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Abstract C∗-algebras form a 2-category with ∗-homomorphisms or correspondences as morphisms and
unitary intertwiners as 2-morphisms. We use this structure to define weak actions of 2-categories, weakly
equivariant maps between weak actions and modifications between weakly equivariant maps. In the group
case, we identify the resulting notions with known ones, including Busby–Smith twisted actions and the
equivalence of such actions, covariant representations and saturated Fell bundles. For 2-groups, weak
actions combine twists in the sense of Green, and Busby and Smith.

The Packer–Raeburn Stabilization Trick implies that all Busby–Smith twisted group actions of locally
compact groups are Morita equivalent to classical group actions. We generalize this to actions of strict
2-groupoids.
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1. Introduction

An automorphism of a C∗-algebra A is called inner if it is of the form Adu : a �→ uau∗

for some unitary multiplier u of A. Inner automorphisms act trivially on K-theory and all
other interesting invariants for C∗-algebras; more precisely, they act trivially on a functor
F if the corner embedding F (A) → F (M2(A)) is invertible for all A. If two automorphisms
α1 and α2 of a C∗-algebra A differ by an inner automorphism, α2 = Adu ◦ α1, then their
crossed product C∗-algebras are isomorphic.

While these statements suggest that we may simply ignore inner automorphisms, this
is false for representations of more general groups. For instance, any automorphism of the
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C∗-algebra K of compact operators on a separable Hilbert space is inner, so that any two
group actions on K agree up to inner automorphisms. Group actions by ∗-automorphisms
on K(H) correspond to projective representations of the group on the underlying Hilbert
space H. But the stabilized rotation algebras Aϑ ⊗ K for ϑ ∈ [0, 1] can be realized
as crossed products with K(H) for a family of projective representations of Z

2 on H.
Hence, there are actions of Z

2 on K(H) for which the crossed products are not Morita
equivalent, although all automorphisms of K(H) are inner. The correct way to formulate
the insignificance of inner automorphisms is the well-known exterior equivalence of group
actions. It differs from the naive notion by a cocycle condition for the twisting unitaries.

Similarly, a group homomorphism to the outer automorphism group

Out(A) := Aut(A)/Inn(A)

does not qualify as a group action on A because no crossed product can be defined in
such a situation (of course, Aut(A) denotes the automorphism group of A, and Inn(A)
the normal subgroup of inner automorphisms). The correct way to define group actions
up to inner automorphisms are the twisted actions in the sense of Busby and Smith [6].

Non-Hausdorff symmetry groups of C∗-algebras are related to inner automorphisms
in [7]. For example, the rotation algebra Aϑ plays the role of the algebra of functions
on the non-commutative space T/λZ for λ := exp(2πiϑ). Since this quotient group acts
on itself by multiplication, we expect Aϑ to carry a canonical action of T/λZ. Since λZ

is dense in T for irrational ϑ, such an action cannot exist in the classical sense. Instead,
we have an action of T that restricts to an inner action on λZ, so that we get a natural
homomorphism T/λZ → Out(Aϑ). As we remarked above, even for classical groups, a
homomorphism to Out(Aϑ) is not the right way to define group actions up to inner
automorphisms. Instead, we need a pair of group homomorphisms from T to Aut(Aϑ)
and from Z to the group of unitary multipliers UM(Aϑ) satisfying two compatibility
conditions familiar from the twisted group actions of Green [13].

In this paper, we interpret twisted group actions and related notions from the point
of view of 2-category theory. Weak 2-categories, which are also called bicategories, were
used in an operator algebraic context in [5,16] in order to study Morita equivalence of
C∗-algebras and von Neumann algebras. The authors implicitly used 2-categories in [7]
in order to describe non-Hausdorff symmetry groups of C∗-algebras.

In [7] non-Hausdorff symmetry groups are described by crossed modules. Crossed mod-
ules were considered in [22] in order to study some obstruction problems for twisted
actions cohomologically. Since crossed modules are equivalent to strict 2-groups, their
appearance in [7,22] is of fundamental importance. The general theory of 2-categories
explains various definitions related to twisted group actions, and it even provides some
insights for ordinary group actions.

The theory extends to continuous actions of locally compact topological 2-categories
as well, as we shall explain in § 3.4.

The first example of a strict 2-category is the 2-category of categories. Its 2-category
structure encodes the familiar properties of categories (objects), functors (arrows between
objects) and natural transformations (arrows between arrows). One of the basic ideas of
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category theory is that two functors that are related by an invertible natural trans-
formation should be considered equivalent. This leads to the notion of equivalence of
categories.

If two groups are isomorphic, then it is usually important to remember the isomorphism
between them. Similarly, if two functors are naturally isomorphic, we should remember
the natural isomorphism between them and require suitable coherence laws. An example
of this is products, say, of sets. When we construct products explicitly using the set theory
axioms, then (X × Y ) × Z and X × (Y × Z) are different but naturally isomorphic, and
so are X ×Y and Y ×X. But the existence of such isomorphisms is not enough: we must
select such natural isomorphisms and then check certain coherence laws. Depending on
the coherence laws we use, we arrive at the notion of a symmetric or a braided monoidal
category (see [3]).

The idea of weakening equality of morphisms to isomorphism of morphisms works in
any 2-category and is very familiar from homotopy theory, where continuous maps are
considered equivalent if they are homotopic. We shall apply this idea to C∗-algebras.
There are several possible ways to turn C∗-algebras into a 2-category. We shall use two
definitions here, one using ∗-representations and unitary intertwiners, the other using
correspondences and unitary intertwiners. By definition, a ∗-representation from A to
B is a non-degenerate ∗-homomorphism from A to the multiplier algebra of B, and a
correspondence from A to B is a non-degenerate ∗-homomorphism from A to the algebra
of adjointable operators on some Hilbert B-module. A unitary intertwiner between two
∗-representations f, g : A ⇒ M(B) is a unitary multiplier u of B with

uf(a) = g(a)u for all a ∈ A.

Unitary intertwiners between correspondences are A-linear unitary operators between
the underlying Hilbert B-modules.

Whereas C∗-algebras with ∗-representations and unitary intertwiners form a strict 2-
category, C∗-algebras with correspondences and unitary intertwiners only form a weak 2-
category (bicategory) because the (tensor) product of correspondences is only associative
up to isomorphism and only has units up to isomorphism.

Recall that categories form a 2-category with categories as objects, functors as
1-morphisms and natural transformations as 2-morphisms. Similarly, 2-categories form a
3-category. Therefore, given a 2-category, or just a group viewed as a 2-category, there
are three levels of morphisms from this 2-category to the two 2-categories of C∗-algebras
mentioned above.

Firstly, there are functors between 2-categories. A strict functor from a group to the
2-category of C∗-algebras is a group action. When we weaken equalities of morphisms to
isomorphisms, we get Busby–Smith twisted actions.

Secondly, there are natural transformations between such functors. The strict natural
transformations between group actions are exactly the equivariant maps. The weak ver-
sion of this combines equivariant maps with exterior equivalence: a weakly equivariant
map between two weak actions of a group is a strictly equivariant map to an exterior
equivalent weak action. Moreover, if the target algebra carries the trivial weak group

https://doi.org/10.1017/S0013091512000259 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091512000259


390 A. Buss, R. Meyer and C. Zhu

action, then a weakly equivariant map is the same as a covariant representation. Thus,
weak natural transformations contain equivariant maps, exterior equivalence and covari-
ant representations as special cases.

Thirdly, there are modifications between weakly equivariant maps. These generalize
unitary intertwining operators between covariant representations to the setting where the
target algebra carries a non-trivial action, and provide the correct notion of equivalence
for weakly equivariant maps between weak actions.

General 2-category theory (see [17]) explains the various coherence laws or covariance
conditions that appear in the above definitions. Once you understand 2-categories, you
no longer have to memorise the cocycle condition for Busby–Smith twisted actions or the
definition of exterior equivalence of such twisted actions because you can derive these
conditions in a minute.

Furthermore, the general theory applies equally well to actions of more general 2-cate-
gories. For strict 2-groupoids, represented by crossed modules, the notion of a strict action
is a straightforward generalization of Green’s twisted actions (see [7]). Weak actions
of crossed modules consistently combine the twists of Green with those of Busby and
Smith. The relevant coherence laws are already rather complicated, but are produced
automatically by higher category theory.

Using the weak 2-category of C∗-algebras with correspondences and unitary intertwin-
ers, we get yet another set-up for studying actions of groups or 2-categories on C∗-al-
gebras. Since the target category is not strict, we only have the weak notions of action,
equivariant map and equivalence here. We show that weak actions of a group are equiv-
alent to saturated Fell bundles over this group. We interpret weakly equivariant maps as
correspondences of Fell bundles. Modifications are isomorphisms of correspondences.

The interesting feature of actions by correspondences is that we can transport them
under Morita equivalences. That is, if G acts by correspondences on A and A is Morita
equivalent to B, then we get an induced action of G by correspondences on B. Actions
of Z of this kind were already studied in [1]; free groups are the only case where we do
not need higher categories to define weak actions.

Recall that a Morita equivalence between two σ-unital C∗-algebras implies a ∗-iso-
morphism between their C∗-stabilizations. A more precise version of this statement
shows that a weak action by correspondences of a strict 2-groupoid on a σ-unital
C∗-algebra becomes a weak action by ∗-isomorphisms after C∗-stabilization. A basic fact
about Busby–Smith twisted group actions is the Packer–Raeburn Stabilization Trick,
which shows that Busby–Smith twisted actions are Morita equivalent to untwisted group
actions. Combining both results, we find that a group action by correspondences is equiv-
alent to a classical group action on the C∗-stabilization. As a consequence, a group
action by correspondences or, equivalently, a saturated Fell bundle with given unit fibre
is exactly the structure that is inherited by C∗-algebras that are Morita equivalent to
C∗-algebras with a classical group action.

The same argument applies to crossed modules of locally compact topological
groupoids: any topological weak action by correspondences of such a crossed module
is equivalent to a strict action of the crossed module. Such strictification results are
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rather unusual in higher category theory. For most target categories, weak actions are
genuinely more general than strict actions.

2. 2-categories and crossed modules

Here we review strict and weak 2-categories. Our motivating examples are the 2-categories
of C∗-algebras C∗(2) and Corr(2) based on ∗-representations or correspondences, respec-
tively, and unitary intertwiners.

2.1. Strict 2-categories

The quick definition of a strict 2-category describes it as a category enriched over
categories. That is, for two objects x and y of our first-order category, we have a category
of morphisms from x to y, and the composition of morphisms lifts to a bifunctor between
these morphism categories. This definition is similar to the definition of a pre-additive
category: the latter is merely a category enriched over Abelian groups.

We now write down more explicitly what we mean by a category enriched over cate-
gories (see also [2]). Having categories of morphisms boils down to having arrows between
objects x → y, also called 1-morphisms, and arrows between arrows

y x

f

��

g

�� a
��

which are called 2-morphisms or bigons because of their shape. We prefer to call them
bigons because there are other ways to describe 2-categories that use triangles or even
more complicated shapes as 2-morphisms (see [2]).

The category structure on the space of arrows x → y provides a vertical composition
of bigons

y x

f

��
g��

h

��
a��

b��
�→ y x

f

��

h

�� b·va
��

The composition functor between the arrow categories provides a composition of arrows

z y
f�� x

g�� �→ z x
fg��

and a horizontal composition of bigons

z y

f1

��

g1

�� a
��

x

f2

��

g2

�� b
��

�→ z x

f1f2

��

g1g2

�� a·hb
��
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These three compositions of arrows and bigons are associative and unital, with the same
unit bigons for the vertical and horizontal product. Furthermore, the horizontal and
vertical products commute: given a diagram

z y

f1

��
g1��

h1

��
a1��

b1��
x

f2

��
g2��

h2

��
a2��

b2��

composing first vertically and then horizontally or the other way around produces the
same bigon f1f2 ⇒ h1h2. The three composition operations and the associativity, uni-
tality and interchange conditions above only make explicit the structure present in a
category enriched over categories.

In any strict 2-category, the objects and arrows form an ordinary category.

Example 2.1. Categories form a strict 2-category with small categories as objects,
functors between categories as arrows and natural transformations between functors as
bigons. The composition of arrows is the composition of functors, and the vertical compo-
sition of bigons is the composition of natural transformations. The horizontal composition
of bigons yields the canonical natural transformation

Φ1,G2(A) ◦ F1(Φ2,A) = G1(Φ2,A) ◦ Φ1,F2(A) : F1(F2(A)) → G1(G2(A))

for the diagram

C1 C2

F1

		

G1



 Φ1
��

C3

F2

		

G2



 Φ2
��

2.1.1. The strict 2-category C∗(2) of C∗-algebras

Now we describe a strict 2-category with C∗-algebras as objects, non-degenerate
∗-homomorphisms A → M(B) as arrows and unitary intertwiners between such ∗-homo-
morphisms as bigons.

Let A and B be C∗-algebras and let M(A) and M(B) be their multiplier algebras,
equipped with the strict topologies. By definition, an arrow from A to B is a strictly
continuous, unital ∗-homomorphism from M(A) to M(B). These arrows are composed in
the obvious way. Since A is strictly dense in its multiplier algebra, an arrow is determined
uniquely by its restriction to a ∗-homomorphism from A to M(B). A ∗-homomorphism
from A to M(B) extends to a strictly continuous, unital ∗-homomorphism from M(A) to
M(B) if and only if it is non-degenerate. We also call non-degenerate ∗-homomorphisms
from A to M(B) ∗-representations of A on B. Thus, the arrows in C∗(2) are equivalent
to ∗-representations of A on B; some authors simply call them morphisms.

