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Abstract
We give a short proof of the Torelli theorem for 𝐴𝐿𝐻∗ gravitational instantons using the authors’ previous
construction of mirror special Lagrangian fibrations in del Pezzo surfaces and rational elliptic surfaces together
with recent work of Sun-Zhang. In particular, this includes an identification of 10 diffeomorphism types of 𝐴𝐿𝐻∗

𝑏
gravitational instantons.
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1. Introduction

Gravitational instantons were introduced by Hawking [11] as certain solutions to the classical Einstein
equations. They are the building blocks of Euclidean quantum gravity and are analogous to self-dual
Yang-Mills instantons arising from Yang-Mills theory. Mathematically, gravitational instantons are
noncompact, complete hyperKähler manifolds with 𝐿2-integrable curvature tensor. Depending on the
volume growth of the geometry at infinity, there are a few known classes of gravitational instantons
discovered first: 𝐴𝐿𝐸 , 𝐴𝐿𝐹, 𝐴𝐿𝐺, 𝐴𝐿𝐻. Here 𝐴𝐿𝐸 is the abbreviation for asymptotically locally
Euclidean, 𝐴𝐿𝐹 is for asymptotically locally flat, and the latter two were simply named by induction.
Later, Hein [12] constructed new gravitational instantons with different curvature decay and volume
growth on the complement of a fibre in a rational elliptic surface, named 𝐴𝐿𝐺∗ (corresponding to
Kodaira type 𝐼∗𝑏-fibre) and 𝐴𝐿𝐻∗ (corresponding to Kodaira type 𝐼𝑏-fibre). The first class has the same
volume growth as 𝐴𝐿𝐺 but with different curvature decay, while the latter has a volume growth of 𝑟4/3.

Gravitational instantons also play an important role in differential geometry, as they arise as
the blow-up limits of hyperKähler metrics [14, 6]. Recently, Sun-Zhang [27] made use of the
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2 Collins Tristan et al.

Cheeger-Fukaya-Gromov theory of N -structures to prove that any nonflat gravitational instanton has a
unique asymptotic cone and indeed falls into one of the families in the above list. Thus, it remains to
classify the gravitational instantons in each class.

The classification of the gravitational instantons has a long history. By work of Kronheimer [17],
𝐴𝐿𝐸 gravitational instantons always have the underlying geometry of a minimal resolution of the quo-
tient of C2 by a finite subgroup of 𝑆𝑈 (2). Moreover, Kronheimer established a Torelli-type theorem
for ALE gravitational instantons. More recently, building on work of Minerbe [21], Chen-Chen [3]
studied gravitational instantons with curvature decay |𝑅𝑚 | � 𝑟−2−𝜀 for some 𝜀 > 0. They proved
such gravitational instantons must be of the class 𝐴𝐿𝐸 , 𝐴𝐿𝐹, 𝐴𝐿𝐺 or 𝐴𝐿𝐻. Moreover, Chen-Chen
proved that up to hyperKähler rotation, 𝐴𝐿𝐻 (or 𝐴𝐿𝐺) gravitational instantons are isomorphic to the
complement of a fibre with zero (or finite) monodromy in a rational elliptic surface. Very recently,
Chen-Viaclovsky [6] studied the Hodge theory of 𝐴𝐿𝐺∗-gravitational instantons, and then Chen-
Viaclovsky-Zhang [7] proved the Torelli-type theorem for the 𝐴𝐿𝐺, 𝐴𝐿𝐺∗ gravitational instantons.
So the remaining case is the classification of the gravitational instantons of type 𝐴𝐿𝐻∗.

Examples of 𝐴𝐿𝐻∗ gravitational instantons are constructed from del Pezzo surfaces by Tian-Yau
[28] and from rational elliptic surfaces by Hein [12]. Hein observed that these two examples have the
same curvature decay, injectivity radius and volume growth. The relation between the two examples was
made precise by the authors [4, 5] as a by-product of their work on the Strominger-Yau-Zaslow mirror
symmetry of log Calabi-Yau surfaces; in particular, it was shown that these two examples are related by
a global hyperKähler rotation.

The goal is this paper is to give a short proof of a Torelli theorem for 𝐴𝐿𝐻∗ gravitational instantons
using the earlier results in [4, 5], together with the recent work of Sun-Zhang [27]. Below, we give an
informal statement of the main theorem and refer the reader to Theorem 3.9 for a precise version.

Theorem 1.1. 𝐴𝐿𝐻∗ gravitational instantons are classified by the cohomology classes of their
hyperKähler triple.

The proof of the above theorem is similar to the Torelli theorem for K3 surfaces, which is a
consequence of the results from [26, 2, 20] and the Calabi conjecture [29]. The proof goes as follows;
using the exponential decay result of 𝐴𝐿𝐻∗ gravitational instantons to the Calabi ansatz by Sun-Zhang
[27], an earlier argument of the authors from [4] implies that up to hyperKähler rotation, any 𝐴𝐿𝐻∗

gravitational instanton can be compactified to a rational elliptic surface. The complex structure of such
a rational elliptic surface is determined by Gross-Hacking-Keel’s [9] Torelli theorem for log Calabi-Yau
surfaces. Theorem 3.9 then follows from a local model calculation in combination with the essentially
optimal uniqueness theorem for solutions of the complex Monge-Ampère equations established by the
authors in [5].

The paper is organised as follows. In Section 2, we review the earlier work of the authors. This includes
the construction of special Lagrangian tori via the mean curvature flow in the geometry asymptotic to
the Calabi ansatz and the hyperKähler rotation of the Calabi ansatz, as well as a uniqueness theorem for
Ricci-flat metrics on the complement of an 𝐼𝑏-fibre in a rational elliptic surface. In Section 3, we first
recall the result of Sun-Zhang [27] on 𝐴𝐿𝐻∗ gravitational instantons and provide a short proof of the
Torelli theorem based on the results reviewed in Section 2.

