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Abstract

We study moduli spaces of d-dimensional manifolds with embedded particles and
discs, which we refer to as decorations. These spaces admit a model in which points are
unparametrised d-dimensional manifolds in R∞ with particles and discs constrained to it.
We compare this to the space of d-dimensional manifolds in R∞ with particles and discs
that are no longer constrained, i.e. the decorations are decoupled. We show that under cer-
tain conditions these spaces cannot be distinguished by homology groups within a range.
This generalises work by Bödigheimer–Tillmann for oriented surfaces to different tan-
gential structures and also to higher dimensional manifolds. We also extend this result to
moduli spaces with more general submanifolds as decorations and specialise in the case of
decorations being embedded circles.

2020 Mathematics Subject Classification: 55R40 (Primary); 55N99, 55R10,
57R15 (Secondary)

1. Introduction

The diffeomorphism group of a smooth manifold and its classifying space are fundamen-
tal objects in topology. For a smooth manifold W, the classifying space BDiff(W) encodes
both the topology and group structure of Diff(W). Even more, it plays an essential role
on constructing smooth fibre bundles with fibre W and topologically enriched cobordism
categories. There is a lot of ongoing work on understanding the classifying space of diffeo-
morphism groups. For higher genus surfaces, we know their homotopy type is a K(G,1) for G
a mapping class group, but the other invariants as the cohomology ring are still unknown. For
manifolds in higher dimensions we know even less about the homotopy type of these spaces.
One key strategy when studying BDiff(W) is to understand how its homology behaves when
changing the manifold W by operations such as connected sum or gluing of cobordisms.
This approach has detected stability phenomena on homology after such operations and has
lead to the study of such stable homology groups. In this paper, we study the stable homol-
ogy of decorated diffeomorphism groups, which includes for instance the study of manifolds
with punctures.

Let W denote a smooth compact manifold of dimension d ≥ 2 and Diff(W) its diffeomor-
phism group with Whitney C∞ topology. When W has a non-empty boundary, we further
require that the elements of Diff(W) restrict to the identity on a collar of ∂W (note that this is
usually denoted Diff∂ (W)). If moreover W is an orientable manifold, we denote by Diff+(W)
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Fig. 1. Geometric representation of the decoupling map for the oriented moduli space of a
surface Sg as the product of three maps: forget the decorations, record the centre of the m marked
discs, and record the k marked points and their oriented tangent spaces. For more details on the
geometric interpretation see Section 1·1.

the subgroup of orientation preserving diffeomorphisms. The manifold W is said to be dec-
orated if it is equipped with disjoint embeddings of k points and m discs Dd. The decorated
diffeomorphism group of W, denoted Diffk

m(W), consists of those diffeomorphisms which
preserve the marked points and parametrised discs up to permutations. The classifying space
BDiffk

m(W) has been studied from many different perspectives, for instance, considering the
behaviour after increasing the number of marked points or discs (see [2, 32]).

The first decoupling result for decorated diffeomorphism groups was developed in the
context of orientable surfaces by Bödigheimer and Tillmann [2]. Let Sg,b denote an ori-
entable surface of genus g and b ≥ 1 boundary components, and assume it to be decorated
by k points and m discs. The strategy in [2] for what was called the splitting result, was to
look at an element in BDiffk

m(Sg,b) and separate the information it carries about the surface,
and the decorations. Namely, we can look at three maps

f : BDiffk
m(Sg,b) −→ BDiff(Sg,b), em : BDiffk

m(Sg,b) −→ B�m (1·1)

ek : BDiffk
m(Sg,b) −→ B(�k � SO(2)),

where f is induced by the inclusion of groups, em is induced by recording the permutation of
the parametrised discs, and ek is induced by recording the permutation of the marked points
together with the induced map on their tangent space. The decoupling map is defined as the
product

(1·2)

(see Figure 1 for a geometric representation of the decoupling map). The decoupling result
in [2] shows that D induces a homology isomorphism in degrees ≤ g/3. Hence, in this range,
we say that the decorations, which were bound to the manifold, get decoupled. This result
was generalised to non-orientable surfaces in [10]. In this paper, we further generalise this
result to moduli spaces of manifolds in higher dimensions with more types of tangential
structures.

In the case described above we looked specifically at surfaces admitting an orientation.
Just like framings, spin structures and maps to a background space, orientation is an exam-
ple of a what is called a tangential structure. These are precisely the ones which can be
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described just from data on the tangent bundle of a manifold. Precisely, a tangential struc-
ture is a topological space� equipped with a continuous GLd action. And a�-structure on a
d-dimensional manifold W is a GLd-equivariant map ρW : Fr(TW) →�, from the space of
framings of W to �. A canonical example is �or := {±1} with action of GLd given by mul-
tiplication with the sign of the determinant. It is simple to check that a �or-structure on a
manifold is equivalent to a choice of orientation.

Just like the space BDiff+(W) captures the diffeomorphisms of W respecting orientations,
the moduli space of W with�-structure is the analogue of this for a general�. The space of
all�-structures on W has an action of Diff(W) given by precomposition with the differential.
Then for a closed manifolds with a�-structure ρW , the moduli space M�(W, ρW ) is defined
as the path component of ρW in the Borel construction (i.e. homotopy quotient)

{GLd-equivariant maps ρ : Fr(TW) −→�}//Diff(W).

This definition generalises the classifying spaces BDiff(W) and BDiff+(W), as can be seen
by using the tangential structures �∗ := {∗} and �or, respectively.

Analogously, when W is a closed manifold equipped with k marked points and m
parametrised discs, the decorated moduli space of (W, ρW ), denoted M�,k

m (W, ρW ), is
defined as the path component of ρW in the Borel construction

{GLd-equivariant maps ρ : Fr(TW) −→�}//Diffk
m(W).

If W is a manifold with non-empty boundary, the moduli space and its decorated version
are defined analogously but only considering the GLd-equivariant maps ρ : Fr(TW) →�

which agree with ρW on Fr(TW|∂W ).
The decoupling result we prove in this paper, takes an element of M�,k

m (W, ρW ) and, as in
the surface case, separates the information it carries about the manifold, and the decorations.
Analogous to (1·1), we look at three maps, which for an orientable manifold are given by

F : M�,k
m (W, ρW ) −→M�(W, ρW ), Em : M�,k

m (W, ρW ) −→�m//�m, (1·3)

Ek : M�,k
m (W, ρW ) −→ (�//GL+

d )k//�k,

constructed using the same maps as in the surface case. The product of these is what we call
the decoupling map

In particular, taking W to be a surface and� the orientation structure, D is precisely the map
of equation (1·2). The image of D is a path-component of the codomain, which we denote

M�(W, ρW ) ×�m
0 //�m × (�//GL+

d )k
0//�k.

The Decoupling Theorem (Theorem 3·10) states that, for a vast amount of cases, the map
D induces a homology isomorphism onto its image, in a range depending on W and �.
In particular, this generalises the splitting results in [2, 10] and when applied to important
tangential structures, gives new decoupling results for surfaces (Corollary 3·11). The main
result of this paper is the corollary of Theorem 3·10 for manifolds of high even dimension,
where no such splitting result had been proved. In this case, the stable range is determined

https://doi.org/10.1017/S0305004122000202 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004122000202


166 LUCIANA BASUALDO BONATTO

by the stable genus of the manifold with a given tangential structure, as defined in [7,
section 1·3] (see Section 2·3).

THEOREM A. Let W be a simply-connected manifold of dimension d = 2n ≥ 6 with non-
empty boundary, and ρW an n-connected �-structure on W. Let g be the stable genus of
(W, ρW ). Then the decoupling map

D : M�,k
m (W, ρW ) −→M�(W, ρW ) ×�m

0 //�m × (�//GL+
2n)k

0//�k

induces homology isomorphisms in degrees ≤ (g − 4)/3.

A stronger version of this result is stated in Corollary 3·12 including manifolds W that
have empty boundary.

The Decoupling Theorem (Theorem 3·10) is stated in terms of a homology stability
hypothesis. For odd dimensional manifolds, it is still unknown if this hypothesis is satisfied
under any conditions. For details about such homology stability condition and a recollection
of the cases in which it was proven to hold, see Section 2·3.

The connectivity assumption in Theorem A is essential, which we show by exhibiting
in Example 5·1 a case where the decoupling does not hold in its absence. Although this
condition is quite restrictive, we show that it is still possible to obtain further results for
more general tangential structures using the techniques of [7, section 9]. As an example, we
use these tools to analyse the case below, in which Theorem A does not directly apply.