Let f and g be two arrows from A to B, that is, strictly continuous, unital ∗-homo-
morphisms from M(A) to M(B). An element b ∈ M(B) is called an intertwiner from f

to g if b · f(a) = g(a) · b for all a ∈ M(A) or, equivalently, for all a ∈ A. If b is unitary,
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this is equivalent to g = Adb ◦ f , where Adb is the inner automorphism generated by b.
The set of bigons from f to g in C∗(2) is the set of unitary intertwiners from f to g. The
vertical composition of intertwiners is the product in M(B); the horizontal composition
of two bigons c : f1 ⇒ g1 and b : f2 ⇒ g2 for composable pairs of arrows f1, g1 : B ⇒ C

and f2, g2 : A ⇒ B is
c ·h b := c · f1(b) = g1(b) · c. (2.1)

It is easy to check that the vertical and horizontal compositions of bigons are associative
and satisfy the interchange law.

This strict 2-category C∗(2) may be modified in several ways. We may allow non-
unitary intertwiners. We may also allow non-unital strictly continuous ∗-homomorphisms
M(A) → M(B) as our morphisms.

Remark 2.2. When we want to study K-theory, we should use possibly degenerate
∗-homomorphisms A → B as morphisms. This creates problems with the horizontal
composition of bigons because degenerate ∗-homomorphisms need not act on multipliers.
This problem may be avoided if we replace M(B) by the unitalization B+ of B. This
leads to a 2-category with C∗-algebras as objects, ∗-homomorphisms A → B as arrows
from A to B and unitary intertwiners in B+ as bigons.

2.1.2. Strict 2-groupoids

Definition 2.3. A strict 2-groupoid is a strict 2-category in which all arrows and
bigons are invertible (bigons are invertible for both the vertical and horizontal products);
a strict 2-group is a strict 2-groupoid with a single object.

Given a strict 2-groupoid, its objects and arrows form a groupoid, which we call G. We
may use horizontal products with unit bigons to produce any bigon from a bigon that
starts at a unit morphism:

y y

1y

��

∂(a)

�� a
��

x

f

��

f

�� 1f

��
�→ y x

f

��

∂(a)f

�� a·hf
��

The bigons starting at the identity morphism on x form a group Hx with respect to
horizontal composition, and the map h �→ ∂(h) is a homomorphism from the group
bundle H =

⊔
x∈G(0) Hx to the isotropy group bundle of our groupoid G. Furthermore,

the groupoid G acts on the group bundle H by a conjugation action:

x y

g

��

g

�� 1g

��
y

1y

��

∂(a)

�� a
��

x

g−1

��

g−1

�� 1g−1
��

�→ x x

1x

��

g∂(a)g−1

�� cg(a)
��

The groupoid G, the group bundle H with this conjugation action and the map ∂ : H → G

form a crossed module of groupoids. If we start with a topological 2-groupoid, this yields a
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crossed module of topological groupoids. Conversely, any (topological) strict 2-groupoid
arises in this fashion for a unique crossed module of (topological) groupoids. Crossed
modules and their (strict) actions on C∗-algebras are also studied in [7]. In the current
paper, we focus on weak notions of group action and equivariant map.

Example 2.4. Let ϑ ∈ R and let λ := e2πiϑ. Consider the map ∂ from Z into the
1-torus T defined by ∂(n) := λn. The map ∂ : Z → T and the trivial conjugation action
of T on Z define a crossed module, which appears as symmetry of the rotation algebra
Aϑ in [7].

From the discussion above, we can construct a strict 2-group out of this crossed module.
It has a single object �, and the group of arrows is T with its usual multiplication. The
set of bigons is Z × T, where a pair (n, z) ∈ Z × T is viewed as a 2-morphism from z to
λn · z:

� �

z

��

λn·z

�� n
��

The horizontal multiplication of 2-morphisms is

� �

z1

��

λn1z1

�� n1
��

�

z2

��

λn2z2

�� n2
��

�→ � �

z1z2

��

λn1+n2z1z2

�� n1+n2
��

and the vertical composition is

� �

z




λnz��

λn′
λnz

��
n��

n′
��

�→ � �

z





λn+n′
z

�� n+n′

��

2.2. The weak 2-category of correspondences

Why did we choose unitary multipliers as our bigons in C∗(2)? This choice becomes
more natural after introducing another 2-category, Corr(2), of C∗-algebras that has
C∗-correspondences as arrows.

Definition 2.5. A C∗-correspondence from A to B is a Hilbert B-module H with a
non-degenerate ∗-representation of A on H by adjointable operators.

Bigons in Corr(2) are isomorphisms of C∗-correspondences, that is, A, B-bimodule
isomorphisms that are unitary for the B-valued inner products.

Example 2.6. Let f : A → M(B) be a ∗-representation. This yields a correspondence
[f ] that involves B with its usual right Hilbert B-module structure and the left action
of A induced by f , that is, a · b := f(a)b; here we tacitly use the fact that the algebra of
adjointable operators on B is M(B). An isomorphism between [f1] and [f2] is a unitary
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adjointable operator b on B (that is, a unitary multiplier of B) such that bf1(a) = f2(a)b
for all a ∈ A. Thus, the bigons [f1] ⇒ [f2] in Corr(2) are the same as the bigons f1 ⇒ f2

in C∗(2).

To get a 2-category Corr(2), we also have to compose arrows and bigons. The compo-
sition of arrows is the (balanced) tensor product: given two composable correspondences
f1 : B → B(HD) and f2 : A → B(HB), we want to define

f1 ◦ f2 := f2 ⊗B f1. (2.2)

More precisely, the right-hand side denotes the Hilbert D-module HB ⊗B HD with the
action f2 ⊗B Id of A. Recall that HB ⊗B HD is the completion of the algebraic tensor
product HB ⊗ HD with respect to the D-valued inner product

〈ξ1 ⊗ η1, ξ2 ⊗ η2〉 := 〈η1, f1(〈ξ1, ξ2〉B) · η2〉D.

If [f1] and [f2] are correspondences coming from ∗-representations f1 : B → M(D) and
f2 : A → M(B) as in Example 2.6, then there is a natural isomorphism

[f1 ◦ f2] ∼= [f1] ◦[f2] := [f2] ⊗B [f1].

The horizontal and vertical compositions of arrows are given by

b1 ·h b2 := b2 ⊗B b1 and b1 ·v b2 := b1 · b2.

The unit arrow 1A on an object A (a C∗-algebra) is the identity correspondence [IdA],
and the unit bigon 1f on an arrow f (a C∗-correspondence) is the identity isomorphism
on the underlying Hilbert module of f . These obvious definitions produce only a weak
2-category, also called a bicategory in [4].

2.2.1. The definition of weak 2-categories

Weak 2-categories differ from strict ones because the composition of arrows is only
associative and unital up to isomorphism. A weak 2-category has objects, arrows and
bigons as above, with a unit arrow on each object and a unit bigon on each arrow,
a composition of arrows, and horizontal and vertical compositions of bigons. But the
associativity law (f1 ·f2) ·f3 = f1 · (f2 ·f3) and the unit law 1 ·f = f = f ·1 are weakened :
we only require invertible bigons

(f1 · f2) · f3
a(f1,f2,f3)======⇒∼=

f1 · (f2 · f3), 1y · f
lf=⇒∼= f

rf⇐=∼=
f · 1x (2.3)

for any triple of composable arrows f1, f2, f3 and any arrow f : x → y. The bigons
a(f1, f2, f3), lf and rf are sometimes called associator, and left and right unitor, respec-
tively. Besides naturality, we require the following two diagrams to commute:

((f1 · f2) · f3) · f4 ��

��

(f1 · f2) · (f3 · f4) �� f1 · (f2 · (f3 · f4))

(f1 · (f2 · f3)) · f4 �� f1 · ((f2 · f3) · f4)

��

(2.4)
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for a quadruple of composable arrows f1, f2, f3, f4, and

(f · 1y) · g ��

�����������

���������
f · (1y · g)

�� ���������

���������

f · g

(2.5)

for composable arrows f : y → z and g : x → y; the bigons involved come from (2.3). By
Mac Lane’s Coherence Theorem [18], the two coherence laws (2.4) and (2.5) imply that
any two parallel bigons constructed out of the bigons in (2.3) are equal.

In addition to the coherence laws, the vertical composition of bigons is required to be
strictly associative and unital; the horizontal composition of bigons must be associative
up to the vertical products with the associators for arrows that are needed to identify
the source and range arrows of (b1 ·h b2) ·h b3 with those of b1 ·h (b2 ·h b3), and it must be
unital in a similar sense.

The following definition summarizes these properties.

Definition 2.7. A weak 2-category C contains the following data.

• A set of objects C0.

• For each pair of objects (x, y), a category C(x, y) of arrows from x to y; the objects
and morphisms of the categories C(x, y) are called arrows and bigons of C, respec-
tively; in particular, this gives us a unit bigon Idf for each arrow f in C and a
vertical composition

y x

f

����

g

��
b��

b′
��

�→ y x

f

��

g

�� b′·vb

��

• For each triple (x, y, z) of objects, a composition functor C(y, z)×C(x, y) → C(x, z),

z y

f1

��

g1

�� b1
��

x

f2

��

g2

�� b2
��

�→ z x

f1·f2

��

g1·g2

�� b1·hb2
��

which combines the composition of arrows and the horizontal composition of bigons.

• For each object x, a unit arrow 1x ∈ C(x, x).

• Invertible bigons as in (2.3).

This data must satisfy the coherence conditions (2.4) and (2.5).
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Example 2.8. In the case of Corr(2), we use the obvious isomorphisms of correspon-
dences

(f1 · f2) · f3
a(f1,f2,f3)======⇒∼=

f1 · (f2 · f3), f · 1B
lf=⇒∼= f

rf⇐=∼=
1A · f ;

the first isomorphism maps the generator (ξ1 ⊗ ξ2) ⊗ ξ3 of the first tensor product to
ξ1 ⊗ (ξ2 ⊗ ξ3); the second and third isomorphisms map ξ ⊗ b and a ⊗ ξ to ξ · b and a · ξ,
respectively. The coherence laws are trivial to verify for these natural isomorphisms.

The definition of a weak 2-category is a special case of weakening equalities of arrows in
2-categories to isomorphisms of arrows. Whenever we do this, we must specify the bigons
that implement these isomorphisms as part of our data, and we must require these bigons
to satisfy suitable coherence laws. It is usually easy to find some such coherence laws.
But it may be more difficult to justify that we have found all relevant coherence laws.
The examples we are going to consider are sufficiently well known to find this in the
literature.

2.3. Isomorphisms and equivalences

Definition 2.9. An isomorphism in a strict 2-category is an arrow f : x → y for which
there is an arrow g : y → x with g ◦ f = 1x and f ◦ g = 1y.

An equivalence in a weak 2-category is an arrow f : x → y for which there is an arrow
g : y → x with g ◦ f ∼= 1x and f ◦ g ∼= 1y, that is, there are invertible bigons g ◦ f ⇒ 1x

and f ◦ g ⇒ 1y.

Clearly, products of equivalences are equivalences, and products of isomorphisms are
isomorphisms. The distinction between isomorphisms and equivalences is uninteresting
in weak 2-categories because unit arrows in such categories only behave nicely up to
equivalence anyway.

Proposition 2.10. Let A and B be C∗-algebras. A strictly continuous unital ∗-homo-
morphism f : M(A) → M(B) is an equivalence in C∗(2) if and only if it is an isomorphism
in C∗(2), if and only if f restricts to a C∗-algebra isomorphism between A and B.

Proof. It is clear that the strictly continuous extension of an isomorphism A
∼−→ B is

an isomorphism and hence an equivalence in C∗(2). Conversely, let f be an equivalence
in the 2-category C∗(2). This means that there is another strictly continuous unital
∗-homomorphism g : M(B) → M(A) such that f ◦ g ∼= IdM(B) and g ◦ f ∼= IdM(A), that
is, f ◦ g = Adu and g ◦ f = Adv for unitaries u ∈ M(B), v ∈ M(A). Strict continuity
implies that g(B) · A is norm-dense in A. Hence, f(A) is contained in the norm-closure
of

f(g(B) · A) = Adv(B) · f(A) = B · f(A) ⊆ B.

Thus, f(A) ⊆ B and, similarly, g(B) ⊆ A. Since inner automorphisms restrict to bijec-
tions on A and B, this implies that f restricts to a bijection A

∼−→ B, so that f is an
isomorphism of C∗-algebras as asserted. �
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Proposition 2.11. Let A and B be two C∗-algebras. A correspondence f : A → B(H)
from A to B is an equivalence in Corr(2) if and only if f is an isomorphism onto K(H),
so that we may enrich f to an A, B-imprimitivity bimodule.

Proof. This is equivalent to [9, Lemma 2.4]. �

3. The group case

Let G be a group. A (strict) group action of G on an object A of a category C is given by
invertible arrows αg for all g ∈ G that satisfy the equations α1 = 1A and αg1αg2 = αg1g2

for all g1, g2 ∈ G; the equation α1 = 1A is redundant if C is a groupoid. A (strictly)
equivariant map between group actions (αg)g∈G on A and (βg)g∈G on B is an arrow
f : A → B that satisfies the equation fαg = βgf for all g ∈ G. Two such maps f1 and f2

are equal if f1 = f2.
In this section, we replace C by a 2-category C and define the notions of weak group

actions, weakly equivariant maps and modifications of weakly equivariant maps by replac-
ing equalities f = g of arrows by bigons f ⇒ g or g ⇒ f that satisfy appropriate coher-
ence laws. We limit our discussion to the more palatable group case in this section. In
the next section, we will generalize our definitions, allowing general 2-groupoids to act.
This also explains the coherence laws: they are part of the standard way to define the
3-category of 2-categories (see [17]); weak group actions are the same thing as morphisms
from a group, viewed as a 2-category, to another 2-category; weakly equivariant maps
are transformations between such morphisms, and modifications appear under the same
name in [17].