2. Previous results

2.1. Ansatz special Lagrangians and their hyperKähler rotations

We begin by reviewing the Calabi ansatz. Let 𝐷 = C/(Z⊕Z𝜏) be an elliptic curve with Im𝜏 > 0 and 𝜔𝐷

a flat metric on D. For a fixed 𝑏 ∈ N, let L be a degree b line bundle over D, and denote by 𝑌C the total
space of L with projection 𝜋C : 𝑌C → 𝐷. Let 𝑋C be the complement of the zero section in 𝑌C . Choose h
to be the unique hermitian metric on L with curvature given by 𝜔𝐷 with

∫
𝐷

𝜔𝐷 = 2𝜋𝑏. If we let z be
the coordinate on D and 𝜉 a local trivialisation of L, we get coordinates on L via (𝑧, 𝑤) ↦→ (𝑧, 𝑤𝜉). The
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Calabi ansatz is then given by

𝜔C =
√
−1𝜕𝜕

2
3
(
− log |𝜉 |2ℎ

) 2
3 , ΩC =

𝑑𝑤

𝑤
∧ 𝜋∗

C𝑑𝑧,

for a given holomorphic function 𝑓 (𝑧) such that

𝑖

2

∫
𝐷

𝑅𝑒𝑠𝐷ΩC
2𝜋𝑖

∧
(
𝑅𝑒𝑠𝐷ΩC

2𝜋𝑖

)
= 2𝜋𝑏.

It is straightforward to check that (𝜔C ,ΩC) is a hyperKähler triple: that is, 2𝜔2
C = ΩC ∧ Ω̄C . The induced

Riemannian metric is complete but not of bounded geometry. Specifically, if r denotes the distance
function to a fixed point, then as one travels towards the zero section, the curvature and injectivity radius
have the following behaviour:

|𝑅𝑚 | ∼ 𝑟−2 𝑖𝑛 𝑗 ∼ 𝑟−
1
3 .

Let 𝐿 be a special Lagrangian in D with respect to (𝜔𝐷 ,Ω𝐷), where Ω𝐷 is a holomorphic volume
form on D such that 𝜔𝐷 = 𝑖

2Ω𝐷 ∧ Ω̄𝐷 . A straightforward calculation shows that

𝐿C = 𝜋−1
C (𝐿) ∩ {|𝜉 |2ℎ = 𝜀}

is a special Lagrangian submanifold of (𝑋C , 𝜔C ,ΩC). We call 𝐿C an ansatz special Lagrangian. In
particular, a special Lagrangian fibration in D induces a special Lagrangian fibration in 𝑋C , and by

direct calculation, the monodromy of such fibration is conjugate to
(
1 𝑏
0 1

)
. The middle homology

𝐻2 (𝑋C ,Z) � Z2 is generated by [𝐿C], [𝐿 ′
C], where 𝐿, 𝐿 ′ are any pair such that [𝐿], [𝐿 ′] generates

𝐻1 (𝐷,Z).
Since in complex dimension two, all Ricci-flat Kähler metrics are hyperKähler, one can perform a

hyperKähler rotation and arrive at 𝑋̌𝑚𝑜𝑑 with a Kähler form 𝜔̌C and holomorphic volume form Ω̌C that
has the same underlying space as 𝑋C . By choosing the hyperKähler rotation appropriately, the special
Lagrangian fibration near infinity in 𝑋C becomes an elliptic fibration 𝑋̌𝑚𝑜𝑑 → Δ∗ over a punctured disc
Δ∗. The monodromy of the fibration implies that after a choice of section 𝜎 : Δ∗ → 𝑋̌𝑚𝑜𝑑 , the space
𝑋𝑚𝑜𝑑 is biholomorphic to

Δ∗ × C/Λ(𝑢), where Λ(𝑢) = Z ⊕ Z 𝑏

2𝜋𝑖
log 𝑢.

Here we will use u for the complex coordinate of the disc and v for the fibre. See [5, Appendix A]. There
is a natural partial compactification 𝑌𝑚𝑜𝑑 → Δ by adding an 𝐼𝑏 fibre over the origin of Δ .

Before we identify 𝜔̌C and Ω̌C , we recall the standard semi-flat metric on 𝑋̌𝑚𝑜𝑑 , written down in [10]:

𝜔𝑠 𝑓 , 𝜀 :=
√
−1|𝜅(𝑢) |2 𝑘 | log |𝑢 | |

2𝜋𝜀

𝑑𝑢 ∧ 𝑑𝑢̄

|𝑢 |2

+
√
−1
2

2𝜋𝜀

𝑘 | log |𝑢 | | (𝑑𝑣 + 𝐵(𝑢, 𝑣)𝑑𝑢) ∧ (𝑑𝑣 + 𝐵(𝑢, 𝑣)𝑑𝑢),

where 𝐵(𝑢, 𝑣) = − Im(𝑣)√
−1𝑢 | log |𝑢 | |

. A straightforward calculation shows that

1. 𝜀 is the size of the fibre with respect to 𝜔𝑠 𝑓 .
2. 𝜔𝑠 𝑓 is flat along the fibres.
3. (𝜔𝑠 𝑓 ,Ω𝑠 𝑓 ) form a hyperKähler triple, where Ω𝑠 𝑓 = 𝜅 (𝑢)

𝑢 𝑑𝑣 ∧ 𝑑𝑢 is the unique volume form such
that

∫
𝐶
Ω𝑠 𝑓 = 1, and C is the 2-cycle represented by {|𝑢 | = 𝑐𝑜𝑛𝑠𝑡, Im(𝑣) = 0}.
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The cycle C is called a ‘bad cycle’ by Hein [12],1 and this notion is refined by the authors in [5]. It is
easy to see that 𝐻2( 𝑋̌𝑚𝑜𝑑 ,Z) is freely generated by the fibre class and C; we therefore define

Definition 2.1. A cycle 𝐶 ′ ⊂ 𝑋𝑚𝑜𝑑 is called a quasi-bad cycle if the homology class [𝐶 ′] ∈ 𝐻2 ( 𝑋̌𝑚𝑜𝑑 ,Z)
can be written as 𝑚 [𝐶] + [𝐹], where [𝐹] is the fibre class.