THEOREM B. The stable cohomology of BDiff+,k
m (Wg,1) with rational coefficients is

isomorphic to

Q[κc|c ∈B, |c|> 2n] ⊗
(⊗

m

∧
[y1, . . . , y� n−1

4 �]

)�m

⊗
(⊗

k

Q[p n+1
4 �, . . . , pn−1, e]

)�k

,

where pi and e are, respectively, the Pontryagin and Euler classes in H∗(BSO(2n), Q), B
denotes the set of monomials in the classes p n+1

4 �, . . . , pn−1, e, with |κc| = |c| − 2n, and yi

is the ith generator of H∗(SO(2n), Q), which has degree 4i − 1. The fixed points are taken
with respect to the action of the symmetric group that permutes the generators in the tensor
product.

When studying surfaces, it is natural to look at decorations by marked points and discs,
however for a high dimensional manifold W, one is allowed to explore more general types
of decorations. This has been studied for instance in the recent work [20, 24–26]. As a
final contribution, we generalise the definition of the decorated moduli space of a manifold
allowing a general submanifold L ⊂ W as decoration, and prove an analogous decoupling
theorem. This result depends on the group of automorphisms of the normal bundle of L that
can be induced by diffeomorphisms of W. In general this group is hard to describe so we
look more closely at the example of decorations being embedded circles. This is an important
example because of its relation to the literature and also its relevance to string theory. In this
case, we completely describe this group of automorphisms and show it depends only on
whether or not W admits a spin structure (Lemma 4·15).

We denote the moduli space of a manifold W with k embedded circles and�-structure by
M�

kS1(W, ρW ) and, as in Theorem A, it also admits a splitting result. In this case, the term
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that appears related to the decorations is the space of configurations of circles in R∞ with
labels in a space L (see Definition 4·17), which we denote CkS1 (R∞, L).

THEOREM C. Let W be a simply-connected manifold of dimension 2n ≥ 6 with non-empty
boundary, equipped with k marked circles and with a �-structure ρW : Fr(TW) →� which
is n-connected. Let g be the stable genus of (W, ρW ). Then the decoupling map

DkS1 : M�
kS1(W, ρW ) −→M�(W, ρW ) × CkS1(R∞; L)

induces homology isomorphisms in degrees ≤ (g − 4)/3. Here L is a space depending on
the spinnability of W (made explicit in the proof), and is related to the free loop spaces of �
and GLd.

1·1. Geometric interpretation

The spaces and maps used in the decoupling result all have concrete geometric models,
which we briefly introduce.

We discussed before that moduli spaces with tangential structures are generalisations of
the classifying space BDiff(W), as can be verified by considering the tangential structure
�∗ = {∗}. In particular, this means that the geometric model of BDiff(W) given by the quo-
tient Emb(W, R∞)/Diff(W) is also a model for M�∗

(W, ρW ). With this construction, this
moduli space is the subspace of all submanifolds of R∞ that are abstractly diffeomorphic
to W. Analogously, fixing an arbitrary �-structure ρW on the manifold W (for instance a
choice of orientation), the moduli space M�(W, ρW ) has a model given by the space of
all submanifolds of R∞ that are abstractly diffeomorphic to W together with a choice of
�-structure concordant to ρW . A detailed description of this model can be found in [8, sec-
tions 6 and 7]. Using the same ideas, the decorated moduli space M�,k

m (W, ρW ) can be
modelled by the space of all submanifolds of R∞ that are diffeomorphic to W together
with k marked points, m marked parametrised discs, and a choice of �-structure concordant
to ρW .

We also have geometric models for the spaces �m
0 //�m and (�//GLd)k

0//�k appearing in
the decoupling theorem. Namely, they can be described via unordered configuration spaces
with labels. Recall that given a space X, the configuration space of s points in M with labels
in X is defined as

Cs(M;X) := (Emb({1, . . . , s}, M) × Xs)/�s,

where �s acts by permutataion of the points in {1, . . . , s} and the factors of Xs. In other
words, Cs(M) is the space of unordered collections of s distinct points in M, where each
point is labelled by a point in X. Since the space Emb({1, . . . , m}, R∞) is weakly con-
tractible it is simple to verify that a model for�m

0 //�m is precisely the space of Cm(R∞,�0).

Analogously, a model for the (�//GL†
d)k

0//�k is given by the space Ck(R∞, (�//GLd)0).
With these models, the three maps in (1·3) can be described as: F is the map that forgets

the marked points and discs and only remembers the abstract manifold with the tangen-
tial structure; Em records the points in the centre of the m marked discs in the abstract
manifold together with local tangential structure information; and finally Ek records the posi-
tions of the marked points in R∞ together with their tangent spaces and tangential structure
information. See Figure 1 for an illustration of these maps.
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With this geometric interpretation, the decoupling result tells us that the stable homology
of the space of submanifolds of R∞ diffeomorphic to W equipped with marked points and
discs, can be understood in terms of the homology of a space where these points and discs
are not constrained to the manifold anymore, i.e. they are decoupled.

1·2. Outline of the paper

Section 2 recalls the basic concepts and results needed throughout the paper. We start by
defining and giving examples of tangential structures and moduli space of manifolds. We
discuss the homological stability condition that is a central hypothesis of the decoupling
theorem, recalling the many contexts in which it was proved to hold. Finally, we prove
auxiliary results on fibre sequences of Borel constructions and the splitting argument
(Proposition 2·15) which will be central throughout the paper.

In Section 3 we define the decorated moduli space of manifolds and the decoupling
map, and we prove the Decoupling Theorem 3·10. The key ingredient for the proof and
main technical result of the section is the construction of the homotopy fibre sequence in
Proposition 3·7. As a consequence of Theorem 3·10, we deduce new decoupling results for
surfaces (Corollary 3·11) and Theorem A.

In Section 4 we define the generalisation of the decorated moduli space for more gen-
eral types of submanifold decorations, define the decoupling map and prove the decoupling
theorem in this case (Theorem 4·8). The key technical result of this part is Proposition 4·6.
We specialise further in the case of decorations being embedded unlinked circles and prove
Theorem C, using as a main input the result of Lemma 4·15.

Finally, in Section 5 we look at high dimensional manifolds with tangential structures that
fail the hypothesis of Theorem A and provide a generalisation of the result for these cases.
In particular, by applying this result to the manifolds Wg,1, we show Theorem B, which is
the key technical result of this section.

2. Preliminaries

In this section we recall the main concepts and results that will be used throughout the
paper. We start by discussing tangential structures and moduli spaces of manifolds. We give
examples of these concepts that will be used in Section 3 to look at specific corollaries of
the Decoupling Theorem, such as Corollary 3·11 about surfaces. The next subsection dis-
cusses the homological stability condition which is the central hypothesis in the Decoupling
Theorem A and presents a concise survey of the cases in which this condition is known to
hold. We end the section by recalling fundamental results about descending fibre sequences
to homotopy quotients as well as the splitting argument (Proposition 2·15) that will be used
throughout the paper.

2·1. Tangential structures

Let W be a smooth compact connected d-dimensional manifold, possibly with non-empty
boundary. We denote by Diff(W) the group of diffeomorphisms of W with Whitney C∞
topology, and if ∂W �= ∅ we assume all diffeomorphisms fix a collar of the boundary (this is
often denoted Diff∂ (W)). If moreover W is an orientable manifold, we denote by Diff+(W)
the subgroup of orientation preserving diffeomorphisms.

Given a vector bundle p : E → B, the frame bundle of E over B will be denoted by Fr(E).
Recall that the fiber of Fr(E) → B over a fixed b is the space of ordered bases of p−1(b), and
this forms a GLd-principal bundle. Throughout, we denote by TW the tangent bundle of the
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manifold W, and by εn → B the trivial n-dimensional vector bundle over some base space
B. In this paper, we will consider only real vector bundles.

We now define tangential structures following the terminology established by Galatius
and Randal–Williams in [9].

Definition 2·1. A tangential structure for d-dimensional manifolds is a space � with a
continuous action of GLd := GLd(R). A�-structure on a d-manifold W is a GLd-equivariant
map ρ : Fr(TW) →�.

Many of usual structures we consider on manifolds can be described using tangential
structures:

Example 2·2. Let W be a connected manifold.

(a) An orientation on W is equivalent to a GLd-equivariant map Fr(TW) → {±1}, where
the action on �or := {±1} is given by multiplication by the sign of the determinant.