We show that weak group actions in the 2-category C∗(2) are Busby–Smith twisted
actions (as defined in [15]), while weak group actions in the correspondence 2-category
Corr(2) are equivalent to saturated Fell bundles. Thus, 2-categories make precise the
sense in which Fell bundles are a kind of group action. It is not clear, however, whether
non-saturated Fell bundles can be interpreted as group actions as well: they seem closer
to the actions of the inverse semigroup S(G) defined by Exel in [11], whose actions are
partial actions of G, than to actions of the group itself.

A strictly equivariant map between two (weak) group actions is a strict transforma-
tion between them in the notation of [17]. Weakening this yields transformations between
morphisms. Any transformation to C∗(2) may be decomposed into a strictly equivariant
map and an equivalence between two actions on the same object, where equivalence
of weak actions in C∗(2) is the usual notion of (exterior) equivalence for Busby–Smith
twisted actions. In addition, covariant representations are a special case of transforma-
tions between weak actions.

In the setting of 2-categories, transformations themselves become objects of a cate-
gory; the morphisms between them are called modifications. For instance, a modification
between two covariant representations, viewed as strong transformations, is a unitary
intertwiner between these covariant representations.
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3.1. Weak group actions

Let G be a discrete group and let C be a 2-category. A weak action of G on an object
A of C consists of

• arrows αg : A → A for all g ∈ G,

• a bigon u : 1A ⇒ α1 and

• bigons ω(g1, g2) : αg1αg2 ⇒ αg1g2 for all g1, g2 ∈ G,

subject to certain coherence laws. These bigons replace the equations α1 = IdA and
αg1αg2 = αg1g2 for strict actions by isomorphisms. Roughly speaking, these isomorphisms
satisfy a coherence law whenever we can prove an equality for strict group actions in
two different ways. For instance, we may simplify α1αg to αg in two different ways:
α1αg = 1Aαg = αg or α1αg = α1·g = αg. Similarly, there are two ways to simplify αgα1

to αg. This leads to the coherence laws

α1 · αg
ω(1,g) ��

��
u·hαg

α1·g

1A · αg �� �� αg

αg · α1
ω(g,1) ��

��
αg·hu

αg·1

αg · 1A �� �� αg

(3.1)

This diagram contains some conventions that we will use in all following diagrams to keep
them more readable. Firstly, the unlabelled invertible bigons ⇔ denote the bigons (2.3)
that implement the associativity or the unitality of the target category C; they become
equalities in a strict 2-category such as C∗(2) and are obvious canonical isomorphisms in
Corr(2). Secondly, the composition of bigons is the vertical multiplication. Thirdly, we
denote the identity bigon on an arrow α by α as well. This explains the notation u ·h αg

and αg ·h u. The horizontal products that we need are usually of this form: we multiply
horizontally with some identity bigon to change the source and target arrows of a bigon.

Similarly, we may simplify (αg1αg2)αg3 to αg1g2g3 in two ways:

(αg1αg2)αg3 = αg1g2αg3 = αg1g2g3 ,

(αg1αg2)αg3 = αg1(αg2αg3) = αg1αg2g3 = αg1g2g3 .

This leads us to the coherence law

(αg1αg2)αg3
�� ��

ω(g1,g2)·hαg3
��

αg1(αg2αg3)

αg1 ·hω(g2,g3)
��

αg1g2αg3

ω(g1g2,g3) �����
���

�

���
���

�
αg1αg2g3

ω(g1,g2g3)�� ��
���

��

���
���

�

αg1g2g3

(3.2)

In the above definition, it is reasonable to require the bigons u and ω to be invertible;
since all bigons in the categories C∗(2) and Corr(2) are invertible anyway, we assume this
wherever we need it.
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It turns out that we do not need more coherence laws because, in some sense, they
generate all other reasonable coherence laws. More precisely, let g1, . . . , gn ∈ G. We use u

to add as many unit morphisms to this list as we like and then insert brackets to interpret
the product αg1 · · ·αgn

; the associativity bigons in (2.3) tell us how to relate different
ways of putting these brackets. Then we use the bigons ω, together with the invertible
bigons in (2.3), to simplify αg1 · · ·αgn to αg1···gn . The coherence laws above ensure that we
get the same bigon αg1 · · ·αgn ⇒ αg1···gn , no matter where we put brackets to begin with
and in which order we simplify our product. Our definition of weak action is a special case
of the more general concept of morphisms between weak 2-categories defined in [4, § 4].

Assume that the bigons u and ω are invertible. Then the arrows αg must be equivalences
because of the invertible bigons αgαg−1 ⇒ αgg−1 = α1 ⇐ 1A. In general, the arrows αg

need not be invertible.
We call a group action strict if the bigons u and ω are identity bigons. This yields

group actions of G in the usual sense.

Remark 3.1. Recall that the condition α1 = Id is redundant if the target category C
of a group action α is a groupoid. Similarly, if the target 2-category C is a 2-groupoid,
that is, all arrows are equivalences and all bigons are invertible, then the bigon u in
our definition of a weak action is redundant. The (invertible) bigon ω(1, 1) : α1α1 ⇒ α1

then yields a canonical invertible bigon α1 ⇐ Id by cancelling the equivalence α1. More
precisely, we follow the chain of bigons

α1 ⇔ α1(α1α
−1
1 ) ⇔ (α1α1)α−1

1
ω(1,1)⇐==⇒ α1α

−1
1 ⇔ Id,

where the outer two bigons are part of the structure of the inverse α−1
1 (see Definition 2.9).

It can be checked that the coherence laws imply that u must be this particular bigon.
Hence, we may omit the unitary u and the coherence law (3.1) if C is a 2-groupoid. That
is, a weak action of G on an object of C is equivalent to the pair (α, ω) satisfying (3.2).
We shall repeat this argument below for the simpler case C = C∗(2).

3.1.1. Weak actions of groups by ∗-representations and Busby–Smith twisted actions

Now we study weak group actions in the strict 2-category C∗(2) of C∗-algebras with
∗-representations as arrows and unitary intertwiners as bigons. Here any bigon is invert-
ible. Furthermore, the isomorphisms in C∗(2) are the ∗-isomorphisms. Thus, a strict
group action on an object of C∗(2) is a group homomorphism from G to the group of
∗-automorphisms of a C∗-algebra A: this is the usual notion of a group action on a
C∗-algebra.

What is a weak group action (A, α, ω, u) on an object of C∗(2)? Here, A is a C∗-algebra
and αg : M(A) → M(A) restricts to a ∗-automorphism of A by Proposition 2.10 because
αg is an equivalence for any weak action. The bigons ω(g1, g2) and u are unitary multi-
pliers of A that satisfy

ω(g1, g2) · αg1(αg2(a)) · ω(g1, g2)∗ = αg1g2(a) for all g1, g2 ∈ G, a ∈ A, (3.3)

u · a · u∗ = α1(a) for all a ∈ A, (3.4)

because u and ω(g1, g2) are bigons 1A ⇒ α1 and αg1αg2 ⇒ αg1g2 , respectively.
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The coherence laws (3.1) and (3.2) look more familiar if we express them in terms of
the adjoints ω∗(g1, g2) := ω(g1, g2)∗. This is what we will do from now on. Recall that
the vertical multiplication in C∗(2) is just multiplication of unitaries, while (2.1) yields
f ·h u = f(u) and u ·h f = u for an arrow f and a unitary u, viewed as a bigon between
some arrows it intertwines.

As a result, the two coherence laws in (3.1) mean that

ω∗(1, g) = u, ω∗(g, 1) = αg(u) (3.5)

for all g ∈ G, and the coherence law (3.2) amounts to the cocycle condition

αg1(ω
∗(g2, g3)) · ω∗(g1, g2g3) = ω∗(g1, g2) · ω∗(g1g2, g3) (3.6)

for all g1, g2, g3 ∈ G. In particular, u = ω∗(1, 1).
If we define u := ω∗(1, 1), then (3.4) follows from (3.3) and the invertibility of α1,

and the conditions (3.5) follow from (3.6) for g2 = g3 = 1 and g1 = g2 = 1. Thus, a
weak action of a group G on A is given by ∗-automorphisms αg for g ∈ G and unitaries
ω∗(g1, g2) for g1, g2 ∈ G that satisfy (3.3) and (3.6). This is called a Busby–Smith twisted
dynamical system in [15]. The original definition of twisted actions by Busby and Smith
in [6, Definition 2.1] imposes the additional condition u = 1, that is, α1 = IdA and
ω(g, 1) = 1 = ω(1, g). Lemma 3.7 will show that any weak action is weakly isomorphic
to one with α1 = IdA and u = ω(1, 1)∗ = 1 (weak isomorphism in C∗(2) is the same as
exterior equivalence). Thus, the two definitions of Busby–Smith twisted actions in [6,15]
are essentially equivalent.

3.1.2. Group actions by correspondences and saturated Fell bundles

Now we replace C∗(2) by the correspondence category Corr(2) and study weak group
actions by correspondences. We shall show that such group actions are equivalent to
saturated Fell bundles. Since the category Corr(2) is weak, it is pointless to study strict
group actions in Corr(2).

Definition 3.2. A Fell bundle (see [12]) over a (discrete) group G is a family of
Banach spaces Ag for g ∈ G with multiplication maps µ(g1, g2) : Ag1 × Ag2 → Ag1g2 and
conjugate-linear ∗-operations Ag → Ag−1 that satisfy analogues of the usual conditions
for a C∗-algebra: the multiplication is associative, the ∗-operation is an involutive anti-
homomorphism with ξ∗ξ � 0 for all ξ ∈ Ag, and the norm satisfies ‖ξ‖2

Ag
= ‖ξξ∗‖A1 =

‖ξ∗ξ‖A1 for all g ∈ G. A Fell bundle is called saturated if the span of Ag1 · Ag2 is dense
in Ag1g2 for all g1, g2 ∈ G.

Theorem 3.3. A group action by correspondences of a group G on a C∗-algebra A

is equivalent to a saturated Fell bundle (Ag)g∈G over G with a C∗-algebra isomorphism
A ∼= A1.
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Proof. Let (Ag)g∈G be a saturated Fell bundle. Then A1 is a C∗-algebra, so that it
makes sense to ask for a C∗-algebra isomorphism ϕ : A

∼−→ A1. Each Ag is a Hilbert
A1, A1-bimodule via the multiplication A1 × Ag × A1 → Ag and the right and left inner
products 〈ξ|η〉r := ξ∗ · η and 〈ξ|η〉l := ξ · η∗ for ξ, η ∈ Ag. This Hilbert bimodule is an
imprimitivity bimodule because the Fell bundle is saturated. We use the isomorphism
ϕ : A → A1 to view Ag as an A, A-imprimitivity bimodule or, equivalently, as an invert-
ible correspondence from A to itself (Proposition 2.11), and let αg := Ag−1 . The bigon
u : A ⇒ α1 is simply ϕ : A → α1; this C∗-algebra isomorphism is also an isomorphism of
correspondences.

The associativity of the multiplication µ : Ag1 × Ag2 → Ag1g2 in the Fell bundle yields

µ(a1 · ξ · a2, η · a3) = a1 · µ(ξ, a2 · η) · a3 for all a1, a2, a3 ∈ A.

Hence, µ induces an A-bimodule homomorphism Ag1 ⊗A Ag2 → Ag1g2 that is isometric
with respect to both the left and the right inner products. This isometry is unitary
because the Fell bundle is saturated. We let

ω(g1, g2) : αg2 ⊗A αg1 = Ag−1
2

⊗A Ag−1
1

→ Ag−1
2 g−1

1
= αg1g2

be this isomorphism for g−1
2 and g−1

1 .
The diagram (3.1) commutes for trivial reasons, and the associativity of the multipli-

cation in the Fell bundle implies the commutativity of (3.2). Hence, the data (A, α, ω, u)
define a weak group action of G in Corr(2).

Conversely, a group action on A by correspondences consists of correspondences
αg : A → A and unitary bimodule homomorphisms

u : 1A ⇒ α1, ω(g1, g2) : αg2 ⊗A αg1 ⇒ αg1g2 .

The correspondences αg are equivalences and hence A-imprimitivity bimodules by
Proposition 2.11. The Banach spaces Ag := αg−1 will, of course, become the fibres of our
Fell bundle. The bigon ϕ = u identifies A ∼= α1 as an imprimitivity bimodule and, in
particular, as a Banach space.

The unitary intertwiner ω(g−1
2 , g−1

1 ) yields a bilinear map

µ(g1, g2) : Ag1 × Ag2 → Ag1g2 , (ξ1, ξ2) �→ ω(g−1
2 , g−1

1 )(ξ1 ⊗ ξ2).

We use the maps µ(g1, g2) to define the multiplication in our Fell bundle. The multipli-
cation is associative because of the coherence law (3.2). Since ω(g1, g2) is unitary, the
range of µ(g1, g2) is dense in Ag1g2 for all g1, g2 ∈ G.