It was observed by Hein that the semi-flat metric has the same asymptotic behaviour for |𝑅𝑚 | and 𝑖𝑛 𝑗
as the Calabi ansatz [12]. This motivates the natural guess that the hyperKähler rotation of the Calabi
ansatz would give the semi-flat metric. However, there is a certain subtle discrepancy, and one must
first introduce a class of nonstandard semi-flat metrics, as defined in [5]. For any 𝑏0 ∈ R, we define the
nonstandard semi-flat metric as

𝜔𝑠 𝑓 ,𝑏0 , 𝜀 :=
√
−1

|𝜅(𝑢) |2
𝜀

𝑊−1 𝑑𝑢 ∧ 𝑑𝑢̄

|𝑢 |2

+
√
−1
2

𝑊𝜀
(
𝑑𝑣 + Γ̃(𝑣, 𝑢, 𝑏0)𝑑𝑢

)
∧
(
𝑑𝑣 + Γ̃(𝑢, 𝑣, 𝑏0)𝑑𝑢

)
,

where 𝑊 = 2𝜋
𝑘 | log |𝑢 | | and Γ̃(𝑢, 𝑣, 𝑏0) = 𝐵(𝑢, 𝑣) + 𝑏0

2𝜋2
| log |𝑢 | |

𝑢 . An appealing way to think of nonstandard
semi-flat metrics is that they are obtained from standard semi-flat metrics by pulling back along the
fibrewise translation map defined by a multi-valued (possibly uncountably valued) section 𝜎 : Δ∗ →
𝑋̌𝑚𝑜𝑑; see [5]. A nonstandard semi-flat metric has the same curvature and injectivity radius decay as a
standard semi-flat metric. However, if 2𝑏0

𝑏 ∉ Z, then the cohomology class of the nonstandard semi-flat
metric cannot be realised by a standard semi-flat metric. We now state the following result.

Theorem 2.2 [5, Appendix A]. Assume that 𝐷 � C/Z ⊕ Z𝜏 is an elliptic curve, with 𝜏 in the upper
half-plane. Let 𝑌C be the total space of a degree b line bundle L over D and 𝑋C the complement of the
zero section. Let 𝜔C and ΩC be the forms arising from the Calabi ansatz on 𝑋C , as above. Consider
the hyperKähler rotation of 𝑋C with Kähler form 𝜔̌C and holomorphic volume form Ω̌C such that the
ansatz special Lagrangian corresponding to 1 ∈ Z ⊕ Z𝜏 is of phase zero. Then with a suitable choice of
coordinates, one has

𝜔̌C = 𝛼𝜔𝑠 𝑓 ,𝑏0 , 𝜀 , Ω̌C = 𝛼Ω𝑠 𝑓 ,

where 𝑏0 = − 1
2 Re(𝜏)𝑏, 𝜀 = 2

√
2𝜋

Im(𝜏) and 𝛼 =
√

𝑏𝜋Im(𝜏). In particular, there exists a bijection between
𝜏 ↔ (𝑏0, 𝜀): that is, every (possibly nonstandard) semi-flat metric can be realised as some hyperKähler
rotation of certain Calabi ansatz up to a scaling.

As a direct consequence, we get the following special Lagrangian fibrations in 𝑋̌𝑚𝑜𝑑 via hyperKähler
rotations from the Calabi ansatz:

Lemma 2.3. Fix an m-quasi bad cycle class [𝐿] ∈ 𝐻2 ( 𝑋̌𝑚𝑜𝑑 ,Z) that is primitive. There exists a special
Lagrangian fibration in 𝑋̌𝑚𝑜𝑑 with respect to the semi-flat hyperKähler triple (𝜔𝑠 𝑓 ,𝑏0 , 𝜀 ,Ω𝑠 𝑓 ) if and
only if

∫
[𝐿 ] 𝜔𝑠 𝑓 ,𝑏0 , 𝜀 = 0.

2.2. A uniqueness theorem for Ricci-flat metrics on noncompact Calabi-Yau surfaces

Recall that a rational elliptic surface is a rational surface with an elliptic fibration structure. Using
the standard semi-flat metric as an asymptotic model, Hein [12] constructed many Ricci-flat metrics
on the complement of a fibre in a rational elliptic surface. In the case that the removed fibre is of Kodaira
type 𝐼𝑏 , the authors established the uniqueness of these metrics as well as the existence of a parameter
space. We recall the setup here.

1It is worth noting that the definition of the bad cycle actually implicitly depends on a choice of a section 𝜎 : Δ∗ → 𝑋̌𝑚𝑜𝑑 .
We refer the reader to [5] for more details on (quasi)-bad cycles.
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Let 𝑌 be a rational elliptic surface and 𝐷̌ an 𝐼𝑏-fibre. Fix a meromorphic form Ω̌ with a simple pole
along 𝐷̌. Denote 𝑋̌ = 𝑌 \ 𝐷̌, and let K𝑑𝑅,𝑋̌ be the set of de Rham cohomology classes that can be
represented by Kähler forms on 𝑋̌ . Then K𝑑𝑅,𝑋̌ is a cone in 𝐻2( 𝑋̌,R). With a slight modification of
the work of Hein [12], the authors generalised the existence theorem:

Theorem 2.4 [5, Theorem 2.16]. Given any [𝜔̌] ∈ K𝑑𝑅,𝑋̌ , there exists 𝛼0 such that for 𝛼 > 𝛼0, there
exists a Ricci-flat metric 𝜔̌ ∈ [𝜔̌] on 𝑋̌ with a suitable choice of section and a semi-flat metric 𝜔𝑠 𝑓 ,𝑏0 , 𝜀

such that

1. 𝜔̌2 = 𝛼Ω̌ ∧ ¯̌Ω: that is, 𝜔̌ solves the Monge-Ampére equation.
2. The curvature 𝜔̌ satisfies |∇𝑘 𝑅𝑚 |𝜔̌ � 𝑟−2−𝑘 for every 𝑘 ∈ N.
3. 𝜔̌ is asymptotic to the semi-flat metric in the following sense: there exists 𝐶 > 0 such that for every

𝑘 ∈ N, one has

|∇𝑘 (𝜔̌ − 𝜔𝑠 𝑓 ,𝑏0 , 𝜀) |𝜔̌ ∼ 𝑂 (𝑒−𝐶𝑟2/3).