(b) A framing on a manifold is a �fr-structure for �fr := GLd, with action by multiplica-
tion.

(c) A manifold together with a continuous map to a space X, can be described as a �X-
structure where �X := X with the trivial action. This tangential structure is usually
referred to as maps to a background space X.

(d) A manifold with no extra structure can be seen as one equipped with a �∗-structure,
where �∗ := {∗}.

Remark 2·3. Many authors approach tangential structures in a different way, namely by
defining it as a fibration θ : B → BO(d), and by setting a θ-structure on a manifold W to be a
map W → B lifting the map W → BO(d) classifying TW. The two definitions are equivalent,
as can be shown using the correspondence between spaces with a GLd action and spaces over
BGLd � BO(d), made through the principal GLd-bundle EGLd → BGLd. Both the spaces�
and B associated to a given tangential structure will come into the decoupling result, so it is
worth making precise the relation between them: given a fibration θ , the pullback space

� := EGLd ×
BGLd

B

is naturally equipped with a GLd action. On the other hand, given a GLd-space �, we can
define B as the Borel construction �//GLd (ie. the quotient of EGLd ×� by the diagonal
action of GLd). Then EGLd ×�→ B is a principal GLd-bundle, which means B comes
equipped with a map θ : B → BGLd. Since EGLd is contractible, these processes are inverse
up to equivariant fibre-wise weak equivalence.

Example 2·4. Spin structures on an n-dimensional manifold are known to be classified by
lifts along the fibration θSpin : BSpin → BO(d) � BGLd. So the corresponding�Spin fits into
the following diagram of fibre sequences
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Hence the space �Spin is homotopy equivalent to {±1} × BZ/2.

Definition 2·5. Let W be a closed manifold and � a fixed tangential structure. We define
the space of �-structures on W, denoted Bun�(W), to be the space of all GLd-equivariant
maps Fr(TW) →� equipped with the compact-open topology.

Let W be a manifold with non-empty boundary and a collar together with a GLd-
equivariant map ρ∂ : Fr(T∂W ⊕ ε) →�. We define the space of �-structures on W restrict-
ing to ρ∂ , denoted Bun�ρ∂ (W), to be the space of all GLd-equivariant maps Fr(TW) →� that
restrict to ρ∂ on ∂W.

Example 2·6. Let W be a connected manifold.

(a) Let �or be as described in Example 2·2(a). If W is a closed orientable manifold, it
admits two�or-structures so Bun�

or
(W) consists of two points. If W has a non-empty

boundary, then Bun�
or

ρ∂
(W) consists only of those GLd-equivariant maps which restrict

to ρ∂ , and therefore it is a single point.

(b) A�X structure on a manifold W (Example 2·2(c)) is a continuous map W → X, hence
for W closed, Bun�X (W) is the space of continuous maps from W to X.

(c) For �∗ the trivial tangential structure of Example 2·2(d), Bun�
∗
(W) is a single point.

2·2. Moduli spaces of manifolds

The action of the diffeomorphism group of W on the tangent bundle TW induces an action
on the space Bun�(W) for any tangential structure �. Explicitly, given φ ∈ Diff(W) and
ρ ∈ Bun�(W),

φ · ρ = ρ ◦ Dφ−1

where Dφ : Fr(TW) → Fr(TW) is the map induced by the differential of φ.

Definition 2·7. Let W be a closed manifold and fix ρW a �-structure on W, we define
Bun�(W, ρW ) to be the orbit of the path-component of ρW in Bun�(W) under the action of
the diffeomorphism group Diff(W). If W has non-empty boundary Bun�(W, ρW ) is defined
to be the orbit of the path-component of ρW in Bun�ρ∂ (W), where ρ∂ is the restriction of ρW

to the boundary.

We define the moduli space of W with �-structures concordant to ρW to be the Borel
construction (ie. homotopy orbit space)

M�(W, ρW ) := Bun�(W, ρW )//Diff(W).

Remark 2·8 In the above definition, when W is a manifold with boundary and ρW a fixed
�-structure, we have omitted the symbol ρ∂ from the notation for the space Bun�(W, ρW ).
However, it should always be understood that there is a fixed boundary condition which is
determined by the restriction of the fixed ρW to the boundary.

The most important examples of these moduli spaces come from the simplest tangential
structures: for the trivial tangential structure �∗, the space Bun�

∗
(W) consists of a single

point for any W and therefore M�∗
(W, ρW ) is the classifying space BDiff(W). If W is an ori-

entable manifold Bun�
or

(W, ρW ) consists of either one or two points depending on whether
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Diff(W) has an element that reverses the orientation of W. In either case, the moduli space
M�or

(W, ρW ) is homotopy equivalent to BDiff+(W).

2·3. Homological stability

In the centre of the decoupling result is a condition on homological stability of moduli
spaces of manifolds when gluing highly connected cobordisms along the boundary. In this
section we give a concise survey of results on homological stability of moduli spaces of
manifolds, focusing on the cases relevant to the decoupling theorem.

Homological stability results for classifying spaces of manifolds go back to the work of
Harer [11] on the mapping class group of oriented surfaces. Among other results, he proved
there is homological stability when gluing a disc D2 along a boundary component of an
oriented surface Sg,b+1 of genus g and b + 1 boundary components. Namely, extending a
diffeomorphism by the identity induces a map

BDiff+(Sg,b+1) −→ BDiff+(Sg,b). (2·1)

Harer showed that this map induces an isomorphism in homology in a range increasing with
the genus g. This range was improved several times throughout the years [3, 11, 16–18,
29]. The most recent bound, by Randal–Williams in [29], gives isomorphisms of homology
groups in degrees ≤ 2g/3.

This result was generalised for surfaces with framings [28], spin structures [1, 12, 28],
maps to a simply-connected background space X [4, 5, 29], and Spinr-structures [28]. As
before, it was shown that the map induced by (2·1) on the moduli spaces of surfaces with
these tangential structures gives isomorphisms in homology in ranges increasing with the
genus.

Such a homological stability result was also proven to hold for non-orientable surfaces.
Namely, let Ng,b be the non-orientable surface #gRP∞ \∐

b
D2, then the map

Hi(BDiff(Ng,b+1)) −→ Hi(BDiff(Ng,b))

was shown in [33] to be an isomorphism for all 4i ≤ g − 3. This was generalised in [28,
section 4] to an analogous result on the homological stability of moduli spaces of non-
orientable surfaces with tangential structures Pin+ and Pin−.

These homological stability results were recently generalised in [7] to the case of higher
dimensional manifolds with respect to gluing highly-connected cobordisms (not necessarily
discs). Let W be a manifold with non-empty boundary P, and ρW a�-structure on W. Given
a cobordism M from P to Q together with a �-structure ρM on M which restricts to ρW over
P, there is an induced map between the moduli spaces

(2·2)

induced by extending a �-structures on W by ρM , and the diffeomorphisms on W by the
identity. In [7], Galatius and Randal–Williams showed that, for many W of even dimension
d = 2n ≥ 6, cobordism M and structure �, this map induces a homology isomorphism in a
range depending on the stable genus of (W, ρW ), a concept we recall briefly, following the
notation of [9].

Analogously to the surface case, the genus of a manifold of dimension d = 2n is measured
by disjoint embeddings of the space (Sn × Sn) \ {∗}, but also taking into account the tangen-
tial structure. Namely, Galatius and Randal–Williams define what it means for a�-structure
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on (Sn × Sn) \ {∗} to be admissible (for details see [9]) and define the genus of a manifold W
with �-structure ρW to be

g(W, ρW ) = max

{
g ∈N

∣∣∣∣ there are g disjoint embeddings j : (Sn × Sn) \ {∗} ↪→ W

such that j∗ρW is admissible

}
.

The stable genus of (W, ρW ) is defined to be

g(W, ρW ) = max
{

g
(

W#Wk,1, ρ(k)
W

)
− k|k ∈N

}
,

where W#Wk,1 is obtained from W by removing k discs and attaching k copies of (Sn ×
Sn) \ int(D2n) along the new boundary. The �-structure ρ(k)

W is obtained by extending the
restriction of ρW by any admissible structure on (Sn × Sn) \ int(D2n).

LEMMA 2·9. Let W be a smooth compact manifold of dimension 2n ≥ 2, L ⊂ int(W) a
closed submanifold of dimension ≤ n − 1, and N a tubular neighbourhood of L. Then the
genus of W \ N is equal to the genus of W.