In particular, the above multiplication turns A1 into an algebra with multiplication
provided by µ(1, 1), which we denote by µ for short. The coherence law (3.1) implies
µ(ξ, η) = u−1(ξ) · η for all ξ, η ∈ A1. Applying u−1 to this equation and using that it is a
bimodule homomorphism, we get u−1(µ(ξ, η)) = u−1(ξ) ·u−1(η), so that ϕ = u : A → A1

is an algebra homomorphism for the multiplication µ on α1.
Before we can construct the ∗-operation of our Fell bundle, we must discuss inver-

sion of imprimitivity bimodules. To reduce confusion, we do this for two possibly
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different C∗-algebras A and B. Let H be an A, B-imprimitivity bimodule. The dual
B, A-imprimitivity bimodule H∗ is H as a set, with the same A- and B-valued inner
products, the conjugate-linear C-vector space structure and the B, A-bimodule structure
b · ξ∗ ·a := a∗ · ξ · b∗ for a ∈ A, b ∈ B, ξ∗ ∈ H∗; here we write ξ∗ instead of ξ to emphasize
that we view ξ as an element of H∗. This dual imprimitivity bimodule is inverse to H in
the sense that the A- and B-valued inner products on H induce canonical isomorphisms
H ⊗B H∗ ∼= A and H∗ ⊗A H ∼= B of Hilbert bimodules.

The inverse of an imprimitivity bimodule is determined uniquely up to isomorphism.
We can make this more precise in our 2-categorical set-up. Let K be a B, A-imprimitivity
bimodule and let v : H ⊗B K ∼−→ A be an isomorphism. Then we get an induced isomor-
phism

v̂ : K ∼−→ B ⊗B K ∼−→ (H∗ ⊗A H) ⊗B K ∼−→ H∗ ⊗A (H ⊗B K) v−→∼= H∗ ⊗A A
∼−→ H∗,

which maps 〈ξ|η〉B · ζ �→ ξ∗ · v(η ⊗ ζ) = (v(η ⊗ ζ)∗ · ξ)∗ for ξ, η ∈ H, ζ ∈ K.
We now apply this construction to the isomorphism

vg := u−1 ◦ ω(g−1, g) : αg ⊗A αg−1
ω(g−1,g)−−−−−−→ αg−1g = α1

u−1

−−→ A.

This yields a canonical isomorphism of A, A-imprimitivity bimodules v̂g : Ag
∼−→ A∗

g−1 .
Since A∗

g−1 is equal to Ag−1 as a set, we may view v̂g as a map from Ag to Ag−1 . This
is the involution of our Fell bundle: ξ∗ := v̂g(ξ). The map ξ �→ ξ∗ is conjugate-linear by
construction.

Next we check (ξ∗)∗ = ξ for all ξ ∈ Ag. This follows from a more general observation
in the case of an A, B-imprimitivity bimodule H and a B, A-imprimitivity bimodule K
with isomorphisms v : H ⊗B K → A and w : K ⊗A H → B. Then we get isomorphisms
v̂ : K → H∗ and ŵ : H → K∗. We may also view ŵ as a map ŵ : H∗ → K. When are ŵ

and v̂ inverse to each other?
This is clearly the case if K = H∗ and v and w are the canonical isomorphisms given

by the inner products on H. We may assume that K = H∗ and that v is this canonical
isomorphism because any triple (K, v, w) is isomorphic to one of this form. Then ŵ is the
inverse of v̂ if and only if w is equal to the canonical isomorphism H∗⊗AH ∼−→ B induced
by the B-valued inner product on H. Equivalently, the map IdH ⊗Bw : H⊗BK⊗AH → H
is equal to v ⊗A IdH. This final formulation makes sense for general K and v. As a
consequence, v̂ and ŵ are inverse to each other if and only if

v ⊗A IdH = IdH ⊗Bw : H ⊗B K ⊗A H → H.

Furthermore, in this case 〈v̂(ξ)|η〉B = w(ξ ⊗η) for all ξ ∈ K, η ∈ H because this property
is isomorphism-invariant and clearly holds if K = H∗ and v and w are the canonical
isomorphisms.

We apply this in the situation H = αg, K = αg−1 , v = vg, w = vg−1 . The coherence
laws for a weak group action imply vg ⊗A Idαg = Idαg ⊗Avg−1 because the following
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diagram commutes:

αg ⊗A αg−1 ⊗A αg
ω(g−1,g)⊗Aαg ��

αg⊗Aω(g,g−1)
��

αg−1g ⊗A αg

u−1⊗Aαg

��
ω(g,g−1g)

��
αg ⊗A αgg−1

ω(gg−1,g) ��

αg⊗Au−1

�� αg

Hence, v̂g and v̂g−1 are inverse to each other, that is, (ξ∗)∗ = ξ for all ξ ∈ Ag = αg−1 .
Furthermore, we get ‖ξ‖2 = ‖〈ξ|ξ〉‖ = ‖ξ∗ · ξ‖ for all ξ ∈ Ag.

If g, h ∈ G, then the isomorphism

αg−1 ⊗A αh−1 ⊗A αgh
ω(h−1,g−1)⊗Aαgh============⇒ α(gh)−1 ⊗A αgh

ω(gh,(gh)−1)
========⇒ α1

u−1

==⇒ A

induces the isomorphism Ag ⊗A Ah → A∗
(gh)−1 , (ξ⊗η) �→ (ξ ·η)∗. The map (ξ⊗η) �→ η∗ξ∗

is associated to the unitary

αg−1 ⊗A αh−1 ⊗A αgh

αg−1⊗Aαh−1⊗Aω(g,h)−1

================⇒ αg−1 ⊗A αh−1 ⊗A αh ⊗A αg

α−1
g ⊗Aω(h,h−1)⊗Aαg

==============⇒ αg−1 ⊗A α1 ⊗A αg

αg−1⊗Au−1⊗Aαg

===========⇒ αg−1 ⊗A αg
ω(g,g−1)
=====⇒ α1

u−1

==⇒ A.

It follows from the coherence laws that both unitaries from αg−1 ⊗A αh−1 ⊗A αgh to A

agree. Hence, (ξη)∗ = η∗ξ∗ for all g, h ∈ G, ξ ∈ Ag, η ∈ Ah. In particular, it follows that
A1 is a C∗-algebra.

Clearly, our constructions of saturated Fell bundles from group actions by correspon-
dences and vice versa are inverse to each other, even up to equality and not only up to
isomorphism. �

Remark 3.4. A weak group action by ∗-automorphisms is, in particular, a weak
group action by correspondences and hence gives rise to a Fell bundle by Theorem 3.3.
This yields the familiar construction of Fell bundles from Busby–Smith twisted actions
(see [10]).

3.2. Weakly equivariant maps

Let C be a 2-category and let G be a discrete group. Let (A, α, ωA, uA) and
(B, β, ωB , uB) be two weak actions of G on objects A and B of C. A strictly equiv-
ariant map is a map f : A → B with equalities βgf = fαg for all g ∈ G. The map f and
these equalities, turned into isomorphisms, provide the data of a transformation:

• an arrow f : A → B and

• bigons Vg : βgf ⇒ fαg for all g ∈ G.
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In addition, we impose the following two coherence laws. Firstly,

β1 · f

V1

��

�� uB ·hf
1B · f �� �� f

f · α1 ��
f ·huA

f · 1A

��

����������

��������
(3.7)

corresponds to the two simplifications β1 · f = 1B · f = f and β1 · f = f · α1 = f · 1A = f

for a strictly equivariant map f . Secondly, the two ways of simplifying βg1βg2f to fαg1g2

provide the following coherence law:

(βg1βg2)f��

��

ωB(g1,g2)·hf �� βg1g2f
Vg1g2 �� fαg1g2

βg1(βg2f)

βg1 ·hVg2

��

f(αg1αg2)

f ·hωA(g1,g2)

��

βg1(fαg2) �� �� (βg1f)αg2 Vg1 ·hαg2

�� (fαg1)αg2

��

��
(3.8)

Recall that the unlabelled isomorphisms correspond to the canonical invertible bigons
(2.3), which are identities for strict 2-categories. The definition above is equivalent to
the definition of a transformation between morphisms of weak categories in [17]. Thus,
we need no more coherence conditions than the two above. Indeed, the two coherence
conditions above already imply the following: given any word (g1, . . . , gn) in G and a
subset I with gi = 1 for i ∈ I, all bigons βg1 · · ·βgn

f ⇒ fαg1···gn
constructed out of the

natural bigons are equal.
The transformation is called strong if the bigons Vg are invertible, and strict if the

bigons Vg are identities. The strict transformations are simply arrows A → B that inter-
twine the additional structure (ωA, uA) and (ωB , uB) and deserve to be called equivari-
ant maps between weak group actions. General transformations will be also called weakly
equivariant maps in this work. The distinction between transformations and strong trans-
formations does not concern us because all bigons in C∗(2) and Corr(2) are invertible
anyway.

Definition 3.5. Given a weak action (B, β, ω, u) and a family of invertible bigons
Vg : βg ⇒ β′

g for some family of invertible arrows β′
g : B → B, we let

u′ := V1u : 1B
u=⇒ β1

V1=⇒ β′
1

and

ω′(g1, g2) :=
(
β′

g1
· β′

g2

V −1
g1

·hV −1
g2======⇒ βg1 · βg2

ω(g1,g2)=====⇒ βg1g2

Vg1g2===⇒ β′
g1g2

)
.

It is routine to check the coherence laws (3.1) and (3.2), so that (B, β′, ω′, u′) is another
weak action of G on B. By construction, the identity map IdB with the bigons (Vg) is a
strong transformation from (B, β′, ω′, u′) to (B, β, ω, u).
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In this event, we call V an equivalence from (β′, ω′, u′) to (β, ω, u).

Let us specialize this to C = C∗(2). Here the strict transformations (equivariant maps)
are simply non-degenerate ∗-homomorphisms f : A → M(B) with

f ◦ αg = βg ◦ f, f(ωA(g1, g2)) = ωB(g1, g2) and f(uA) = uB .

Since all bigons are invertible, there is no difference between transformations and strong
transformations. A transformation from A to B consists of a non-degenerate ∗-homo-
morphism f : A → M(B) and unitaries Vg ∈ M(B) with

Vgβg(f(a))V ∗
g = f(αg(a)) for all g ∈ G (3.9)

because Vg is a bigon from βgf to fαg.
When we plug in the definitions of horizontal and vertical products in C∗(2), the

coherence laws (3.7) and (3.8) amount to the requirements V1 · uB = f(uA) and

f(ωA(g1, g2)) · Vg1 · βg1(Vg2) = Vg1g2 · ωB(g1, g2) for all g1, g2 ∈ G, (3.10)

where the centred dot denotes the multiplication of unitary elements in M(B). (The
unlabelled invertible bigons in (3.8) are identities in C∗(2).)

Recall that the unitaries uA and uB are redundant because uA = ωA(1, 1)∗ and uB =
ωB(1, 1)∗, and that the adjoints ω∗

A and ω∗
B yield Busby–Smith twisted actions. The

condition (3.10) for g1 = g2 = 1 specializes to f(u∗
A) · V1uBV1u

∗
B = V1u

∗
B . Hence, the

coherence law V1 ·uB = f(uA) is redundant. Thus, f and (Vg)g∈G form a transformation
from (A, α, ωA, uA) to (B, β, ωB , uB) if and only if they satisfy (3.9) and the cocycle
condition

Vg1 · βg1(Vg2) · ω∗
B(g1, g2) = f(ω∗

A(g1, g2)) · Vg1g2 for all g1, g2 ∈ G.

A strictly equivariant map is a transformation (f, V ) with Vg = 1 for all g ∈ G. The
conditions above become f(αg(a)) = βg(f(a)) for all a ∈ A, g ∈ G, and ω∗

B(g1, g2) =
f(ω∗

A(g1, g2)), that is, f intertwines the group actions and preserves the twists.
Let (β′, ω′) and (β, ω) be weak actions of G on the same C∗-algebra B. Recall that an

equivalence V between them is a transformation (f, V ) with f = IdB . This means that
we are given unitaries Vg ∈ M(B) for all g ∈ G that satisfy

β′
g(b) = Vgβg(b)V ∗

g for all b ∈ B, g ∈ G, (3.11)

ω′∗(g1, g2) = Vg1 · βg1(Vg2) · ω∗(g1, g2) · V ∗
g1g2

for all b ∈ B, g1, g2 ∈ G. (3.12)

Two weak actions are called equivalent if there is an equivalence between them. This is
the notion of exterior equivalence for Busby–Smith twisted actions in [6, Definition 2.4].

The bigons Vg are, in particular, unitary multipliers of B and provide bigons βg ⇒ β′
g

for some β′
g. Hence, the construction in Definition 3.5 yields the following.

Lemma 3.6. If C is C∗(2), then a transformation (f, V ) from (A, α, ωA, uA) to
(B, β, ωB , uB) decomposes into a strict transformation (f, 1) from (A, α, ωA, uA) to
(B, β′, ω′

B , u′
B) and an equivalence V from (B, β′, ω′

B , u′
B) to (B, β, ωB , uB).
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As a result, transformations between Busby–Smith twisted actions combine strictly
equivariant maps with equivalence of twisted actions.

Lemma 3.7. If C is C∗(2), then any weak action (β, ω, u) on a C∗-algebra B is equiv-
alent to a weak action (β′, ω′, u′) with β′

1 = IdB and u′ = 1.