We refer the reader to [5, Remark 2.17] for a description of some (minor) differences between
Theorem 2.4 and the work of Hein. The authors then proved an essentially optimal uniqueness theorem
for Ricci-flat metrics with polynomial decay to a (possibly nonstandard) semiflat metrics on 𝑋̌ .

Theorem 2.5 [5, Proposition 4.8]. Suppose 𝜔̌1, 𝜔̌2 are two complete Calabi-Yau metrics on 𝑋̌ = 𝑌 \ 𝐷̌
with the following properties:

(i) 𝜔̌2
𝑖 = 𝛼2Ω̌ ∧ Ω̌, for 𝑖 = 1, 2.

(ii) [𝜔̌1]𝑑𝑅 = [𝜔̌2]𝑑𝑅 ∈ 𝐻2
𝑑𝑅 ( 𝑋̌,R).

(iii) There are (possibly nonstandard) semi-flat metrics 𝜔𝑠 𝑓 ,𝜎𝑖 ,𝑏0,𝑖 , 𝜀𝑖 such that

[𝜔𝑠 𝑓 ,𝜎𝑖 ,𝑏0,𝑖 , 𝜀𝑖 ]𝐵𝐶 = [𝜔̌𝑖]𝐵𝐶 ∈ 𝐻1,1
𝐵𝐶 ( 𝑋̌Δ∗ ,R)

and

|𝜔̌𝑖 − 𝛼𝜔𝑠 𝑓 ,𝜎𝑖 ,𝑏0,𝑖 ,
𝜀𝑖
𝛼
| � 𝐶𝑟−4/3

𝑖 ,

where 𝑟𝑖 is the distance from a fixed point with respect to 𝜔̌𝑖 .

Then there is a fibre preserving holomorphic map Φ ∈ Aut0(𝑋,C) such that Φ∗𝜔̌2 = 𝜔̌1.

2.3. Perturbations of the model special Lagrangians

Let (𝑋, 𝜔) be a Kähler manifold such that the corresponding Riemannian metric is Ricci-flat. Given
a Lagrangian submanifold 𝐿 ⊆ 𝑋 , we can deform L via its mean curvature �𝐻, defining a family of
Lagrangians 𝐿𝑡 such that

𝜕

𝜕𝑡
𝐿𝑡 = �𝐻.

It is proved by Smoczyk [25] that the Maslov zero Lagrangian condition is preserved under the flow;
thus the name Lagrangian mean curvature flow (LMCF). If X admits a covariant holomorphic volume
form Ω, then there exists a phase function 𝜃 : 𝐿 → 𝑆1 defined by Ω|𝐿 = 𝑒𝑖 𝜃Vol𝐿 . If 𝜃 is constant,
then L is a special Lagrangian. Since we are working on a Calabi-Yau manifold, the mean curvature of
L can be computed by �𝐻 = ∇𝜃. In particular, if the LMCF converges smoothly, it converges to a special
Lagrangian.

Now, in general, the LMCF may develop a finite time singularity [23], which is expected to be related
to the Harder-Narasimhan filtration of the Fukaya category [16]. However, using a quantitative version
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of the machinery of Li [18], the authors proved a quantitative local regularity theorem for the LMCF in
the present setting; see [4, Theorem 4.23].

Theorem 2.6 (Theorem 4.23, [4]). Let X be a noncompact Calabi-Yau surface with Ricci-flat metric 𝜔
and holomorphic volume form Ω. Fix a point in X, and let r denote the distance function to this fixed
point. Assume that there exists a diffeomorphism F from the end of C to X such that for all 𝑘 ∈ N, one has

‖ ∇𝑘
𝑔C (𝐹

∗𝜔 − 𝜔C) ‖𝑔C < 𝐶𝑘𝑒−𝛿𝑟
2
3
, ‖ ∇𝑘

𝑔C (𝐹
∗Ω −ΩC) ‖𝑔C < 𝐶𝑘𝑒−𝛿𝑟

2
3
,

for some constant 𝐶𝑘 > 0. Then given an ansatz special Lagrangian (from Section 2.1) mapped to X
via F, if it is sufficiently close to infinity along the end of X, it can be deformed to a genuine special
Lagrangian with respect to (𝜔,Ω).

Specifically, in [4], the authors argue that an ansatz special Lagrangian can be deformed via Moser’s
trick to a Lagrangian with respect to the Ricci flat metric 𝜔. After proving this deformation preserves
several geometric bounds (including exponential decay of the mean curvature vector along the end of X),
the authors show that the mean curvature flow converges exponentially fast to a special Lagrangian. We
direct the reader to [4] for further details.

3. The Torelli theorem

First we recall the definition of 𝐴𝐿𝐻∗ gravitational instantons following Sun-Zhang [27]:

Definition 3.1.