Proof. Sard’s theorem implies that for any submanifold L′ ⊂ (Sn × Sn) \ {∗} with
dim(L′) ≤ n − 1 there is an embedding (Sn × Sn) \ {∗} ↪→ (Sn × Sn) \ {∗} that avoids L′ and
is isotopic to the identity. In particular, this implies that for any φ :

∐
g

(Sn × Sn) \ {∗} ↪→ W,

there is an embedding φ′ :
∐
g

(Sn × Sn) \ {∗} ↪→ W that avoids L and is isotopic to φ. Since

W \ L is diffeomorphic to int(W \ N) via a diffeomorphism fixing everything but a collar of
L, the result follows.

THEOREM 2·10 ([7], corollary 1·7). Assume d = 2n ≥ 6, and � is such that �//GLd is
simply-connected. Let W be a d-manifold, ρW be an n-connected �-structure on W and let
g = g(W, ρW ). Given a cobordism (M, ρM) as above such that (M,P) is (n − 1)-connected,
the map

is an isomorphism for all 3i ≤ g − 4.

We recall that a map is called n-connected if the map induced on homotopy groups πi is
an isomorphism for i< n and a surjection for i = n.

Remark 2·11. In [7, corollary 1·7], the result above is given in much more generality allow-
ing arbitrary coefficient systems and providing a better stability range depending on the
coefficient system and the tangential structure. We restrict ourselves to the case above, for
simplicity, but remark that such generalisations for more general coefficient systems can also
be immediately carried out in the decoupling theorem.

We end this section by remarking that there are many other types of homological stabil-
ity results for moduli spaces of manifolds. Perhaps the most famous results show stabilising
when increasing the genus of a manifold. This was carried out by Harer for oriented surfaces
[11], and later extended to surfaces with structures such as framings [28], spin structures
[1, 12, 28], and maps to a simply-connected background space X [4, 5, 29], Spinr-structures
[28]. Homological stability when increasing the genus was also observed for non-oriented
surfaces [33], and surfaces with Pin±-structures [28]. In dimension 3, this was carried out in
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[14] where it was shown that the connected sum with S1 × S2 induces a homology isomor-
phism in a range. For higher dimensions, this was not only carried out for even dimensional
surfaces [7, 8], but also in odd dimensions by Perlmutter [27], expanding on the idea of what
it means to increase the genus of an odd-dimensional manifold.

Note that for odd dimensional manifolds we still do not know if gluing of cobordisms
induces homology isomorphisms in a range, which is the relevant stability condition needed
in the hypothesis of the Decoupling Theorem.

2·4. A lemma on fibre sequences and homotopy quotients

In this section we prove a lemma that will be used throughout the paper to construct fibre
sequences of moduli spaces from equivariant fibre sequences of diffeomorphism groups and
spaces of �-structures.

LEMMA 2·12. Given a commutative diagram of topological spaces and continuous maps

such that f and h are Serre fibrations and h is surjective, then g is also a Serre fibration.

Proof. Since h is surjective, any map Di × {0} → Y admits a lift to X, as can be seen by
induction on i: for i = 0, this follows from h being surjective, for i> 0, this lift follows from
the identification Di � Di−1 × I and h being a Serre fibration. Then any lifting problem for
g with respect to Di × {0} ↪→ Di × I gives a lifting problem for f , which admits a lift � since
f is a Serre fibration. Then h ◦ � is a lift with respect to g, as required.

LEMMA 2·13. Let Gi be a topological group and pi : Mi → Mi/Gi be a Gi-principal
bundle, for i = 1, 2, 3.

(a) If φ : G2 → G3 is a continuous homomorphism and f : M2 → M3 is a φ-equivariant
fibration, then the induced map

ψ : M2/G2 −→ M3/G3

is a fibration.

(b) Given a short exact sequence of groups

0 −→ G1 → G2 −→ G3 −→ 0

and a fibre sequence of equivariant maps M1 → M2 → M3, the induced maps on
quotients form a fibre sequence

M1/G1 −→ M2/G2 −→ M3/G3

Proof.

(a) By assumption, the map p2 is a surjective fibration and the composition ψ ◦ p2

is equals the composition of fibrations p3 ◦ f . Therefore, by Lemma 2·12, ψ is a
fibration.
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(b) Diagrammatically, we want to show that given the diagram of fibre sequences below,
there exists a fibre sequence fitting into the bottom row:

By item (a), the map ψ is a fibration, so all that remains is to identify its fibres.
The composition p3 ◦ f is a fibration with fibre G2 · i(M1) ⊂ M2. Then the fibre of
ψ is p2(G2 · i(M1)) = p2(i(M1)). Since the action of G3 on M3 is free, we know that
for any g ∈ G2 which is not in the kernel of φ, the intersection (g · i(M1)) ∩ i(M1) is
empty. So p2(i(M1)) is simply the quotient of i(M1) by the action of ker φ = ι(G1).
Then the map M1/G1 → M2/G2 is precisely the inclusion of the fibre of ψ .

COROLLARY 2·14. Let Gi be a topological group and Si be a Gi-space, for i = 1, 2, 3.

(a) If φ : G2 → G3 is a continuous homomorphism and f : S2 → S3 is a φ-equivariant
fibration, then we can choose a model for the Borel constructions such that the
induced map

ψ : S2//G2 −→ S3//G3

is a fibration.

(b) Given a short exact sequence of groups

0 −→ G1 −→ G2
φ−−−→ G3 −→ 0

such that φ is a principal bundle, and a fibre sequence of equivariant maps S1 →
S2 → S3, the induced maps on quotients form a homotopy fibre sequence

S1//G1 −→ S2//G2 −→ S3//G3.

Proof. Both statements follow from applying Lemma 2·13 to the diagram

where the action of the groups is the diagonal action induced by the maps ι and φ. The
commutativity of the diagram follows from the fact that the action of G1 on EG3 induced by
φ ◦ ι is trivial.

In particular, applying the above corollary to the trivial fibration ∗ → ∗, gives us the well-
known result that a short exact sequence of groups G1 → G2 → G3 induces a fibre sequence
on classifying spaces BG1 → BG2 → BG3.
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2·5. The splitting argument

The proof of the decoupling results crucially uses a technique for comparing the homol-
ogy of the total space of a fibre sequence to the one of a product. More specifically, we will
compare the associated spectral sequences and look at the consequences when they are iso-
morphic in a range. This technique can be seen for instance in [2, 32], and can be stated as
follows:

PROPOSITION 2·15. Given a homotopy fibre sequence F
i−→ E

p−→ B and a map f : E → M
such that a the composite f ◦ i : F → M induces an isomorphism on homology in degrees
≤ α. Then the map f × p : E → M × B induces an isomorphism on homology in degrees
i ≤ α.

Proof. The following map of fibre sequences

induces a map of the respective Serre spectral sequences E•
p,q → Ẽ•

p,q. Since f ◦ i is a

homology isomorphism in degrees ≤ α, the map between the E2 pages

is an isomorphism for all q ≤ α. This also implies that all higher differentials involving a
term in total degree ≤ α are controlled: since a differential dr has bidegree (− r, r − 1), if
dr has a target in bidegree (p, q) with p + q ≤ α, it comes from a term with bidegree (p′,q′)
with q′ ≤ α. On the other hand, a differential dr coming from a term in bidegree (p, q) with
p + q ≤ α will have its target in total degree no greater than α. This implies that all the terms
in total degree ≤ α and their differentials are in the range of isomorphism of the spectral

sequences and therefore f × p induces an isomorphism Hk(E)
∼=−→ Hk(M × B) for all k ≤ α.

We leave the details to the reader.

3. The Decoupling Theorem

In this section we introduce decorated manifolds, the decorated moduli space, and the
maps that are in the centre of the decoupling theorem: the forgetful map and evaluation
map. We end by defining the decoupling map and proving the decoupling theorem.

For now, we focus on decorations being points and discs. These are the extreme cases:
the simplest embedded manifolds of lowest and highest possible dimension. In Section 4 we
show how this can be extended to more general submanifold decorations.

3·1. The decorated moduli space and the forgetful map

Throughout this section, let W be a compact connected smooth manifold. We will study
manifolds equipped with decorations:

Definition 3·1. A d-dimensional manifold with decorations consists of a manifold W
together with a set of distinct marked points in its interior p1, . . . , pk ∈ W \ ∂W and disjoint
embeddings φ1, . . . , φm : Dd ↪→ W \ (∂W ∪ {p1, . . . , pk}), with k, m ∈N. If W is orientable,
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we require all embeddings to be oriented in the same way. We refer to these choices as
decorations on our manifold.