Proof. Let Vg := u−1 for all g ∈ G. These unitary multipliers provide invertible bigons
Vg : βg ⇒ β′

g for some arrows β′
g : B → B. Definition 3.5 provides an equivalence to a

weak action (β′, ω′, u′) with u′ := V1u = 1 and hence β′
1 = IdB . �

Example 3.8. Now we specialize to the case where B carries the trivial action, βg =
IdB for all g ∈ G and ω∗

B(g1, g2) = 1 for all g1, g2 ∈ G. In this case, the conditions for a
transformation are

f(αg(a)) = Vgf(a)V ∗
g , Vg1 · Vg2 = f(ω∗

A(g1, g2)) · Vg1g2 .

Such a pair (f, V ) is called a covariant representation of a weak group action (compare [6,
Definition after Theorem 3.2] for Busby–Smith twisted actions).

Next, we describe transformations between weak actions of G by correspondences,
that is, we specialize the concepts above to the 2-category Corr(2). By Theorem 3.3,
weak actions of G by correspondences are equivalent to saturated Fell bundles over G.
We shall relate transformations to Morita equivalences of saturated Fell bundles.

Definition 3.9. A Morita equivalence between two saturated Fell bundles A =
(Ag)g∈G and B = (Bg)g∈G over a (discrete) group G is a Banach bundle Γ = (Γg)g∈G

over G such that the following hold.

(i) There is a non-degenerate G-grading preserving A, B-bimodule structure on Γ in
the sense that there are bilinear maps Ag1 × Γg2 → Γg1g2 and Γg1 × Bg2 → Γg1g2 ,
written multiplicatively, such that

• a1 · (a2 · ξ) = (a1a2) · ξ for all a1, a2 ∈ A and ξ ∈ Γ ,

• (ξ · b1) · b2 = ξ · (b1b2) for all b1, b2 ∈ B and ξ ∈ Γ ,

• (a · ξ) · b = a · (ξ · b) for all a ∈ A, ξ ∈ Γ , and b ∈ B and

• the multiplication map Ag1 ⊗ Γg2 ⊗ Bg3 → Γg1g2g3 has dense range for all
g1, g2, g3 ∈ G.

(ii) There are bilinear maps (left and right inner products)

〈·|·〉A : Γg1 × Γ ∗
g2

→ Ag1g−1
2

and 〈·|·〉B : Γ ∗
g1

× Γg2 → Bg−1
1 g2

for all g1, g2 ∈ G, such that

• 〈ξ · b|η〉A = 〈ξ|η · b∗〉A and 〈a · ξ|η〉B = 〈ξ|a∗ · η〉B for all ξ, η ∈ Γ , a ∈ A,
b ∈ B,

• 〈ξ|η〉∗
B = 〈η|ξ〉B and 〈ξ|η〉∗

A = 〈η|ξ〉A for all ξ, η ∈ Γ ,
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• 〈ξ|ξ〉B � 0, 〈ξ|ξ〉A � 0, and ‖ξ‖2 = ‖〈ξ|ξ〉A‖ = ‖〈ξ|ξ〉B‖ for all ξ ∈ Γ ,

• 〈ξ|η · b〉B = 〈ξ|η〉B · b and 〈a · ξ|η〉A = a · 〈ξ|η〉A for all ξ, η ∈ Γ , a ∈ A and
b ∈ B,

• 〈ξ|η〉A · ζ = ξ · 〈η|ζ〉B for all ξ, η, ζ ∈ Γ ,

• 〈Γ1|Γ1〉A is dense in A1 and 〈Γ1|Γ1〉B is dense in B1.

A correspondence of Fell bundles from A to B is defined similarly, dropping the A-valued
inner products, all conditions that involve it, and the fullness of the B1-valued inner
product.

Example 3.10. Let A = Γ = B for a saturated Fell bundle B, equip Γ with the
given bimodule structure and the inner products 〈ξ|η〉A := ξη∗, 〈ξ|η〉B := ξ∗η. This is
the identity Morita equivalence on B.

Morita equivalence of saturated Fell bundles was introduced by Yamagami in [23] and
later used by Muhly and Williams in [20,21]. These articles work with Fell bundles over
groupoids, where the notion of Morita equivalence becomes more interesting because it
also relates Fell bundles over possibly different groupoids. Nevertheless, the underlying
groupoids are always Morita equivalent by definition. In the group case, this does not
appear because Morita equivalence in this case reduces to isomorphism, so that there is
no loss of generality in assuming that the two groups are the same.

Proposition 3.11. Under the equivalence between weak actions of G by correspon-
dences and saturated Fell bundles over G described in Theorem 3.3, a transformation
between two weak actions of G is equivalent to a correspondence between the associated
saturated Fell bundles. Equivalences of weak actions correspond to Morita equivalences
between the associated Fell bundles.

Proof. Let (A, α, ωA) and (B, β, ωB) be weak actions of G. Recall that the associated
saturated Fell bundles have the fibres Ag := αg−1 and Bg := βg−1 at g, respectively. A
transformation from (A, α, ωA) to (B, β, ωB) involves a correspondence γ from A to B

together with isomorphisms Vg : γ ⊗B βg
∼−→ αg ⊗A γ. We let

Γg := αg−1 ⊗A γ;

this is another correspondence from A to B. Using the isomorphisms A ∼= α1 = A1 and
B ∼= β1 = B1, we view Γg as a correspondence from A1 to B1. Using the unitaries V ,
ωA, and ωB , we may construct unitary operators

Ag1 ⊗A Γg2 := αg−1
1

⊗B αg−1
2

⊗A γ
ωA−−→ αg−1

2 g−1
1

⊗B γ ∼= Γg1g2 ,

Γg1 ⊗B Bg2 := αg−1
1

⊗A γ ⊗B βg−1
2

V−→ αg−1
1

⊗A αg−1
2

⊗A γ

ωA−−→ αg−1
2 g−1

1
⊗A γ ∼= Γg1g2 .

The left A1-module structure so defined is evidently equal to the given one. The same
assertion for the right B1-module structures is equivalent to the coherence law (3.7). The
associativity of ωA implies that the maps A ⊗ Γ → Γ form a left module structure.
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The associativity of ωB and the interchange law imply that the left A- and right
B-module structures on Γ commute, that is, the following diagram commutes:

Ag1Ag2ΓBg3

ωA ��

V

��

Ag1g2ΓBg3

V

��
Ag1Ag2Ag3γ

ωA ��

ωA

��

Ag1g2Ag3Γ

ωA

��
Ag1Ag2g3Γ ωA

�� Ag1g2g3Γ

The composition in the top square is the horizontal product of Vg3 and ωA(g−1
1 , g−1

2 ).
Here we reversed the order of products, that is, Ag1Ag2 abbreviates Ag1 ⊗A1 Ag2 , and so
on. We shall continue to do this throughout the proof.

The coherence law (3.8) holds if and only if the maps Γ ⊗B → Γ form a right module
structure. This involves the following commutative diagram:

Ag1ΓBg2Bg3
V ��

ωB

��

Ag1Ag2ΓBg3

ωA ��

V

��

Ag1g2ΓBg3

V

��
Ag1Ag2Ag3Γ

ωA ��

ωA

��

Ag1g2Ag3Γ

ωA

��
Ag1ΓBg2g3 V

�� Ag1Ag2g3Γ ωA

�� Ag1g2g3Γ

The argument above shows that the two small squares on the right commute, and the
commutativity of the pentagon on the left is equivalent to the coherence law (3.8).

To write down the B-valued inner product, we identify Γg
∼= Γ ⊗B Bg via V and define

Γ ∗
g1

× Γg2 → Bg−1
1 g2

, 〈ξ1 ⊗B b1|ξ2 ⊗B b2〉B := b∗
1 · 〈ξ1|ξ2〉B · b2.

It is straightforward to check the identities 〈ξ1|ξ2〉∗
B = 〈ξ2|ξ1〉B , 〈ξ1|ξ2 · b〉B = 〈ξ1|ξ2〉B · b

and 〈a · ξ1|ξ2〉B = 〈ξ1|a∗ · ξ2〉B for all ξ1 ∈ Γg1 , ξ2 ∈ Γg2 , a ∈ Ag3 , B ∈ Bg4 , g1, g2, g3, g4 ∈
G. Furthermore, 〈ξ|ξ〉B � 0 for all ξ. The norm on Γ ⊗B Bg is defined so that ‖ξ‖2 =
‖〈ξ|ξ〉B‖. The inner product on Γ1 coincides with the given B-valued inner product on
γ. As a result, Γ = (Γg) with the extra structure defined above is a correspondence of
Fell bundles.

If we start with an equivalence of weak actions, then γ is an imprimitivity A, B-
bimodule. This allows us to define A-valued inner products as well, satisfying the same
conditions as the B-valued inner products. The condition 〈ξ|η〉Aζ = ξ〈η|ζ〉B is also
built in.

Conversely, let us start with a correspondence of Fell bundles Γ = (Γg) from A to
B. We put γ := Γ1; this is a correspondence from A1 to B1. Since the multiplication

https://doi.org/10.1017/S0013091512000259 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091512000259


410 A. Buss, R. Meyer and C. Zhu

map Γ1 × Bg → Γg has dense range, we get a unitary isomorphism Γg
∼= γ ⊗B Bg. The

multiplication map
Ag × Γ1 → Γg

∼= γ ⊗B Bg

induces an operator Ag ⊗A Γ → Γ ⊗B Bg. This operator has dense range because (Ag) is
saturated and A1 ×Γ → Γ has dense range, and it is unitary as well. Hence, we have the
data required for a transformation between two weak actions. The coherence law (3.7)
is trivial, and the coherence law (3.8) follows from the associativity of the bimodule
structures on Γ . Hence, we have associated a transformation between weak actions to
a correspondence between saturated Fell bundles. If we start with a Morita equivalence
of Fell bundles, then the transformation γ is invertible, so that we get an equivalence of
weak actions.

It is also clear that the map from transformations to correspondences and back is
the identity map on transformations. The same holds for the map from Fell bundle
correspondences to transformations and back because our assumptions for Fell bundle
correspondences imply that Γg

∼= Γ1 ⊗B Bg and that the inner products Γ ∗
g1

× Γg2 →
Bg−1

1
Bg2 are completely determined by the B1-inner product on Γ1. Analogous statements

hold for equivalences of weak actions and Morita equivalences of Fell bundles. �

Recall that transformations from Busby–Smith twisted actions to trivial actions are
equivalent to covariant representations (see Example 3.8). This suggests the interpreta-
tion of transformations from weak actions of G by correspondences to trivial actions as
covariant representations as well. Interpreting weak actions by correspondences as satu-
rated Fell bundles by Theorem 3.3, this leads naturally to covariant representations of
Fell bundles. We interpret these using Proposition 3.11. Thus, let A = (Ag)g∈G be a Fell
bundle over a group G and let B be a C∗-algebra. We equip B with the trivial action of
G and interpret the result as a constant Fell bundle with fibre Bg = B for all g ∈ G and
the multiplication and involution from B. A covariant representation of the saturated
Fell bundle A on B is given by a correspondence of Fell bundles Γ = (Γg)g∈G. Recall
that Γg

∼= Γ1 ⊗B Bg. Since Bg = B, this simply means Γg
∼= Γ1 for all g ∈ G. Thus,

we are given a single full Hilbert B-module H := Γ1 with bilinear maps Ag × H → H.
The conditions for a correspondence in Definition 3.9 amount to requiring that we get a
map from the total space A :=

⊔
g∈G Ag to the C∗-algebra of adjointable operators on

H that preserves both the multiplication and involution. This is the usual definition of a
representation of A.

Definition 3.12 (Fell and Doran [12]). A (non-degenerate) representation of a
(saturated) Fell bundle A = (Ag)g∈G on a Hilbert B-module H is a family (πg)g∈G of
linear maps πg : Ag → B(H) satisfying

(i) πgh(ab) = πg(a)πh(b) for all g, h ∈ G, a ∈ Ag and b ∈ Ah,

(ii) πg(a)∗ = πg−1(a∗) for all g ∈ G, a ∈ Ag and

(iii) π1(A1)H spans a dense subspace of H.

The non-degeneracy condition (iii) implies that the linear span of πg(Ag)H is dense in
H for all g ∈ G because AgAg−1 = A1.

https://doi.org/10.1017/S0013091512000259 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091512000259


A higher category approach to twisted actions on C∗-algebras 411

3.3. Modifications

Finally, we weaken equality of equivariant maps to the notion of a modification between
two transformations. Let (A, α, ωA, uA) and (B, β, ωB , uB) be two weak actions of G

on objects of a 2-category C and let (f, V ) and (f ′, V ′) be transformations (weakly
equivariant maps) between them. A modification (f, V ) ⇒ (f ′, V ′) is a bigon W : f ⇒ f ′

(which weakens the equality f = f ′) that satisfies the coherence law

βgf
Vg ��

βg·hW

��

fαg

W ·hαg

��
βgf

′ V ′
g �� f ′αg,

(3.13)

which corresponds to the two ways of simplifying βgf to f ′αg via βgf
′ or fαg (see

also [17]).
An invertible modification W : (f, V ) ⇒ (f ′, V ′) (that is, the bigon W is invertible)

is also called an equivalence, and then (f, V ) and (f ′, V ′) are called equivalent. In the
2-categories we are interested in, all bigons are invertible, so that any modification is an
equivalence.

For a transformation (f, V ) between two morphisms and an invertible bigon W : f ⇒ f ′

for some arrow f ′, we define

V ′
g := (W ·h αg)Vg(βg ·h W−1) : βgf

′ βg·hW −1

======⇒ βgf
Vg=⇒ fαg

W ·hαg====⇒ f ′αg.

It is routine to check that (f ′, V ′) is again a transformation and that W is an equivalence
(f, V ) ⇒ (f ′, V ′).