1. Given 𝑏 ∈ N, an 𝐴𝐿𝐻∗
𝑏 model end is the hyperKähler triple from the Gibbons-Hawking ansatz on

T
2 × [0,∞) with the harmonic function 𝑏𝜌, where 𝑇2 is the flat two-torus and 𝜌 is the coordinate on

[0,∞)
2. A gravitational instanton (𝑋, 𝑔) is of type 𝐴𝐿𝐻∗ if there exists a diffeomorphism F from C to X such

that for all 𝑘 ∈ N, one has

‖ ∇𝑘
𝑔C (𝐹

∗𝑔 − 𝑔C) ‖𝑔 = 𝑂 (𝑟−𝑘−𝜀)

for some 𝜀 > 0.

Remark 3.2. It is explained in [14, Section 2.2] that the Calabi ansatz is actually an 𝐴𝐿𝐻∗
𝑏 model end

for some b.

Let (𝑋, 𝑔) be an 𝐴𝐿𝐻∗
𝑏 gravitational instanton, and fix a choice of hyperKähler triple (𝜔,Ω) such

that 𝜔 is the Kähler form with respect to the complex structure determined by Ω. Sun-Zhang proved
that the geometry at infinity has exponential decay to the model end.

Theorem 3.3 [27, Theorem 6.19]. There exist 𝛿 > 0 and a diffeomorphism F from the end of C to X
such that for all 𝑘 ∈ N, one has 𝐹∗𝜔 = 𝜔C + 𝑑𝜎 for some 1-form 𝜎 and

‖ ∇𝑘
𝑔C (𝐹

∗𝜔 − 𝜔C) ‖𝑔C < 𝐶𝑘𝑒−𝛿𝑟
2
3
, ‖ ∇𝑘

𝑔C (𝐹
∗Ω −ΩC) ‖𝑔C < 𝐶𝑘𝑒−𝛿𝑟

2
3
,

for some constant 𝐶𝑘 > 0.

Consider 𝐿C ∈ 𝑋C for any primitive class [𝐿C] ∈ 𝐻2(𝑋C ,Z) with 𝜀 small enough. Then as above,
one can use Moser’s trick to modify 𝐹 (𝐿C) to a Lagrangian 𝐿 ⊆ 𝑋 . The LMCF starting at L will then
converge smoothly to a special Lagrangian tori by Theorem 3.3 and Theorem 2.6. Notice that from
[4, Proposition 5.24], the LMCF flows the ansatz special Lagrangian fibration near infinity to a genuine
special Lagrangian fibration on 𝑋 \ 𝐾 for some compact set K.
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Now consider the hyperKähler rotation 𝑋̌ equipped with Kähler form 𝜔̌ and holomorphic volume
form Ω̌ such that

𝜔̌ = ReΩ, Ω̌ = 𝜔 − 𝑖ImΩ. (3.1)

Then 𝑋̌ \ 𝐾 admits an elliptic fibration to a noncompact Riemann surface 𝐵̌, which is diffeomorphic
to an annuli. From the uniformisation theorem, 𝐵̌ is either biholomorphic to a punctured disc or a
holomorphic annulus. Notice that the j-invariants of the elliptic fibres converge to infinity at the end
from Theorem 2.2 and Theorem 3.3. Since the j-invariant is a holomorphic function on 𝐵̌, one has 𝐵̌
must be biholomorphic to a punctured disc.

Again from [4, Proposition 5.24], the monodromy of the fibration 𝑋̌ \ 𝐾 → 𝐵̌ near infinity is the
same as the explicit model special Lagrangian fibration. There are two consequences. Firstly, there is no

sequence of multiple fibres converging to infinity. Secondly, the monodromy is conjugate to
(
1 𝑏
0 1

)
from

direct calculation. Then one can compactify 𝑋̌ to a compact complex surface 𝑋̌ by adding an 𝐼𝑏-fibre 𝐷̌
at infinity by [4, Corollary 6.3]. Now we can use to the classification of surfaces to deduce the following:
Proposition 3.4. 𝑌 is a rational elliptic surface.2
Proof. From Appendix [5, Appendix A], the form Ω̌ is meromorphic with a simple pole along 𝐷̌.
Therefore, we have 𝐾𝑌̌ = O𝑌̌ (−𝐷̌). From the elliptic fibration on 𝑌 \ 𝐾 , we have 𝑐1 (𝑌 )2 = 0. There
are no (−1) curves in the fibre by the adjunction formula. Since 𝑏1 ( 𝑋̌) = 0 by [27, Corollary 7.6],3 we
also have 𝑏1(𝑌 ) = 0 from the Mayer-Vietoris sequence. Assume that 𝑌 is minimal. Since 𝑐1 (𝑌 )2 = 0
and 𝑏1 (𝑌 ) = 0, by the Enriques-Kodaira classification (see, for example, [1, Chapter VI, Table 10]),
it follows that 𝑌 can only be an Enriques surface, a K3 surface or a minimal properly elliptic surface.
𝐾𝑌̌ = O𝑌̌ (−𝐷̌) obviously excludes the first two possibilities. Furthermore, recall that a properly elliptic
surface has Kodaira dimension 1. This is again impossible because 𝐾𝑌̌ = O𝑌̌ (−𝐷̌). To sum up, it must
be the case that 𝑌 is not minimal.

Now, any (−1) curve E in 𝑌 has intersection one with 𝐷̌, so (𝐷̌ + 𝐸)2 > 0. Therefore, 𝑌 is projective
by [1, Chapter IV, Theorem 5.2]. Then ℎ1(𝑌,O𝑌̌ ) = 0 from Hodge theory and ℎ0 (𝑌, 𝐾2

𝑌̌
) = 0 since −𝐾𝑌̌

is effective. Finally, Castelnuovo’s rationality criterion implies that 𝑌 is rational. Thus the local elliptic
fibration near 𝐷̌ in 𝑌 actually extends to an elliptic fibration. Indeed, one has Pic(𝑌 ) � 𝐻2 (𝑌,Z) since
𝐻1 (𝑌,O𝑌̌ ) = 𝐻2(𝑌,O𝑌̌ ) = 0. Thus, 𝑌 is a rational elliptic surface. �

To sum up, we proved the following uniformisation theorem:
Theorem 3.5. Any 𝐴𝐿𝐻∗

𝑏 gravitational instanton (up to hyperKähler rotation) can be compactified to
a rational elliptic surface.
Remark 3.6. An analogue result of Hein-Sun-Viaclovsky-Zhang [15] proves that up to hyperKähler
rotation, any 𝐴𝐿𝐻∗

𝑏 gravitational instanton can be compactified to a weak del Pezzo surface.
The possible singular fibres of a rational elliptic surface are classified by Persson [24]. The rational

elliptic surface 𝑌 can only admit an 𝐼𝑏-fibre for 𝑏 � 9, which gives a constraint on b. From the work
of Persson [24] (see also [13, Section 3.3], or Proposition 9.15, Proposition 9.16 of [8]), there exists
a single deformation family of pairs of rational elliptic surfaces with an 𝐼𝑏 fibre for 𝑏 ≠ 8, and there
are two deformation families for 𝑏 = 8. Different families have different Betti numbers. In particular,
there exist 𝐴𝐿𝐻∗

𝑏 gravitational instantons for every 1 � 𝑏 � 9 from the work of Hein [12]. Thus, we
have the following consequence:
Corollary 3.7.
1. There are only 𝐴𝐿𝐻∗

𝑏 gravitational instantons for 𝑏 � 9.
2. There are only 10 diffeomorphism types of 𝐴𝐿𝐻∗

𝑏 gravitation instantons.

2This is a slight modification of [4, Theorem 1.6] taking advantage of Theorem 2.2.
3One may also see that from [15, Theorem 1.1].
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Before we prove the Torelli theorem of 𝐴𝐿𝐻∗
𝑏-gravitational instantons, we first recall the Torelli

theorem of log Calabi-Yau surfaces [9]. Let (𝑌, 𝐷) be a Looijenga pair: that is, Y is a rational surface,
and 𝐷 ∈ | − 𝐾𝑌 | is an anti-canonical cycle. Consider the homology long exact sequence of pairs (𝑌, 𝐷)
with coefficients in Z:

0 = 𝐻3 (𝑌 ) → 𝐻3(𝑌,𝑌 \ 𝐷) 𝜕∗−→ 𝐻2 (𝑌 \ 𝐷) 𝜄−→ 𝐻2 (𝑌 ) → 𝐻2(𝑌,𝑌 \ 𝐷). (3.2)

Here we identify 𝐻𝑘 (𝑌,𝑌 \ 𝐷) with 𝐻4−𝑘 (𝐷) by Poincare duality. Let 𝜀 ∈ 𝐻1(𝐷) denote a generator,
which determines its orientation. There exists a unique meromorphic volume form Ω𝑌 with a simple
pole along D and normalisation

∫
𝜕∗ (𝜀)

Ω𝑌 = 1. Denote by 𝐶++
𝑌 the subcone of Pic(𝑌 ) that consists of

element 𝛽 satisfying

1. 𝛽2 > 0: that is, 𝛽 is in the positive cone.
2. 𝛽.[𝐸] � 0 for any (−1)-curve E in Y.

By [9, Lemma 2.13], 𝐶++
𝑌 is invariant under parallel transport. We denote by Δ𝑌 the set of nodal classes

of Y: that is,

Δ𝑌 = {𝛼 ∈ Pic(𝑌 ) |𝛼 can be represented by a (−2)-curve in 𝑌 \ 𝐷}.

For each element 𝛼 ∈ Δ𝑌 , there is an associate reflection as an automorphism on Pic(𝑌 ) given by

𝑠𝛼 : 𝛽 ↦→ 𝛽 + 〈𝛼, 𝛽〉.

The Weyl group 𝑊𝑌 is then the group generated by 𝑠𝛼, 𝛼 ∈ Δ𝑌 .
With the above notations, the Gross-Hacking-Keel weak Torelli theorem for Looijenga pairs is stated

as follows:

Theorem 3.8 (Theorem 1.8, [9]). Let (𝑌1, 𝐷), (𝑌2, 𝐷) be two Looijenga pairs and 𝜇 : Pic(𝑌1) → Pic(𝑌2)
be an isomorphism of lattices. Assume that

1. 𝜇([𝐷𝑖]) = ([𝐷𝑖]) for all i.
2. 𝜇(𝐶++

𝑌1
) = 𝐶++

𝑌2
.

3. 𝜇([Ω𝑌1]) = [Ω𝑌2], where Ω𝑖 is the meromorphic form on 𝑌𝑖 with a simple pole along 𝐷𝑖 and the
normalisation described above.4

Then there exists a unique 𝑔 ∈ 𝑊𝑌1 such that 𝜇 ◦ 𝑔 = 𝑓 ∗ for an isomorphism of pairs 𝑓 : (𝑌2, 𝐷) →
(𝑌1, 𝐷).

We are now ready to prove our Torelli theorem.

Theorem 3.9. Let (𝑋𝑖 , 𝜔𝑖 ,Ω𝑖) be 𝐴𝐿𝐻∗
𝑏 gravitational instantons such that there exists a diffeomorphism

𝐹 : 𝑋2 � 𝑋1 with

𝐹∗ [𝜔1] = [𝜔2] ∈ 𝐻2(𝑋2,R), 𝐹∗ [Ω1] = [Ω2] ∈ 𝐻2(𝑋2,C).

Then there exists a diffeomorphism 𝑓 : 𝑋2 → 𝑋1 such that 𝑓 ∗𝜔1 = 𝜔2 and 𝑓 ∗Ω1 = Ω2.