Given a manifold W with decorations, we define the decorated diffeomorphism group
Diffk

m(W) to be the subgroup of Diff(W) of the diffeomorphisms ψ such that

ψ ◦ φj = φα(j) ψ(pi) = pβ(i)

for some α ∈�m and β ∈�k.
In other words, we are looking at the diffeomorphisms that preserve the marked points

and parametrised discs up to permutations. Note that the notation Diffk
m(W) does not record

which points and embedded discs comprise the decorations. The following lemma justifies
this notation.

LEMMA 3·2. If d ≥ 2, the isomorphism type of Diffk
m(W) does not depend on the choice

of the k points and m embedded discs that comprise the decorations.

Proof. For any two collections of decorations in W denoted {pi}k
i=1, {φj}m

j=1 and {p′
i}k

i=1,
{φ′

j}m
j=1 there exists a diffeomorphism ψ of W such that ψ(pi) = pi

′ and ψ ◦ φi = φi
′. This

can be constructed recursively by extending isotopies of the points and discs to diffeotopies
of W as described in [22, theorem B] and [6, proposition 6·2·4]. Then conjugation with ψ
defines an isomorphism between the group of diffeomorphisms preserving {pi}k

i=1, {φj}m
j=1

and the one preserving {p′
i}k

i=1, {φ′
j}m

j=1.

We are now ready to define the analogue of the moduli space, including the decorations:

Definition 3·3. Given a manifold W with a �-structure ρW , we define the decorated
moduli space of W with k points and m discs to be

M�,k
m (W, ρW ) := Bun�(W, ρW )//Diffk

m(W).

Recall that, if W has non-empty boundary, then Diff(W) consists only of those diffeo-
morphisms fixing a collar of the boundary and the elements of Bun�(W, ρW ) agree with ρW

on ∂W.
We define the forgetful map

F : M�,k
m (W, ρW ) −→M�(W, ρW ) (3·1)

to be the one induced by the identity map on Bun�(W) and the subgroup inclusion
Diffk

m(W) → Diff(W).

3·2. The evaluation map

In this section we define the evaluation map which will be used in the construction of the
decoupling map in Definition 3·9. We also prove Proposition 3·7, which is the key ingredient
for the proof of the Decoupling Theorem A and is the main technical result of the section.

Let W be a decorated manifold with k marked points and m marked discs. Fix throughout
this section N ⊂ W which is the union of a tubular neighbourhood of the marked points and
the interiors of the parametrised discs. This choice of tubular neighbourhood gives, for each
marked point pi, we a preferred frame of TpiW, and if W is oriented, we ask that these frames
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have the same orientation. The decoupling result follows from understanding the difference
between the decorated moduli space of W and the moduli space of W \ N.

For instance, assume k = 0 and m = 1, then there is a group isomorphism

Diff(W1) −→ Diff1(W)

given by extending a diffeomorphism on W1 by the identity on the marked disc. More
generally, if W is a manifold with m embedded discs, the map

em : Diffm(W) −→�m

taking a diffeomorphism φ to the α ∈�m recording the permutation induced on the discs by
φ, is a surjective homomorphism with kernel Diff(Wm), where, as above, Wm is the manifold
obtained from W by removing the interior of the m embedded discs.

Assume now W has k marked points {p1, . . . , pk} and no marked discs. We still get a
homomorphism

Diff(Wk) −→ Diffk(W)

by extending a diffeomorphism on Wk by the identity on the removed neighbourhood of the
points, but this is not an isomorphism, since the elements of Diffk(W) are not required to fix
the entire neighbourhood of the marked points. A way to understand the diffeomorphisms
around these is by looking at the differential map on the chosen frames at the marked points.
So we define a map to the wreath product

ek : Diffk(W) −→�k � GLd

φ �−→ (Dp1φ, . . . , Dpkφ, β),

where β ∈�k is the permutation induced on the marked points by φ. The image of ek

depends on the manifold W.

Definition 3·4. An orientable decorated manifold W with k marked points and m marked
discs is called decorated-chiral if every φ ∈ Diffk

m(W) preserves the orientation.

Remark 3·5. If the manifold W is either decorated by m> 0 discs or ∂W �= ∅ then it is
immediately decorated-chiral. On the other hand, if m = 0, a closed manifold is decorated-
chiral if and only if it is already chiral, independently of the number k of marked points.

It follows from [32, lemmas 2·3 and 2·4] that:

LEMMA 3·6 ([32]). Let W be a compact connected decorated manifold, then:

(a) the map

is a surjective principal bundle, where the group GL†
d is GL+

d if W is decorated-chiral,
and GLd otherwise;

(b) Diff(W \ N) is the homotopy fibre of e.
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The rest of this section consists of proving a generalisation of the above lemma, construct-
ing a fibre sequence of moduli spaces with tangential structures which is the key to the proof
of the decoupling.

PROPOSITION 3·7. Let W be a compact connected decorated manifold and ρW a fixed
�-structure on W, then:

(a) the homomorphism e induces an evaluation map

which is a Serre fibration onto the path component which it hits, where the group GL†
d

is GL+
d if W is decorated-chiral, and GLd otherwise;

(b) let W \ N be equipped with the�-structure ρW\N given by the restriction of ρW. Then

M�(W \ N, ρW\N)

is the homotopy fibre of E over its image.

To prove the Proposition, we will need the following lemma:

LEMMA 3·8. Let W be a connected manifold and S a smooth submanifold, then the
restriction map

rs : Bun�(W) −→ MapGLd
(Fr(TW|s),�)

is a Serre fibration.

Proof. For any i ≥ 0, a lift for the diagram

is equivalent to a GLd-equivariant extension of the following

(3·2)

Since the inclusion S ↪→ W is an embedding, there exists a strong deformation retract

r : Di × I × W −→ (Di × {0} × W) ∪ (Di × I × S).

If i denotes the inclusion of (Di × {0} × W) ∪ (Di × I × S) into Di × I × W, we have an
isomorphism

f : Di × I × Fr(TW)
∼=−→ r∗i∗(Di × I × Fr(TW))

which is the identity on (Di × {0} × Fr(TW)) ∪ (Di × I × Fr(TW|S)).
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Therefore the composite

gives a lift to diagram (3·2). This implies that the map Bun�(W) → MapGLd
(Fr(TW|S),�)

is a Serre fibration.
Proof of Proposition 3·7.

(a) Let P ⊂ W be the union of the k marked points and the centres of the m marked discs.
By Lemma 3·8, the restriction map

rP : Bun�(W, ρW ) −→ MapGLd
(Fr(TW|P),�)

is a Serre fibration. For each marked point, we chose a frame of its tangent space.
Each point in the centre of a marked disc, comes with a preferred frame induced by
the parametrisation of the disc. So every point in P is equipped with a frame of its
tangent space, and this gives us a diffeomorphism Fr(TW|P) ∼= GLd × P. Therefore
the space of GLd-equivariant maps Fr(TW|P) →� can be identified with the space of
continuous maps P →�, which is just�m ×�k. The result then follows by applying
Corollary 2·14 to combine the fibration rP with the homomorphism of Lemma 3·6

Diffk
m(W)

e−−→�m × (�k � GL†
d). (3·3)

We apply Corollary 2·14(a) by taking G2 = Diffk
m(W) and S2 = Bun�(W, ρW ), with

the usual action by precomposition with the differential. On the other hand, we
take G3 =�m × (�k � GL†

d), and S3 =�m ×�k with the following action: the space
�m ×�k can be spit into the m factors corresponding to the marked discs and k fac-
tors corresponding to the marked points. Then we have an action of �m × (�k � GL†

d)
on �m ×�k induced by the actions

Then the fibration Bun�(W, ρW ) →�m ×�k is e-equivariant and therefore, by
Corollary 2·14(a), we have a fibration

Since E�k × (EGLd)k is a model for E(�k � GL†
d), then

(�//GL†
d)k//�k

is a model for �k//(�k � GL†
d), and the result follows.

(b) A description of the fibre of E can be obtained using Corollary 2·14(b) with the short
exact sequence of groups being

ker e −→ Diffk
m(W)

e−→�m × (�k � GL†
d) (3·4)

and the fibre sequence S1 → S2 → S3 being the one associated to the fibration rP of
item (a). The fibre of rP over rP(ρW ) is the subspace of all elements of Bun�(W, ρW )
which restrict to rP(ρW ) over P, which we here denote Bun�P (W, ρW ). This space
carries an action of ker e by precomposition with the differential, and it is simple to
check that this fibre sequence is equivariant with respect to (3·4). Then by Corollary
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2·14(b), the fibre of the evaluation map E is given by

Bun�P (W, ρW )//ker e.