Now we consider the category C∗(2). Let (f, V ) and (f ′, V ′) be transformations from
(A, α, ωA, uA) to (B, β, ωB , uB). Since any bigon in C∗(2) is invertible, any modification
is an equivalence. The coherence law (3.13) amounts to the condition V ′

gβg(W ) = WVg

for all g ∈ G. Thus, a modification (f, V ) ⇒ (f ′, V ′) is a unitary multiplier W of B that
satisfies

f ′(a) = W · f(a) · W ∗, V ′
g = W · Vg · βg(W ∗) for all a ∈ A, g ∈ G. (3.14)

Example 3.13. Let B carry a trivial action as in Example 3.8, so that trans-
formations to B are covariant representations. Then the conditions above simplify to
f ′(a) = Wf(a)W ∗ and V ′

g = WVgW
∗, that is, W is a unitary intertwiner between two

covariant representations.

Recall that in the correspondence 2-category Corr(2), transformations between weak
actions are equivalent to correspondences between saturated Fell bundles. Obviously,
there is a bijection between equivalences of transformations and isomorphisms between
the associated correspondences of saturated Fell bundles.
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3.4. Adding topology

Now let G be a locally compact topological group. Then we should impose continuity
conditions for weak actions, transformations and modifications.

If we use the target category C∗(2), we merely have to topologise the groups Aut(A)
and UM(A) of ∗-automorphisms and unitary multipliers of a C∗-algebra A. We equip
Aut(A) with the strong topology, that is, the topology of pointwise convergence. We
equip M(A) and the subgroup UM(A) with the strict topology, that is, the topology
generated by the maps λa : M(A) → A, m �→ a · m, and ρa : M(A) → A, m �→ m · a.
Thus, a net (ui)i∈I in UM(A) converges if and only if the nets (ui · a) and (a · ui) are
norm-convergent for each a ∈ A.

Definition 3.14. A weak group action (A, α, ω) is called continuous if the maps
α : G → Aut(A) and ω : G × G → UM(A) are continuous with respect to the strong
topology on Aut(A) and the strict topology on UM(A) described above. A transformation
(f, V ) between two continuous group actions is called continuous if V : G → UM(A) is
continuous with respect to the strict topology on UM(A). All modifications between
group actions are continuous by definition.

Continuity for weak actions by correspondences is more interesting. The continuity of a
family of correspondences (αg)g∈G from A to B is not a property but an additional datum,
namely, a C0(G)-linear correspondence α from C0(G, A) to C0(G, B). In the discrete case,
we take here the direct sum

⊕
g∈G αg with the obvious C0(G, A)-C0(G, B)-bimodule

structure. A C0(G)-linear correspondence from C0(G, A) to C0(G, B) is equivalent to a
family (αg)g∈G of correspondences from A to B together with a space α of continuous
sections, which forms a correspondence from C0(G, A) to C0(G, B). We may also view α

as an upper semi-continuous Banach bundle.
Thus, a continuous action of G on A by correspondences involves a C0(G)-linear cor-

respondence α from C0(G, A) to itself. There is no continuity condition for u; it is simply
an isomorphism α1 ∼= A, where α1 denotes the fibre of α at 1 (here we tacitly inter-
pret α as a family of correspondences together with a space of continuous sections). The
multiplication maps ωg1,g2 : αg2 ⊗A αg1 → αg1g2 should be continuous in the sense that
the product of two continuous sections is again continuous. Equivalently, the maps ωg1,g2

piece together to a unitary intertwiner

ω : π∗
2α ⊗C0(G,A) π∗

1α ⇒ µ∗α,

where µ : G×G → G is the multiplication map and π1, π2 : G×G ⇒ G are the coordinate
projections. Thus, π∗

2α⊗C0(G,A) π∗
1α and µ∗α are C0(G×G)-linear correspondences with

fibres αg2 ⊗A αg1 and αg1g2 at (g1, g2) ∈ G × G, respectively. Thus, we arrive at the
following definition of a continuous weak action by correspondences.

Definition 3.15. A continuous action of G on A by correspondences consists of a
C0(G)-linear correspondence α from C0(G, A) to itself and unitary intertwiners

ω : π∗
2α ⊗C0(G,A) π∗

1α ⇒ µ∗α
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and u : [IdA] ⇒ α1 that satisfy analogues of (3.1) and (3.2). More precisely, we view α as
an upper semi-continuous field (αg) of Hilbert A, A-bimodules, u as a unitary intertwiner
from α1 to [IdA] and ω as a continuous family of unitary intertwiners ω(g, h) from αh⊗Aαg

to αhg, and require the latter to satisfy these coherence conditions.

Continuity for a transformation (f, V ) between continuous actions (A, α, ωA, uA) and
(B, β, ωB , uB) by correspondences is defined, similarly, by requiring the unitary inter-
twiners Vg to piece together to a unitary intertwiner V : f ⊗B β → α ⊗A f . Once again,
continuity is no restriction for modifications.

The results above all extend to the continuous case with little change.
Continuous actions by correspondences still correspond to saturated Fell bundles. Usu-

ally, Fell bundles are required to be continuous Banach bundles, but our definition only
requires upper semi-continuity. However, for Fell bundles over groups there is no differ-
ence between continuity and upper semi-continuity. (We thank Ruy Exel for explaining
the next result to us.)

Lemma 3.16. Let G be a locally compact group and let A = (Ag)g∈G be an upper
semi-continuous Banach bundle. Suppose there are a multiplication · : A × A → A and
an involution ∗ : A → A which are continuous for the topology on A and satisfy all the
algebraic conditions of a Fell bundle. Then the norm a �→ ‖a‖ is continuous and hence
A is a continuous Fell bundle in the usual sense.

Proof. It is enough to observe that the norm a �→ ‖a‖ is the composition of the
continuous maps

[a ∈ A] �→ [(a∗, a) ∈ A × A] �→ [a∗a ∈ A1] �→ ‖a∗a‖1/2 = ‖a‖.

The last map is the norm on the C∗-algebra A1, which is obviously continuous. �

Theorem 3.17. A continuous group action by correspondences of a locally compact
group G on a C∗-algebra A is equivalent to a saturated Fell bundle (αg)g∈G over G with
a C∗-algebra isomorphism α1 ∼= A.

Proof. It is well known that Hilbert modules over C0(G, A) correspond to upper semi-
continuous bundles of Hilbert A-modules, that is, upper semi-continuous Banach space
bundles with a continuous right A-module structure and a continuous A-valued inner
product. Hence, our continuous weak action yields an upper semi-continuous Banach
bundle A = (αg−1)g∈G. We construct a multiplication and an involution on A as in the
proof of Theorem 3.3. These are continuous because the continuity of these algebraic
operations can be expressed in terms of continuous sections. For instance, the multi-
plication is continuous if and only if the product (g, h) �→ ξ(g)η(h) of two continuous
sections ξ, η of A is a continuous section of the pull-back of A along the multiplication
map G × G → G. A similar statement holds for the involution (see [12, §§ VIII.2.4 and
VIII.3.2] for further details). Although the results in [12] are stated only for continuous
bundles, upper semi-continuity suffices for the proofs. By Lemma 3.16, A is a continuous
Fell bundle. �
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Lemmas 3.6 and 3.7 also have analogues for continuous actions. Of course, in the con-
struction before Lemma 3.6 we require (Vg) to be continuous. Finally, continuous trans-
formations to trivial actions and modifications between them correspond to continuous
covariant representations and their intertwiners as in Examples 3.8 and 3.13. For weak
actions by correspondences, continuous transformations to trivial actions correspond to
continuous representations of Fell bundles. Recall that a representation π = (πg)g∈G of
a Fell bundle A = (Ag)g∈G on a Hilbert module H is continuous if and only if the map
g �→ πg(ag)ξ is continuous from G to H for any continuous section (ag) of A.

Proposition 3.11 also has an analogue in the topological setting: continuous transfor-
mations between two (arbitrary) weak actions of G by correspondences (respectively,
equivalences) correspond to continuous correspondences (respectively, Morita equiva-
lences) between the associated Fell bundles. Continuity of correspondences and Morita
equivalences between Fell bundles is defined by requiring, in addition, that the Banach
bundle Γ = {Γg}g∈G be upper semi-continuous and the left and right actions and inner
products on Γ be continuous (see [21]).

4. Actions of higher categories

Now we generalize the definitions of weak action, transformation and modification to
weak 2-groupoids instead of groups. In particular, for strict 2-groups associated to normal
subgroups this combines Busby–Smith and Green twists of group actions.

The basic structure is parallel to the special case of group actions. But we must allow
for more than one object and impose further conditions that take care of the bigons in
the weak 2-groupoid that acts.

4.1. Morphisms

A group action on an object of a category may also be viewed as a functor from the
group to the category. In § 3.1, we weakened the notion of group action. The resulting
notion of weak group action is a special case of weak functors, which we get by weakening
the notion of a functor. These weak functors are just called morphisms of 2-categories.

A strict functor between two strict 2-categories is a triple of maps on objects, arrows
and bigons that preserve units and the three products. Strict functors between strict
2-groupoids correspond bijectively to morphisms of crossed modules; of course, the latter
are pairs of morphisms G1 → G2, H1 → H2 such that the following two diagrams
commute:

H1

��

∂1 �� G1

��
H2

∂2 �� G2

G1 × H1

��

c1 �� H1

��
G2 × H2

c2 �� H2

The equations regarding arrows that may be weakened are the two characteristic prop-
erties of a functor regarding composition of arrows and unit arrows. Correspondingly, a
morphism of weak categories has bigons that replace these two equations as additional
data. These are subject to certain coherence laws. In detail, we have the following.
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Definition 4.1. A morphism between two weak 2-categories C and C′ consists of the
following data.

• A map F : C0 → C′
0 between the object sets.

• A functor F (x, y) : C(x, y) → C′(F (x), F (y)) for each pair of objects x, y.

• A natural bigon ω(f1, f2) : F (f1) · F (f2) ⇒ F (f1 · f2) for each pair (f1, f2) of
composable arrows; naturality means that the following diagrams commute for all
pairs of bigons n1 : f1 ⇒ g1, n2 : f2 ⇒ g2 between composable arrows:

F (f1) · F (f2)
ω(f1,f2) ��

F (n1)·F (n2)
��

F (f1 · f2)

F (n1·n2)
��

F (g1) · F (g2)
ω(g1,g2)

�� F (g1 · g2);

(4.1)

in more categorical language, these are natural transformations ωx,y,z

C(x, y) × C(y, z) · ��

F (x,y)×F (y,z)
��

ωx,y,z

������������������

����������������
C(x, z)

F (x,z)
��

C′(F (x), F (y)) × C′(F (y), F (z))
·′

�� C′(F (x), F (z))

for all triples of objects x, y, z of C.

• Bigons ux : 1F (x) ⇒ F (1x) for all objects x.

The above data are subject to the following coherence conditions:

(F (g1) · F (g2)) · F (g3)
a′(F (g1),F (g2),F (g3)) ��

ω(g1,g2)·IdF (g3)
��

F (g1) · (F (g2) · F (g3))

IdF (g1) ·ω(g2,g3)
��

F (g1 · g2)F (g3)

ω(g1·g2,g3)
��

F (g1)F (g2 · g3)

ω(g1,g2·g3)
��

F ((g1 · g2) · g3)
F (a(g1,g2,g3))

�� F (g1 · (g2 · g3))

(4.2)

F (1x) · F (g)
ω(1x,g) ��

��
u·IdF (g)

F (1x · g)

F (l)
��

1F (x) · F (g)
l′

�� F (g)

F (g) · F (1y)
ω(g,1y) ��

��
IdF (g) ·u

F (g · 1y)

F (r)
��

F (g) · 1F (y)
r′

�� F (g)

(4.3)

If, in addition, the bigons ux and ω(f, g) above are all invertible, we speak of a homo-
morphism of weak 2-categories. If they are all identities, we get a strict functor (this
notion is only interesting if both 2-categories involved are strict).
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In the 2-categories of C∗-algebras introduced above, all bigons are invertible, so that
there is no difference between morphisms and homomorphisms into C∗(2) and Corr(2).
Strict functors from strict 2-groupoids into C∗(2) are equivalent to the actions of crossed
modules studied in [7].

4.1.1. Morphisms to C∗(2)

Now we make this notion of a morphism concrete for the target category C = C∗(2)
and a weak category G. There is no difference between morphisms and homomorphisms
because all arrows in C∗(2) are invertible. A morphism consists of the following data:

• for each object x ∈ G0, a C∗-algebra Ax;

• for each arrow g ∈ G1, a ∗-isomorphism αg : As(g) → Ar(g) (use Proposition 2.10);

• for each object x ∈ G0, a unitary multiplier ux with ux · α1x(a) · u∗
x = a for all

a ∈ Ax;

• for each pair of composable arrows (g1, g2) ∈ G1 ×s,G0,r G1, a unitary multiplier
ω(g1, g2) of Ar(g1) with

ω(g1, g2) · αg1(αg2(a)) · ω(g1, g2)∗ = αg1g2(a) for all a ∈ As(g2);

• for each bigon n ∈ G2, n : f ⇒ g, a unitary multiplier vn of Ar(f) = Ar(g) with
αg(a) = vn · αf (a) · v∗

n for all a ∈ As(g).

These satisfy the following naturality conditions.

• vm·vn = vm · vn for all composable bigons m and n; in particular, this implies
vIdf

= 1 for all f ∈ G1 and vn−1 = v∗
n for all n ∈ G2 which have an inverse.