Proof. Assume that (𝑌2, 𝐷̌2) are the pair of a rational elliptic surface and an 𝐼𝑏 fibre such that 𝑋̌2 = 𝑌2\𝐷̌2
is a hyperKähler rotation of (𝑋2, 𝜔2,Ω2) with elliptic fibration and fibre class [𝐿] ∈ 𝐻2 (𝑋2,Z). Thanks
to the assumption 𝐹∗ [Ω1] = [Ω2], there exists a special Lagrangian fibration on (𝑋1, 𝜔1,Ω1) with fibre
class 𝐹∗ [𝐿]. Let (𝑌1, 𝐷̌1) be the pair of rational elliptic surface and 𝐼𝑏 fibre such that 𝑋̌1 = 𝑌1 \ 𝐷̌1
is a hyperKähler rotation of 𝑋1 with elliptic fibration with fibre class 𝐹∗ [𝐿]. Denote (𝜔̌𝑖 , Ω̌𝑖) for the
hyperKähler triple on 𝑋̌𝑖 . From Theorem 2.2 and Theorem 3.3, the resulting holomorphic volume form
Ω̌𝑖 on 𝑋̌𝑖 is meromorphic on 𝑌𝑖 and has a simple pole along 𝐷̌𝑖 .

4Here we use a different period interpretation, which is stronger. See [8, Proposition 3.12].
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We will first use the weak Torelli theorem of Looijenga pairs (Theorem 3.8) to show that there exists
a biholomorphism 𝑌2 → 𝑌1 such that the induced map on 𝐻2( 𝑋̌2,Z) is the same as 𝐹∗. To achieve that,
we will construct an isomorphism of lattices 𝐹̃∗ : 𝐻2(𝑌1,Z) → 𝐻2(𝑌2,Z) from the diffeomorphism F
such that 𝐹̃∗([𝐷̌1,𝑖]) = [𝐷̌2,𝑖].

Lemma 3.10. There exists a diffeomorphism 𝐹 ′ : 𝑋2 → 𝑋1 such that

1. 𝐹 ′ is homotopic to F and
2. if 𝐶 ⊆ 𝑌2 is a 2-cycle that is a local section of the fibration 𝑌2 → P1 near infinity and intersects 𝐷̌𝑖,2

transversally for some i, then the closure of 𝐹 ′(𝐶 ∩ 𝑋2) intersects 𝐷̌𝑖,1 transversally and is again a
local section of 𝑌1 → P1 near infinity.

Proof. There exist compact sets 𝐾𝑖 ⊂ 𝑋𝑖 such that 𝑔𝑖 : 𝑋𝑖\𝐾𝑖 � 𝑋C . Recall that F sends a neighbourhood
of infinity of 𝑋2 to a neighbourhood of infinity of 𝑋1; and for each 𝑖 = 1, 2, there exists a special
Lagrangian fibration on 𝑋𝑖 \𝐾𝑖 → Δ∗, where Δ∗ is the punctured disc. We may choose 𝐾1, 𝐾2 such that
𝐹 (𝑋2 \ 𝐾2) ⊆ 𝑋1 \ 𝐾1 and 𝜕𝐾𝑖 is the preimage of a loop in Δ∗ under the special Lagrangian fibration;
that is, there exists 𝜈𝑖 : 𝜕𝐾𝑖 → 𝑆1. Since both 𝜕𝐾1, 𝐹 (𝜕𝐾2) are the boundary of a neighbourhood of
infinity of 𝑋1 and 𝑋1 \ 𝐾1 � 𝑋C � 𝑋̌𝑚𝑜𝑑 � 𝜕𝐾1 × (0, 1), there exists a vector field on 𝑋1 \ 𝐾1 such that
the induced flow takes 𝜕𝐾1 to 𝐹 (𝜕𝐾2). We will denote such a diffeomorphism by 𝑣 : 𝜕𝐾1 � 𝐹 (𝜕𝐾2).

Since 𝑆1 is the Eilenberg-MacLane space 𝐾 (Z, 1), we have [𝜕𝐾1, 𝑆1] = 𝐻1(𝜕𝐾1,Z) � Z2.
Restricting the model special Lagrangian fibrations in 𝑔−1

1 (𝑋C) and possibly composing with multi-
ple cover 𝑆1 → 𝑆1 gives Z2 nonhomotopic maps from 𝜕𝐾1 to 𝑆1. Notice that they all have different fibre
homology classes. Therefore, two maps from 𝜕𝐾1 to 𝑆1 are homotopic if and only if the corresponding
fibre classes are homologous. Therefore, we have 𝜈1 ∼ 𝜈2◦𝐹−1◦𝑣, and we can modify v such that v sends
fibres of 𝜈1 to fibres of 𝜈2 ◦𝐹−1, which are 2-tori. Let 𝑇2 be a fibre of 𝜈1 (𝜕𝐾1); then 𝜑 = 𝜈2 ◦𝐹−1 ◦𝑣◦𝜈−1

1
induces an element in the mapping class group 𝑀𝐶𝐺 (𝑇2) � 𝑆𝐿(2,Z). The monodromy M of 𝜕𝐾 → 𝑆1

is conjugate to
(
1 𝑏
0 1

)
and commutes with 𝜑. Thus, 𝜑 is also of the form ±

(
1 𝑚
0 1

)
for some 𝑚 ∈ Z. There-

fore, we may modify F such that fibrewise, it is given by 𝜑 on 𝑋2 \ 𝐾 ′
2 for large enough compact set 𝐾 ′

2.
In terms of the coordinates in Section 2.1, 𝐹 ′ (after the identification 𝑋C � 𝑋̌𝑚𝑜𝑑) is given by

𝑢 ↦→ 𝑢, 𝑣 ↦→ ±𝑣 + 𝑚
Im(𝑣)

Im(𝜏(𝑢)) . (3.3)

Now every continuous section of 𝑋̌𝑚𝑜𝑑 that extends to 𝑌𝑚𝑜𝑑 is of the form

ℎ(𝑢) + 𝑎

2𝜋𝑖
log 𝑢,

where ℎ(𝑢) is a continuous function over Δ and 𝑎 ∈ Z. A straightforward calculation shows that
equation (3.3) maps sections of 𝑌𝑚𝑜𝑑 to sections 𝑌𝑚𝑜𝑑; this finishes the proof of the lemma. �

From now on, we will replace F by 𝐹 ′ in Lemma 3.10 and still denote it by F. Recall that the second
homology group of a rational elliptic surface is generated by the components of fibres and sections. The
lemma implies that there exists a map 𝐹̃∗ : 𝐻2 (𝑌1,Z) → 𝐻2 (𝑌2,Z) such that the following diagram
commutes

𝐻2(𝑌1,Z)

��

𝐹̃ ∗
�� 𝐻2 (𝑌2,Z)

��

𝐻2 (𝑋1,Z) 𝐹 ∗
�� 𝐻2(𝑋2,Z)

and the intersection pairing is preserved. Here the vertical maps are the natural ones induced from the
restriction. From Poincare duality, 𝐹̃∗ must be an isometry of lattices.
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From [9, Construction 5.7], there exists a universal family (Y ,D) over Hom(Pic(𝑌1),C∗) such that
(𝑌1, 𝐷̌1) = (Y1,D1) is the reference fibre and there exists an isomorphism of pairs 𝜌 : (𝑌2, 𝐷̌2) �
(Y2,D2) with some fibre (Y2,D2). Now 𝐹̃∗ can be decomposed as

𝐹̃∗ : 𝐻2 (𝑌1,Z) = 𝐻2(Y1,Z)
Par
� 𝐻2(Y2,Z)

𝜌∗

� 𝐻2(𝑌2,Z),

where Par denotes a choice of the parallel transport via the universal family. Since 𝜌 : 𝑌2 � Y2 is a
biholomorphism, it preserves the set of exceptional curves and positive cones. Together with the fact
that 𝐶++ is preserved under the parallel transport, we have 𝐹̃∗(𝐶++

𝑌̌1
) = 𝐶++

𝑌̌2
. Now, from Theorem 3.8,

there exists an isomorphism of pairs ℎ : (𝑌2, 𝐷̌) → (𝑌1, 𝐷̌) such that 𝐹̃∗ ◦ 𝑔 = ℎ∗ for some 𝑔 ∈ 𝑊𝑌̌1
.

Next, we will show that g is the identity. From [9, Theorem 3.2], the hyperplanes 𝛼⊥, 𝛼 ∈ 𝑊𝑌̌1
· Δ𝑌̌1

divide 𝐶++
𝐷̌

into chambers, and the Weyl group 𝑊𝑌̌1
simply acts transitively on the chambers. Moreover,

there exists a unique chamber containing the nef cone and thus the ample cone. Chambers divided
by 𝛼⊥ in 𝐻2 (𝑌1) have disjoint image under the restriction map 𝜄∗ : 𝐻2(𝑌1) → 𝐻2 ( 𝑋̌1). Indeed, if
𝛿1, 𝛿2 ∈ 𝐻2(𝑌1) and 𝜄∗𝛿1 = 𝜄∗𝛿2, then from the dual of the long exact sequence of equation (3.2), we
have

𝛿2 = 𝛿1 +
∑

𝑖

𝑎𝑖 [𝐷𝑖] .

Thus 𝛿1, 𝛿2 fall in the same chamber because 𝛼 · [𝐷𝑖] = 0 for all 𝛼 ∈ 𝑊𝑌̌1
· Δ𝑌̌1

. Again from the long
exact sequence in equation (3.2), the image of 𝜄∗ is a hyperplane in 𝐻2 ( 𝑋̌1). For each 𝛼 ∈ Δ𝑌̌1

, there is
a corresponding (−2)-curve 𝐶𝛼 of 𝑌1 that completely falls in 𝑋̌1. Given a compact 2-cycle C of 𝑋̌ , we
can associate a hyperplane [𝐶]⊥𝑋̌1 of 𝐻2( 𝑋̌1) given by

[𝐶]⊥𝑋̌1 = {[𝜔] ∈ 𝐻2( 𝑋̌1) |
∫

𝐶
[𝜔] = 0}.

Then 𝜄∗(𝛼⊥) is the intersection of the hyperplanes [𝐶𝛼]⊥𝑋̌1 and [𝜕∗(𝜀)]⊥𝑋̌1 . Again, the hyperplanes
[𝐶𝛼]⊥𝑋̌1 , 𝛼 ∈ 𝑊𝑌̌1

·Δ𝑌̌1
divide 𝐻2( 𝑋̌1) into chambers. There exists a unique one that contains the image

of the Kähler cone of 𝑌1, which consists of 2-forms integrating positively on 𝐶𝛼 for all 𝛼 ∈ Δ𝑌̌1
. Since

𝐹∗ sends [𝜔1] to [𝜔2] and ℎ∗ preserves the Kähler classes of 𝑌1, one must have that g is the identity
and 𝐹̃∗ = ℎ∗.

When restricting to 𝑋̌1, we have ℎ∗ = 𝐹̃∗ = 𝐹∗. Since 𝐹∗ [Ω̌1] = [Ω̌2] from the assumption and
ℎ∗Ω̌1 = 𝑐Ω̌2 for some constant 𝑐 ∈ C∗, we then have ℎ∗Ω̌1 = Ω̌2. From Theorem 2.2 and Theorem 3.3,
the resulting Kähler form 𝜔̌𝑖 is exponentially decaying to a possibly nonstandard semi-flat metric. Then
Theorem 2.5 implies that𝑇∗

𝜎ℎ∗𝜔̌1 = 𝜔̌2, where𝑇𝜎 is a translation by a global section of 𝑋̌2, which doesn’t
alter the (2, 0)-forms. We may take 𝑓 = ℎ ◦ 𝑇𝜎 , and this finishes the proof of the Torelli theorem. �

Remark 3.11. Ongoing work by Mazzeo and Zhu [22] studies the Fredholm mapping properties of the
Laplace operator on ALH* space with applications to Hodge theory and perturbation theory.
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