Recall N ⊂ W is the union of a tubular neighbourhood of the marked points and the interi-
ors of the parametrised discs, and P is the space defined in item (a). Applying Lemma 3·8 to
both submanifolds P and N, we obtain two fibrations fitting into the following commutative
diagram

where the right-hand vertical map is induced by the inclusion i : P ↪→ N. Since Fr(TDd)
is isomorphic to GLd × Dd as GLd-bundles, and the spaces GLd × Dd and GLd × {∗} are
homotopy equivalent as GLd-spaces, the map i∗ is a homotopy equivalence. In particular,
this implies that the map from the fibre of rN to Bun�P (W, ρW ) is a homotopy equivalence.

The fibre of rN over rN (ρW ) is by definition the space of all� structures on W which agree
with ρW on N. We claim that this space is homeomorphic to Bun�(W \ N, ρW\N), since the
restriction map rW\N takes the fibre of rN bijectively to Bun�(W \ N, ρW\N) and it has an
inverse given by extending an element by rN (ρW ).

So we have a commutative diagram of principal fibre bundles

where the top horizontal map is a homotopy equivalence by Lemma 3·6 and the middle map
is a homotopy equivalence by the discussion above. Therefore the map

M�(W \ N, ρW\N) −→ Bun�P (W, ρW )//ker e

is also a homotopy equivalence, as required.

3·3. Proof of the decoupling

In this section we prove the Decoupling Theorem. The key inputs are the homo-
topy fibre sequence constructed in Proposition 3·7 and the splitting argument of
Proposition 2·15. We end this section by showing how this implies new decoupling results
for surfaces (Corollary 3·11) and Theorem A (Theorem 3·10), and give examples of
applications.

Definition 3·9. The decoupling map
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is the product of the forgetful map (3·1) and the evaluation map E defined in
Proposition 3·7.

We now restate the decoupling theorem:

THEOREM 3·10. Let W be a smooth connected compact manifold equipped with a
�-structure ρW. If the map

τ : Hi(M�(W \ ( ∐
m+k

Dd), ρ
W\
( ∐

m+k
Dd
))) −→ Hi(M�(W, ρW ))

induces a homology isomorphism in degrees i ≤ α, then for all such i the decoupling map D
induces an isomorphism

Hi(M�,k
m (W, ρW )) ∼= Hi(M�(W, ρW ) ×�m

0 //�m × (�//GL†
d)k

0//�k),

where (−)0 denotes a path component of the image of ρW, and the group GL†
d is GL+

d if W
is orientable and decorated-chiral, and GLd otherwise.

Proof. By Proposition 3·7, E is a fibration. Since M�,k
m (W, ρW ) is connected by definition,

we know that the image of E is precisely the path component

�m
0 //�m × (�//GL†

d)k
0//�k.

Proposition 3·7 implies we have a homotopy fibre sequence

where N ⊂ W is the union of a tubular neighbourhood of the marked points and the interiors
of the parametrized discs. Then N ∼= ∐

mk
Dd and, by assumption, the composition

M�(W \ N, ρW\N) −→M�,k
m (W, ρW )

F−−−→M�(W, ρW )

induces a homology isomorphism in degrees i ≤ α. Therefore, by Proposition 2·15, the
decoupling map D induces a homology isomorphism in the same range of degrees.

Using Theorem 3·10 and the homology stability results for surfaces recalled in
Section 2·3, we obtain the following new decoupling results for surfaces.

COROLLARY 3·11. Let Sg,b be an orientable surface of genus g and b boundary compo-
nents, and let Ng,b be the non-orientable surface #gRP∞ \∐

b
D2. Then for the following

tangential structures, we have the decoupling results:

(i) framings: for all 6i ≤ 2g − 8

Hi(Mfr,k
m (Sg,b, ρ)) ∼= Hi

(
Mfr(Sg,b, ρ) × SO(2)m//�m × B�k

)
;

(ii) spin-structures: for all 4i ≤ g − 2

Hi(MSpin,k
m (Sg,b, ρ)) ∼= Hi

(
MSpin(Sg,b, ρ) × B(�m �Z/2) × B(�k � Spin(2))

)
;
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(iii) maps to a simply-connected background space X: for all 3i ≤ 2g

Hi(MX,k
m (Sg,b, ρ)) ∼= Hi

(
MX(Sg,b, ρ) × Xm//�m × Xk//(�k � SO(2))

)
;

(iv) Spinr-structures: for all 6i ≤ 2g − 8

Hi(MSpinr,k
m (Sg,b, ρ)) ∼= Hi

(
MSpinr

(Sg,b, ρ) × B(�m �Z/r) × B(�k � Spinr(2))
)

;

(v) Pin+-structures: for all 4i ≤ g − 6

Hi(MPin+,k
m (Ng,b, ρ)) ∼= Hi

(
MPin+

(Ng,b, ρ) × B(�m �Z/2) × B(�k � Pin+(2))
)

;

(vi) Pin−-structures: for all 5i ≤ g − 8

Hi(MPin−,k
m (Ng,b, ρ)) ∼= Hi

(
MPin−

(Ng,b, ρ) × B(�m �Z/2) × B(�k � Pin−(2))
)

.

Proof. The proof of all the results follows from applying Theorem 3·10 and identifying
the spaces�0 and (�//GL†

d)0 for each tangential structure considered. We show this for item
(ii) about surfaces with spin structures and leave the proof of the other items, which can be
obtain by the same approach, to the reader.

Recall from Section 2·3 that the moduli space of surfaces with spin structures satisfies the
necessary homology stability condition as shown in [1, 12, 28]. With the most recent sta-
bility range, we know we have homology isomorphisms in degrees ≤ (g − 2)/4. Therefore
Theorem 3·10 applies. We end by identifying the terms �0 and (�//GL†

d)0. From Example
2·4, we know that �Spin is weakly equivalent to {±1} × BZ/2, and therefore (�Spin)0 is
weakly equivalent to BZ/2. On the other hand, �Spin//GL+

2 is the disjoint union of two
copies of BSpin(2) and therefore

(�Spin//GL+
2 )k

0//�k � BSpin(2)k//�k � B(�k � Spin(2)).

We can also apply Theorem 3·10 in higher even dimensions, where the homological sta-
bility condition was shown to hold in many cases, as recalled in Theorem 2·10. Combining
these results, we obtain the following corollary, a more general version of Theorem A:

COROLLARY 3·12. Assume d = 2n ≥ 6, and � is such that �//GLd is simply-connected.
Let ρW be an n-connected�-structure on W and let g = g(W, ρW ). Then for all i ≤ (g − 4)/3
we have an isomorphism

Hi(M�,k
m (W, ρW )) ∼= Hi(M�(W, ρW ) ×�m

0 //�m × (�//GL†
2n)k

0//�k),

where GL†
2n equals to GL+

2n if W is decorated-chiral, and is GL2n otherwise.

Proof. Since the map ρW is n-connected and the pair (W, W \ ( ∐
m+k

Dd
)
) is (2n − 1)-

connected, then the restriction ρ
W\
( ∐

m+k
Dd
) is still an n-connected �-structure.

The map τ : Hi(M�(W \ ( ∐
m+k

Dd
)
, ρ

W\
( ∐

m+k
Dd
))) → Hi(M�(W, ρW )) in the hypothesis of

the decoupling theorem, is induced by attaching
∐

m+k
D2n along the m + k boundary sphere
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components of W \ ( ∐
m+k

Dd
)
. Since

(M, P) = (
∐

m+k
D2n, ∂

∐
m+k

D2n)

is (n − 1)-connected, the hypotheses of Theorem 2·10 are satisfied, which implies that τ
induces a homology isomorphism in degrees 3i ≤ g − 4. Applying Theorem 3·10, the result
follows.

Example 3·13. Let Wg,1 = (Sn × Sn)#D2n. Since TWg,1 is trivialisable, we know Wg,1 admits
a framing ρWg,1 : Fr(TWg,1) → GL2n. Since Wg,1 is (n − 1)-connected, ρWg,1 is n-connected.
Denoting by g the stable genus g(Wg,1, ρWg,1 ), then by Corollary 3·12, for all i ≤ g − 4/3,
the group Hi(Mfr,k

m (Wg,1, ρWg,1 )) is isomorphic to

Hi

(
Mfr(Wg,1, ρWg,1 ) × SO(2n)m//�m × B�k

)
.

