 160 (2020), 360–375.
- [11] S. F. Hong, Y. Y. Luo, G. Y. Qian and C. L. Wang, 'Uniform lower bound for the least common multiple of a polynomial sequence', *C. R. Math. Acad. Sci. Paris Ser. I* 351 (2013), 781–785.
- [12] S. F. Hong, G. Y. Qian and Q. R. Tan, 'The least common multiple of a sequence of products of linear polynomials', *Acta Math. Hungar.* 135 (2012), 160–167.
- [13] K. Ireland and M. Rosen, *A Classical Introduction to Modern Number Theory*, Graduate Texts in Mathematics, 84 (Springer-Verlag, New York, 1990).
- [14] M. Nair, 'On Chebyshev-type inequalities for primes', *Amer. Math. Monthly* 89 (1982), 126–129.
- [15] H. Rohrbach, 'Beweis einer zahlentheoretischen Ungleichung', *J. reine angew. Math.* 177 (1937), 193–196.

SIAO HONG, Department of Mathematics and Statistics, Brock University, St. Catharines, ON L2S 3A1, Canada e-mail: sahongnk@163.com

MEILING HUANG, Department of Mathematics and Statistics, Brock University, St. Catharines, ON L2S 3A1, Canada e-mail: mhuang@brocku.ca

YUANLIN LI, Department of Mathematics and Statistics, Brock University, St. Catharines, ON L2S 3A1, Canada e-mail: yli@brocku.ca