• Given a horizontal composition in G,

z y

f1

��

g1

�� a
��

x

f2

��

g2

�� b
��

�→ z x

f1f2

��

g1g2

�� a·hb
��

the following two diagrams in C∗(2) have the same composition:

Az Ay

αf1

��
αg1

��
va

��
Ax

αf2

��
αg2

��

αg1g2

��

vb

��

ω(g1,g2)
����

��
����

Az Ax

αf1αf2

��
αf1f2��

αg1g2

��

ω(f1,f2)
��

va·hb

��

that is,

ω(g1, g2) · (va ·h vb) = ω(g1, g2) · va · αf1(vb) = va·hb · ω(f1, f2). (4.4)
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Finally, the coherence conditions (4.2) and (4.3) amount to the following conditions:

• ω(g1 · g2, g3) · ω(g1, g2) = ω(g1, g2 · g3) · αg1(ω(g2, g3)) · α(a(g1, g2, g3)) for three
composable arrows g1, g2 and g3 in G, where a denotes the associator of G;

• vl(g) · ω(1x, g) · ux = 1 and vr(g) · ω(g, 1y) · αg(uy) = 1, where g is an arrow x → y

in G and l and r denote the unitors in G.

These conditions and data only make explicit the definition of a morphism from a
2-category to C∗(2). This defines weak actions of a weak 2-category G in the 2-category
C∗(2). It is a routine exercise to do the same for morphisms to Corr(2). In fact, the latter
category is not much more special than a general weak 2-category, so that almost no
simplification of the general definition is possible.

We now specialize to morphisms from strict 2-groupoids to C∗(2) and reformulate the
above definition in terms of crossed modules. This yields a notion of weak 2-groupoid
action that combines Green twists and Busby–Smith twists and generalizes both to
groupoids.

Let C be a strict 2-groupoid and let (G, H, c, ∂) be the corresponding crossed module of
groupoids (see also [7] for the definition of crossed modules of groupoids). Such a crossed
module acts on C∗(2) by ∗-isomorphisms αg : As(g) → Ar(g) for g ∈ G and unitary
multipliers uh ∈ UM(Ax) for h ∈ Hx, such that the (αg) form an action of the groupoid
G and the (uh) form a homomorphism of group bundles H• → UM(A•). It is easy to
check that this is equivalent to a strict homomorphism from C to C∗(2). We concentrate
on the more difficult case of weak actions of C.

Let X be the common object space of G and H. Recall that C0 = X, C1 = G and C2 =
G×X H. Thus, a weak action of C involves C∗-algebras Ax for all x ∈ X, ∗-isomorphisms
αg : As(g) → Ar(g) for g ∈ G, and unitary multipliers ux ∈ UM(Ax) for x ∈ X, ω(g1, g2) ∈
UM(Ar(g1)) for composable arrows g1, g2 ∈ G, and v(h,g) ∈ UM(Ar(g)) for all (h, g) ∈
H ×X G.

The data (Ax, αg, ω(g1, g2), ux) without the v(h,g) for (h, g) ∈ H ×X G define a
weak action of the groupoid C1 ⇒ C0 on C∗(2). We have already identified such weak
actions with Busby–Smith twisted actions (the extension from groups to groupoids is
straightforward). In particular, we have seen that the unitaries ux are redundant because
ux = ω(1x, 1x). Observe that the coherence conditions in the definition of a weak action
of C only involve the actions of C1 ⇒ C0.

It remains to analyse the naturality conditions for the unitary multipliers v(h,g) for
(h, g) ∈ H ×X G. First, we show that these unitaries depend on g in a specific way.
We always embed H → C2 by mapping h ∈ H to the bigon (h, 1) : 1 → ∂(h), and we let
vh := v(h,1). Since the bigon (h, g) : g → ∂(h)g represents h·h1g, the naturality conditions
above imply first that v(1,g) = 1 for all g ∈ G, and then

v(h,g) = ω(∂(h), g) · vh · ω(1, g)∗. (4.5)

Thus, it suffices to specify vh for h ∈ H.
If ω(g1, g2) = 1 for all g1, g2 ∈ G, we get a strict action, which is equivalent to an

action of a crossed module. Such an action is characterized by three conditions. Firstly,
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α∂(h)(a) = vhav∗
h for all x ∈ X, h ∈ Hx, a ∈ Ax; secondly, vh1h2 = vh1vh2 for all x ∈ X,

h1, h2 ∈ Hx; thirdly, vcg(h) = αg(vh) for all x ∈ X, g ∈ Gy
x, h ∈ Hx.

The first condition for a crossed module action expresses that vh is a bigon from Id to
α∂(h). For a general weak action, this becomes

α∂(h)(a) = vhα1(a)v∗
h for all x ∈ X, h ∈ Hx, a ∈ Ax. (4.6)

Here α1(a) = ω(1, 1)∗aω(1, 1) for all a ∈ A. Equation (4.6) ensures that v(h,g) is a bigon
from αg to α∂(h)g for all (h, g) ∈ H ×X G.

The map (h, g) �→ v(h,g) is compatible with vertical composition if and only if the
following diagram in C∗(2) commutes for all (h1, h2) ∈ H ×X H:

α1
vh2 ��

vh1h2

��

α∂(h2)
ω(1,∂(h2))∗

�� α1α∂(h2)

vh1

��
α∂(h1h2) α∂(h1)∂(h2) α∂(h1)α∂(h2)

ω(∂(h1),∂(h2))
��

(4.7)

This replaces the condition vh1vh2 = vh1h2 for a strict crossed module action. With some
effort, one can verify that (4.5) tells us that (4.7) is equivalent to vn · vm = vn·vm.

The third condition αg(vh) = vcg(h) for a strict crossed module action ensures that the
map (h, g) �→ v(h,g) is compatible with horizontal products. For general weak actions,
this becomes the following commutative diagram:

αgα1αg−1
ω(g,1) ��

αg(vh)
��

αgαg−1
ω(g,g−1) �� α1

vcg(h)

��
αgα∂(h)αg−1

ω(g,∂(h))
�� αg∂(h)αg−1

ω(g∂(h),g−1)
�� αg∂(h)g−1 .

(4.8)

Take a = (h1, f1) and b = (h2, f2). Then (4.5) tells us the relation between va·hb and
vh1·vcf1 (h2), and (4.7) tells us the relation between vh1·vcf1 (h2) and vh1 · vcf1 (h2). However,
since C∗(2) is a strict 2-category, the similar formula for crossed modules of groups
works here and va ·h vb can be expressed by vh1 · αf1(vh2). Therefore, the naturality
condition (4.4) is reduced to (4.8).

Summing up, a weak action on C∗(2) of the strict 2-groupoid C associated to a crossed
module (G, H, ∂, c) is given by C∗-algebras Ax, ∗-isomorphisms αg : As(g) → Ar(g), uni-
tary multipliers ω(g1, g2) ∈ UM(Ar(g1)) for composable g1, g2 ∈ G, and vh ∈ UM(Ax)
for h ∈ Hx, such that α is a groupoid homomorphism and equations (3.3), (3.6) and
(4.6)–(4.8) hold. These rather complicated conditions describe the correct way to com-
bine twists of group actions in the sense of Busby–Smith and Green.

There is also an equivalence between topological crossed modules and topological strict
2-groupoids. We may add continuity requirements to the weak actions. This works as
in [7] and in our discussion of weak actions on Corr(2) in § 3.4. We require the spaces
X, G and H to be locally compact, and we replace the set of C∗-algebras (Ax)x∈X by a
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C0(X)–C∗-algebra. The continuity of αg means that these automorphisms form the fibre
restrictions of a C0(G)-linear ∗-isomorphism s∗(A) → r∗(A). The continuity of ω(g1, g2)
and vh means that they form fibre restrictions of a unitary multiplier of the pull-back of
A to G ×X G and H, respectively. It makes no difference whether we require h �→ vh or
(h, g) �→ v(h,g) to be continuous.

Consider the crossed module of a closed normal subgroup N � G, so that its strict
actions are exactly the twisted actions in Green’s sense (see [7]). In this case, it is well
known that Green twisted actions of N → G may be replaced by (measurable) Busby–
Smith twisted actions of the quotient group G/N . For a general crossed module, this is
not possible because there is no good analogue of the quotient group G/N . Conversely,
we will see that after stabilization the Busby–Smith twists can be removed, so that weak
actions of a crossed module are stably equivalent to strict actions in a certain sense.

The reduction of Green twisted actions to Busby–Smith twisted actions is related to the
Morita equivalence between the weak topological 2-categories N → G and G/N , which
should induce an equivalence between the corresponding categories of weak actions. This
is indeed true for discrete weak 2-categories, but there are some technical problems with
topologies here; this is why the Busby–Smith twisted action of G/N associated to a Green
twisted action is, in general, only measurable. This problem appears because we used a
simplified notion of weak action. For topological 2-categories, our definitions involve con-
tinuous functors between topological groupoids. As in more classical situations, these
should be replaced by Hilsum–Skandalis morphisms (see [14]) for best results. But, since
the definitions above already seem sufficiently complicated, we do not discuss this mod-
ification of our definitions any further here.

4.2. Transformations

Now we extend the definition of transformations or weakly equivariant maps in § 3.2
from group actions to general weak actions of weak 2-groupoids.

Let G and C be weak 2-categories and let (A, α, ωA, uA) and (B, β, ωB , uB) be mor-
phisms G ⇒ C; we view α and β as functors, so that they also contain maps G2 → C2.

A transformation between these two weak actions consists of the following data:

• arrows fx : Ax → Bx for x ∈ G0 and

• bigons Vg : βgfs(g) ⇒ fr(g)αg for g ∈ G1.

We require these bigons to be natural, that is, for each bigon n : g ⇒ h we require a
commutative diagram

βgfs(g)
Vg ��

βn

��

fr(g)αg

fr(g)(αn)

��
βhfs(h)

Vh

�� fr(h)αh

(4.9)

And we require exactly the same coherence laws (3.7) and (3.8) as for actions of groups
(but now we decorate the maps f by appropriate indices indicating objects of G).
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If the bigons Vg are invertible, the transformation is called strong. If all bigons Vg

are identity bigons, the transformation is called strict or an equivariant map. If the
transformation is strong with A = B and fx = IdAx

for all x ∈ G0, then we also call it
an (exterior) equivalence between the two weak actions.

Now we consider the case where a strict 2-groupoid C corresponding to a crossed
module (G, H, ∂, c) acts weakly on C∗(2). Since all bigons in C∗(2) are invertible, any
transformation to this category is strong. It should be clear by now how to formulate
continuity conditions if X, G and H are locally compact.

Remark 4.2. The construction in Definition 3.5 also works for weak actions of weak
2-categories: given a weak action (B, β, ω, u) and invertible bigons Vg : βg ⇒ β′

g, there is
a unique weak action (B, β′, ω′, u′) such that (IdB , Vg) is a strong transformation from
(B, β′, ω′, u′) to (B, β, ω, u).

As a consequence, Lemmas 3.6 and 3.7 remain true for weak actions of weak 2-cat-
egories, that is, any (continuous) transformation between (continuous) weak actions in
C∗(2) decomposes into a (continuous) strictly equivariant map and a (continuous) equiv-
alence, and any (continuous) weak action in C∗(2) is (continuously) equivalent to a (con-
tinuous) weak action with ux = 1 for all x ∈ X, so that α1x = IdAx and ω(g, 1s(g)) = 1
and ω(1r(g), g) = 1 for all g ∈ G. Recall that the bigons ux : IdAx ⇒ α1x in a general
weak action in C∗(2) are redundant: ux = ω∗(1x, 1x).

Let (A, α, ωA, vA) and (B, β, ωB , vB) be the data describing two weak actions of C as
in § 4.1. A transformation between them consists of non-degenerate ∗-homomorphisms
fx : Ax → M(Bx) for x ∈ G0 and unitary multipliers Vg ∈ UM(Br(g)) for g ∈ G1,
satisfying (3.9) and (3.10) (these are the conditions for transformations between Busby–
Smith twisted actions) and the additional naturality condition

V∂(h) · vB
h = f(vA

h ) · V1 (4.10)

for all h ∈ H; this implies the stronger naturality condition V∂(h)g · vB
(h,g) = f(vA

(h,g)) · Vg

for all (h, g) ∈ H ×X G, which is equivalent to (4.9). Continuity means that the maps fx

are the fibre restrictions of a non-degenerate ∗-homomorphism f : A → M(B) and the
unitary multipliers Vg are the fibre restrictions of a unitary multiplier V of the pull-back
of B to G.

If our crossed module is just a group, so that we are dealing with Busby–Smith twisted
actions, then we get exactly the same notion of transformation as in § 3.2.

If our actions are strict, that is, ωA = 1 and ωB = 1, then f and (Vg) form a transfor-
mation if and only if they satisfy (3.9), (4.10) and the condition

Vg1g2 = Vg1 · βg1(Vg2)

for all g1, g2 ∈ G, which comes from (3.10). If we also require f to be invertible, this gives
us exactly the definition of exterior equivalence of Green’s twisted action in [8].

4.3. Modifications of transformations

Now we weaken equality of transformations to the notion of a modification as in § 3.3.
Let (A, α, ωA, uA) and (B, β, ωB , uB) be two morphisms from G to a 2-category C and let
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(f, V ) and (f ′, V ′) be transformations between them. A modification (f, V ) ⇒ (f ′, V ′)
consists of bigons Wx : fx ⇒ f ′

x for all x ∈ G0 that satisfy the coherence law

βgfy
Vg ��

βg·hW

��

fxαg

W ·hαg

��
βgf

′
y

V ′
g �� f ′

xαg.