Example 3·14. Let Vd ⊂CP4 be a smooth hypersurface determined by a homogeneous com-
plex polynomial of degree d. This is an orientable chiral 6-dimensional manifold whose
diffeomorphism type depends only on the degree d. In [9, section 5·3] it is shown that, if d is
even, there exists a 3-connected Spinc-structure ρVd on Vd. They also compute an expression
for the stable genus g(Vd, ρVd ) in terms of d.

Applying the procedure of Example 2·4 to the fibre sequence

we get that �Spinc � {±1} × BU(1), and �Spinc
//GL+

6 � {±1} × BSpinc(6). Therefore, by

Corollary 3·12, for all i ≤ (d4 − 5d3 + 10d2 − 10d + 4)/4, the group Hi(MSpinc,k
m (Vd, ρVd ))

is isomorphic to

Hi

(
MSpinc

(Vd, ρVd ) × B(�m � U(1)) × B(�k � Spinc(6))
)

.

The conditions on the tangential structure in Theorem 2·10 are quite restrictive, for
instance the trivial tangential structure �∗ does not satisfy the hypothesis because BGLd

is not simply connected for any d. Moreover, the condition that we start with an n-connected
�-structure ρW excludes many of the cases we are interested in. For instance, it implies that
the manifold Wg,1 with an orientation does not satisfy the hypothesis of Theorem 2·10. In
Section 5, we prove a generalisation of Theorem A for high dimensional manifolds with any
tangential structure.

4. Decoupling submanifolds

In Section 3, we proved a decoupling result for the decorated moduli space of a manifold
with marked points and discs, following the works of [2, 5, 10]. Recently, in [24–26] Palmer
has studied manifolds equipped with more general decorations, allowed to be any embedded
closed manifold. In this section, we show that there is a decoupling result for these gener-
alised decorations. As a specific example, we focus on the case where the decorations are
unlinked circles, which have also been closely studied in dimension 3 by Kupers in [20].

https://doi.org/10.1017/S0305004122000202 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004122000202


184 LUCIANA BASUALDO BONATTO

4·1. The L-decorated moduli space

In this section, we generalise the definition of a decorated manifold to allow more general
submanifolds as decorations. We also define the forgetful map which will be used in the
definition of the decoupling map (Definition 4·7). Throughout, let W be a smooth connected
compact d-dimensional manifold.

Definition 4·1. A L-decorated manifold is a pair (W, L) of a manifold W together with a
closed embedded submanifold L ⊂ W.

Given a L-decorated manifold (W, L), we define the decorated diffeomorphism group
DiffL(W) to be the subgroup of Diff(W) of the diffeomorphisms ψ such that

ψ(L) = L.

In other words, we are looking at the diffeomorphisms preserving the marked submani-
fold, but not necessarily pointwise.

Definition 4·2. Given a closed manifold W and a �-structure ρW on W, we define the
L-decorated moduli space of W to be

M�
L (W, ρW ) := Bun�(W, ρW )//DiffL(W).

The inclusion of groups DiffL(W) → Diff(W) induces a map

FL : M�
L (W, ρW ) −→M�(WρW ) (4·1)

which we call the forgetful map.

4·2. The evaluation map EL

In this section we define the evaluation map which will be used in the construction of the
decoupling map in Definition 4·7. We also prove Proposition 4·6, which is the key ingredient
for the proof of the Decoupling Theorem for submanifolds (Theorem 4·8), and Lemma 4·3,
which is the main technical result of the section.

Let (W, L) be an L-decorated manifold and let νL := (TW|L)/TL be the normal bundle
of L in W. Fix N a tubular neighbourhood of the decoration identified as the image of an
embedding � : νL → W. The theorem for decoupling submanifolds relies on understanding
the difference between the L-decorated moduli space of W and the moduli space of W \ N.

We start by constructing an equivariant fibre sequence relating the decorated diffeomor-
phism groups DiffL(W) and Diff(W \ N). Recall that Diff(W \ N) consists only of those
diffeomorphisms fixing a collar neighbourhood of the boundary of W \ N, including the
newly formed boundary obtained by removing N. Extending a diffeomorphism by the
identity on N, gives us a homomorphism

Diff(W \ N) −→ DiffL(W). (4·2)

Since any diffeomorphism φ ∈ DiffL(W) fixes L, the differential of φ induces an isomor-
phism of the tangent bundle TW|L fixing TL (not necessarily pointwise). This gives a map:

eL : DiffL(W) −→ Iso(TW|L, TL) (4·3)

φ �−→ Dφ|L,
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where Dφ|L denotes the isomorphism of TW|L induced by the differential of φ, and
Iso(TW|L, TL) denotes the group of bundle isomorphisms of TW|L fitting into the following
diagram:

LEMMA 4·3. Let (W, L) be a compact connected L-decorated manifold, then

(a) the homomorphism

described in (4·3) is a principal bundle;

(b) the map

described in (4·2) is a homotopy equivalence.

Proof. Throughout this proof, we will use a generalisation of Palais’ theorem in [23]
proved by Lima in [21], which gives us a principal bundle

Let EmbL(N, W) be the subspace of embeddings f : N ↪→ W such that the core of N is
taken to our marked submanifold L in W. Then taking the pullback along the inclusion
EmbL(N, W) ↪→ Emb(N, W) gives as the principal bundle:

(4·4)

Write N as the image of an embedding exp ◦� : νL ↪→ W, where� : νL → TW|L. Consider
the forgetful map

d : EmbL(N, W) → Iso(TW|L, TL)

taking an embedding to the map induced on the normal bundle of the zero section L ⊂ N.
Then eL = d ◦ r. We will show d is a fibre bundle, which implies eL is a principal bundle. It
is enough to exhibit a local section of d at a neighbourhood of the identity (for details see
[30, part I, section 7·4]).

Given f : TW|L → TW|L in Iso(TW|L, TL) we can define

Since the assignment f �→ sf is continuous and Emb(νL, W) is an open subset of C∞(νL, W),
then the space of maps f ∈ Iso(TWL, TL) such that sf is an embedding, is an open
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neighbourhood U of the identity. Therefore, the map

U −→ Emb(νL, W)

f �−→ sf

is a local section for d at the identity.
Part (b): The map i fits into the following commutative diagram of fibre sequences:

The fiber of the forgetful map d over the identity is simply the space of tubular neigh-
bourhoods of L in W, which is contractible. This implies d is a homotopy equivalence and
therefore so is i.

The image of the homomorphism eL of Lemma 4·3 is by definition the collection of
isomorphisms of tangent bundle of L in W, which can be achieved by a diffeomorphism
of the whole manifold W fixing L. In the next section we will look closely at the case where
L is a collection of unlinked circles and determine Im eL. In the general case, this image is
very much dependent of L, W and the chosen embedding.

Definition 4·4. For any subgroup G ⊂ Im eL, we define DiffG(W) to be the subgroup
e−1

L (G). Given a closed manifold W and a �-structure ρW on W, we define

M�
G (W, ρW ) := Bun�(W, ρW )//DiffG(W).

Note that taking G = Im eL, one recovers precisely the definition of M�
L (W, ρW ).

Notation 4.5. We denote the kernel of eL by Diff(W, TW|L). Note that these are precisely the
elements of DiffL(W) which fix the submanifold L pointwise and whose differential Dpφ is
the identity on every point of the submanifold L.

We now use the map eL and Lemma 4·3 to construct the evaluation map:

PROPOSITION 4·6. Let W be a compact connected manifold and ρW a fixed �-structure on
W, then:

(a) the homomorphism eL, induces the evaluation map

which is a Serre fibration onto the path component which it hits;

(b) let W \ N be equipped with the�-structure ρW\N given by the restriction of ρW. Then

M�(W \ N, ρW\N)

is the homotopy fibre of EL over its image.

Proof. The proof follows the same strategy as the one for the proof of Proposition 3·7. For
simplicity, we only indicate the places where the two arguments differ and leave the details
for the reader.
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(a) By Lemma 3·8, the restriction map

rL : Bun�(W, ρW ) −→ MapGLd
(Fr(TW|L),�) (4·5)

is a Serre fibration. Then the result follows by applying Corollary 2·14 to combine the
fibration rL with the homomorphism of eL : DiffG(W) → G of Lemma 4·3. We apply
Corollary 2·14(a) by taking G2 = DiffG(W) and S2 = Bun�(W, ρW ), with the usual
action by precomposition with the differential. On the other hand, we take G3 = G,
and S3 = MapGLd

(Fr(TW|L),�) with the action induced by

Then the fibration Bun�(W, ρW ) → MapGLd
(Fr(TW|L),�) is eL-equivariant and

therefore, by Corollary 2·14(a), we have a fibration

onto the path components which it hits.