(4.11)

analogous to (3.13) (see [17]). Note that this naturality condition does not involve the
bigons of G.

An invertible modification W : (f, V ) ⇒ (f ′, V ′) (that is, the bigon W is invertible) is
also called an equivalence, and then (f, V ) and (f ′, V ′) are called equivalent.

Now we specialize this to the category C∗(2). Let (f, V ) and (f ′, V ′) be transforma-
tions from (A, α, ωA, uA, vA) to (B, β, ωB , uA, vA). Since any bigon in C∗(2) is invertible,
any modification is an equivalence. A modification (f, V ) ⇒ (f ′, V ′) consists of unitary
multipliers Wx of Bx that satisfy

f ′
x(a) = Wx · fx(a) · W ∗

x and V ′
g = Wx · Vg · βg(W ∗

y ) (4.12)

for all a ∈ Ax, g ∈ G1 with r(g) = x and s(g) = y. Continuity means that the unitary
multipliers Wx are the fibre restrictions of a multiplier of A.

5. Stabilization results

In this section, we use known results about Hilbert modules and about Busby–Smith
twisted actions to show that, after stabilization, all weak actions of strict 2-categories by
correspondences become equivalent to strict actions. The starting point is the following
well-known Triviality Theorem.

Theorem 5.1 (Triviality Theorem). Let A and B be σ-unital C∗-algebras and
let H be a correspondence from A to B. If A is stable and H is countably generated
and full as a Hilbert B-module, then the underlying Hilbert B-module of H is unitarily
isomorphic to B∞ := B ⊗ �2(N).

Proof. Since A is stable, A ∼= K(�2N) ⊗ A0 (with A ∼= A0). The ∗-representation
of A on H extends to a strictly continuous unital ∗-homomorphism on the multiplier
algebra, so that H carries a ∗-representation π : K(�2N) → B(H). Let eij for i, j ∈ N

be the matrix units in K(�2N). The operators π(eii) in B(H) are orthogonal projections
with strict convergence

∑
i∈N

π(eii) = 1. Letting Hi ⊆ H be the range of π(eii), we
get a direct sum decomposition H ∼=

⊕
i∈N

Hi. The operator π(eij) restricts to a unitary
operator between Hj and Hi, so that we may identify each summand Hj with H0. Thus,
H ∼= H∞

0 . Since H is full, so is H0. Finally, [19, Theorem 1.9] yields H∞
0

∼= B∞ because
H0 is countably generated and full. �
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Next we formulate the Packer–Raeburn Stabilization Trick in our context (compare
[15, Theorem 2.1]). Let AK := A ⊗ K(�2N) denote the C∗-stabilization of a C∗-algebra
A. A continuous weak or strong action of a weak 2-category on A by ∗-automorphisms
or correspondences induces a continuous action of the same kind on its stabilization AK:
simply map all ∗-homomorphisms α in the data to αK := α ⊗ IdK and all unitaries u in
the data to uK := u ⊗ 1.

Proposition 5.2 (Packer–Raeburn Stabilization Trick). Let G be a second
countable locally compact groupoid with Haar system and let X be its object space.
Let (B, β, ω) be a continuous weak action of G on a C∗-algebra B over X. Then the
weak action (BK, βK, ωK) is equivalent to a strict action, that is, to an action of the form
(β′, ω′) with ω′

g,h = 1 for all g, h ∈ G.

Proof. Let (λx)x∈X be a left invariant Haar system on G and let L2(G) be the
continuous field of Hilbert spaces with fibres L2(Gx, λx). In our assumption, we use
compact operators on the Hilbert space �2N. But we may as well use compact operators
on the continuous field of Hilbert spaces L2(G)⊗ �2N because the latter is isomorphic to
a constant continuous field �2N; this is actually a special case of Theorem 5.1. Since we
will not use the tensor factor K(�2N) in the following, we subsume it in B and assume
from now on that we are dealing with a weak action of the form (β ⊗ IdK, ω ⊗ 1) on
B ⊗ K(L2(G)).

We want to use the construction in Definition 3.5 to construct an equivalence (Vg)g∈G

between (β ⊗ IdK, ω ⊗ 1) and a strict action, that is, a weak action of the form (β′, ω′)
with ω′ ≡ 1; here Vg : βg ⇒ β′

g. Equation 2.1 yields

V −1
g1

·h V −1
g2

= (β ⊗ IdK)g1(V
−1
g2

) · V −1
g1

,

so that
ω′(g1, g2) = Vg1g2 · (ω ⊗ 1)(g1, g2) · (β ⊗ IdK)g1(V

−1
g2

)V −1
g1

.

Hence, we need Vg to satisfy Vg1g2 · (ω ⊗ 1)(g1, g2) = Vg1 · (β ⊗ IdK)g1(Vg2). We also want
the equivalence to be continuous, that is, V = (Vg)g∈G should be a unitary operator on
the pull-back of L2(G) ⊗X B along the range map r : G → X.

Combining pointwise multiplication by ω(g, h) and the left regular representation of
G, we define

(Vgf)(h) := ω(g, g−1h)f(g−1h) for all f ∈ Cc(G, B), g ∈ G, h ∈ Gr(g),

where f(g) ∈ Br(g). Note that (β ⊗ IdK)g1(Vg2)f(h) = βg1(ω(g2, g
−1
2 h))f(g−1

2 h) and
hence

Vg1 · (β ⊗ IdK)g1(Vg2)f(h) = ω(g1, g
−1
1 h)(β ⊗ IdK)g1(Vg2)f(g−1

1 h)

= ω(g1, g
−1
1 h)βg1(ω(g2, g

−1
2 g−1

1 h))f(g−1
2 g−1

1 h),

(Vg1g2 · (ω ⊗ 1)(g1, g2)f)(h) = ω(g1g2, (g1g2)−1h)((ω ⊗ 1)(g1, g2)f)((g1g2)−1h)

= ω(g1g2, g
−1
2 g−1

1 h)ω(g1, g2)f(g−1
2 g−1

1 h).
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These two are equal by the groupoid generalization of the cocycle condition (3.6) for
ω, applied to (g1, g2, g

−1
2 g−1

1 h). Therefore, when we use the groupoid generalizations of
(3.11) and (3.12) to construct an equivalent weak action, we get β′

g(b) = Vg(β⊗Id)g(b)V ∗
g

for all b ∈ B⊗K, g ∈ G and ω′(g1, g2) = 1 for all g1, g2. Thus, (β′, 1) is a strict continuous
action that is continuously equivalent to (β, ω). �

Theorem 5.3. Let (G, H, ∂, c) be a crossed module of second countable, locally com-
pact groupoids with object space X. Let A be a σ-unital stable C0(X)-C∗-algebra. Then
any continuous action (α, ω, u) by correspondences of (G, H, ∂, c) on A is equivalent to a
strict action, that is, there are a continuous strict action of the crossed module (G, H, ∂, c)
on A in the sense of [7] and an invertible continuous transformation from A with the
action (α, ω, u) to A with this strict action.

Proof. The proof proceeds in two steps. First, we use Theorem 5.1 to construct an
equivalence to a weak action by ∗-automorphisms, that is, a weak action in C∗(2). Then
we use the Packer–Raeburn Stabilization Trick (Proposition 5.2) to replace the latter by
a strict action.

Let C be the weak 2-category associated to the crossed module (G, H, ∂, c) and take a
weak action of C on A by correspondences, that is, a continuous morphism C → Corr(2)
that is given on objects by the C0(X)-C∗-algebra A. On the arrows, it is given by a
C0(G)-linear invertible correspondence α from C0(G, A) to itself. For the time being, we
concentrate on α and may ignore the remaining data.

Since α is an imprimitivity bimodule, it is full as a right Hilbert C0(G, A)-module. The
C∗-algebra C0(G, A) is σ-unital and stable because A is σ-unital and G is σ-compact.
Hence, α is countably generated because K(α) ∼= C0(G, A) is σ-unital (see [19, Corol-
lary 1.5]). Theorem 5.1 implies α ∼= C0(G, A)∞ ∼= C0(G, A) because A is stable.

This unitary operator provides a strong transformation from the given action
(α, ω, u, v) to another weak action by correspondences (α′′, ω′′, u′′, v′′) such that α′′ =
C0(G, A) as a right Hilbert C0(G, A)-module. The left module structure on α′′ provides a
C0(G)-linear ∗-automorphism on C0(G, A). By restriction to the fibres, this corresponds
to a strongly continuous map α′ : G → Aut(A). By construction, α′′ = [α′] in the notation
of Example 2.6.

Multipliers of C0(G × G, A) are strictly continuous maps from G × G to the multiplier
algebra of A. Hence, we may view the unitary operators ω′′ on the Hilbert module
C0(G × G, A) as a strictly continuous family of unitary multipliers ω′(g, h). Similarly,
we view u′′ and v′′ as unitary multipliers u′ and v′ of A and the pull-back of A to
H. The resulting triple (α′, ω′, u′, v′) is a weak action of C by ∗-automorphisms, that
is, a morphism C → C∗(2). We have completed the first step and we have shown that
weak actions by correspondences on stable C∗-algebras are equivalent to weak actions
by ∗-automorphisms.

In the second step, we let (α, ω, u, v) be a weak action of C by ∗-automorphisms,
which we continue to view as a weak action by correspondences. The standard Morita
equivalence f := �2(N, A) between A and AK provides an equivalence between (α, ω, u, v)
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and (αK, ωK, uK, vK). More precisely, we must combine f with the canonical isomorphisms

Vg : �2(N, A) ⊗A [αg]
∼−→ �2(N) ⊗ [αg]

∼−→ [αg ⊗ IdK] ⊗AK
�2(N, A).

Proposition 5.2 shows that the weak action (αK, ωK, uK) of G is equivalent to a strict
action α′, that is, a weak action (α′, ω′, u′) with ω′ = 1 and u′ = 1. Now Remark 4.2 shows
that the invertible bigons that implement this equivalence also provide an equivalence
of weak actions of the crossed module (G, H); that is, we get a unique homomorphism
v′ : H → UM(AK) such that (α′, ω, u′, v′) is a weak action equivalent to (αK, ωK, uK, vK).
Composing the two equivalences above, we get a weak equivalence (Φ, W ) between the
action (α, ω, u, v) of C and a weak action (α′, ω, u′, v′) with u′ = 1 and ω′ = 1. The latter
is nothing but a (strict) action of the crossed module C in the usual sense.

Since the equivalence AK � A is only a correspondence, Φ is only a correspondence as
well. But, since Φ is an invertible correspondence between two stable C∗-algebras, it is
of the form [ϕ] for a ∗-isomorphism ϕ : A → AK. Then α′′

g (a) := ϕαg(a)ϕ−1 for a ∈ A

and v′′
h := ϕ · v defines a continuous strict action of the crossed module on A that is

equivalent to the original action. �

Corollary 5.4. If (α, ω, u, v) is a continuous action by correspondences of a second
countable, locally compact crossed module (G, H, ∂, c) with object space X on a σ-unital
C0(X)-C∗-algebra A, then the induced action on its stabilization AK is equivalent to a
continuous strict action of (G, H, ∂, c) by ∗-homomorphisms and unitary intertwiners.

By Theorem 3.17, continuous actions of G by correspondences correspond bijectively to
saturated Fell bundles over G. Moreover, invertible continuous transformations between
weak actions by correspondences correspond bijectively to Morita equivalences of the
associated Fell bundles. Thus, we immediately get the following consequence:

Corollary 5.5. If G is a locally compact, second countable locally compact group, then
any saturated Fell bundle over G for which the unit fibre is a σ-unital stable C∗-algebra
is Morita equivalent to a Fell bundle over G that is associated to a strict G-action. Hence,
every Fell bundle is, up to stabilization, Morita equivalent to one associated to a strict
group action.

Remark 5.6. The above result is well known to the specialists. It can also be proved
by combining the Packer–Raeburn Stabilization Trick in [15] and the classification result
of Ruy Exel for Fell bundles in [10]. Indeed, the main result in [10] says that a Fell
bundle A over G which is regular (a technical condition that need not concern us here)
is isomorphic to a Fell bundle coming from a (Busby–Smith) twisted partial action of G.
Twisted partial actions are natural generalizations of Busby–Smith twisted actions where
one allows partially defined isomorphisms between ideals of a given C∗-algebra. Following
Exel’s construction in [10], we get a twisted global action if the initial regular Fell bundle
is saturated. Thus, Exel’s main result in [10] implies that regular, saturated Fell bundles
over G correspond to Busby–Smith twisted (global) actions of G. And by the Packer–
Raeburn Stabilization Trick, every twisted G-action is Morita equivalent to an ordinary
G-action. Moreover, as observed by Exel in [10], Fell bundles with stable unit fibre are
automatically regular. All this together yields an alternative proof of Corollary 5.5.
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6. Conclusion

We have defined weak actions of weak 2-categories on C∗-algebras, transformations
between such actions and modifications of such transformations. Our starting point was
the notationally simpler case of group actions, where our notions specialize to known
concepts like Busby–Smith twisted actions, equivalence of such actions, covariant repre-
sentations and unitary intertwiners between covariant representations. Weak actions of
strict 2-groupoids generalize Busby–Smith twisted actions and Green twisted actions at
the same time. Furthermore, when we use the correspondence category of C∗-algebras,
we get notions related to saturated Fell bundles.

Finally, we used results about Morita equivalence of C∗-algebras to strictify weak
actions after stabilization. This strictification is a rather unusual feature of C∗-algebras.
In most contexts, weak actions of 2-groupoids are far from equivalent to strict actions.
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