(b) A description of the fibre of EL can be obtained using Corollary 2·14(a) with the short
exact sequence of groups being

ker eL −→ DiffG(W)
eL−→ G

and the fibre sequence S1 → S2 → S3 being the one associated to the fibration rL in
(4·5). Using the same arguments of the proof of Proposition 3·7(b) replacing P by L
and e by eL, we get a map from M�(W \ N, ρW\N) to the fibre of EL and show this is
a homotopy equivalence.

Proposition 3·7 can be recovered as a special case of Proposition 4·6: take L to be
m + k points, which are the k marked points and the centres of the m marked discs.
Then TL is a zero-dimensional bundle and TW|L is a trivial bundle of dimension d.
Taking G ⊂ Iso(TW|L, TL) ∼= Iso(

∐
m+k

Rd) to be the subgroup (�k � GLd) ×�m, we recover

Proposition 3·7. Note that an element of DiffG(W) can permute the k marked points with no
restrictions on their tangent bundle, while the m points are allowed to be permuted, but the
map induced on their tangent spaces has to be the identity.

4·3. Decoupling L-decorations

In this section we prove the decoupling result for submanifold decorations. The key inputs
are the homotopy fibre sequence constructed in Proposition 4·6 and the splitting argument
of Proposition 2·15.

Definition 4·7. The decoupling map

is the product of the forgetful map (4·1) and the evaluation map EL defined in
Proposition 4·6.

We now state the decoupling theorem:

THEOREM 4·8. Let (W, L) be an L-decorated manifold, with W a connected compact
manifold equipped with a �-structure ρW, and G ⊂ Im eL. If τ : Hi(M�(W \ N, ρW\N)) →
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Hi(M�(W, ρW )) is an isomorphism in degrees i ≤ α, then for all such i the decoupling map
DL induces an isomorphism

Hi(M�
G (W, ρW )) ∼= Hi(M�(W, ρW ) × (MapGLd

(Fr(TW|L),�)//G)0),

where (−)0 denotes a path component of EL(ρW ).

Proof. By Proposition 3·7, EL is a fibration onto the path-components which it hits, there-
fore the restriction of EL to the subspace M�

G (W, ρW ) is a fibration onto the path-component
of MapGLd

(Fr(TW|L),�)//G which it hits. We denote it

(MapGLd
(Fr(TW|L),�)//G)0.

Therefore, we have a homotopy fibre sequence

By assumption, the composition

M�(W \ N, ρW\N) →M�
G (W, ρW )

FL−→M�(W, ρW )

induces a homology isomorphism in degrees i ≤ α. Therefore, by Proposition 2·15, the
decoupling map DL induces a homology isomorphism in the same range of degrees.

We give an application of this theorem for high even-dimensional manifolds using
[7, corollary 1·7], which we recalled in Theorem 2·10.

COROLLARY 4·9. Let (W, L) be an L-decorated manifold, with W a compact simply-
connected manifold of dimension 2n ≥ 6, and L of dimension less than n. Let ρW be
an n-connected �-structure on W, and denote by g the stable genus of W. Then for all
i ≤ (g − 4)/3 and G ⊂ Im eL, the decoupling map DL induces an isomorphism

Hi(M�
G (W, ρW )) ∼= Hi

(M�(W, ρW ) × (MapGLd
(Fr(TW|L),�)//G)0

)
,

where (−)0 is the path component of the image of ρW.

Proof. We know that N is homotopy equivalent to L, and that the boundary of N is a
sphere bundle over L with fibre Sc−1, where c is the codimension of L and W. The dimension
assumption on L implies that c ≤ n + 1, and therefore the pair (N, ∂N) is (n − 1)-connected.
Moreover, by Lemma 2·9, the stable genus of W \ N is equal to g. Hence we are under the
hypothesis of Theorem 2·10 and

τ : Hi(M�(W \ N, ρW\N)) −→ Hi(M�(W, ρW ))

is an isomorphism for all i ≤ (g − 4)/3. By Theorem 4·8, the result follows.

4·4. Decoupling unlinked circles

In this section, we apply Theorem 4·8 to the specific case where L is a collection of
k unlinked circles. The main result of this part is Corollary 4·20 and it is obtain from
Lemma 4·15, which is the key technical result of this section. Throughout this section, we
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assume W to be a compact simply-connected manifold of dimension 2n ≥ 6, to satisfy the
hypothesis of Corollary 4·9.

Definition 4·10. An embedding f :
∐
k
S1 → W \ ∂W is said to be unlinked if it extends to

an embedding f :
∐
k
D2 → W \ ∂W. If W is oriented and 2-dimensional we also assume that

the embedding f is orientation preserving.

Notation 4.11. Throughout this section, we let kS1 denote the space
∐
k
S1, and kD2 denote the

space
∐
k
D2.

In this section, we will repeatedly use the following result, which follows from [15,
chapter 8, theorems 3·1, 3·2] and [6, proposition 6·2·4].

LEMMA 4·12. Let W be a connected d-manifold and and f , g : kD2 ↪→ W embeddings of
k disjoint discs into W. If d = 2 and W is oriented, assume also that f and g both preserve,
or both reverse, orientation. Then there is a diffeomorphism φ of W which is diffeotopic to
the identity, such that φ ◦ f = g.

An immediate consequence of the result above is the following

COROLLARY 4·13. The isomorphism type of Difff (kS1)(W) does not depend on the choice

of the unlinked embedding f : kS1 ↪→ W.

From here on, we denote by DiffkS1(W) the isomorphism type of Difff (kS1)(W) for any
embedding f : kS1 ↪→ W, which is well-defined by Corollary 4·13.

In the case W is a surface decorated by k unlinked circles, then DiffkS1(W) is homo-
topy equivalent to Diffk(W) the decorated diffeomorphism of W with k embedded discs
(see Definition 3·1). This follows directly from Smale’s theorem on the contractibility of
Diff(D2), the diffeomorphisms of the disc fixing the boundary. Since we already proved a
decoupling result for surfaces decorated by points (see Theorem 3·10 and Corollary 3·11)
we will restrict our attention to higher dimensional surfaces.

We want to use Theorem 4·8 for the case where the submanifold L is an collection of
unlinked circles, but instead of choosing a subgroup of G, we will take G = Im ekS1 , the
image of the evaluation map defined in Section 4·2. We start by analysing what this image
is. Fix an unlinked embedding of kS1 in W (we will refer to it as kS1 ⊂ W). Since W is
orientable, fixing a Riemmannian metric we get an explicit isomorphism

TW|kS1 ∼= TkS1 ⊕ νkS1 .

LEMMA 4·14. There is a quotient map q : Iso(TW|kS1 , TkS1) → Iso(νkS1) which is a
homomorphism, a Serre fibration and a homotopy equivalence.

Proof. Any isomorphism f ∈ Iso(TW|kS1 , TkS1) satisfies f (TkS1) = TkS1. Therefore, it

induces a map on the quotient bundle [f ]:TW|kS1/TkS1 = νkS1 → νkS1 . Using the inclusion
νkS1 → TW|kS1 induced by the choice of a Riemannian metric, it is simple to check that this
map satisfies the homotopy lifting property of Serre fibrations. Moreover, using the identifi-
cation TW|kS1 ∼= TkS1 ⊕ νkS1 , we can verify easily that the fibre of q over the identity is the
space of sections of the vector bundle Hom(νkS1 , TkS1) → kS1 which is contractible.
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Fig. 2. A non trivial isomorphism of the normal bundle of S1 in a 3-dimensional manifold.

Since the normal bundle of the marked circles is also orientable and any orientable vector
bundle over a circle is trivial, we know there is a bundle isomorphism νkS1 ∼= kS1 ×Rd−1

giving a short exact sequence

where f takes an isomorphism of νkS1 to the underlying diffeomorphism of the base kS1. The
map Diff(kS1) → Iso(νkS1) defined by taking φ to the isomorphism φ × Id is a section for
f , and therefore

Iso(νkS1) ∼= C∞(S1, GLd−1)k � Diff(kS1). (4·6)

Fixing such isomorphism, the evaluation map (4·3) together with the quotient map of
Lemma 4·14 induce a homomorphism

We want to determine the image of the map ekS1 , which is equivalent to identifying
the isomorphisms of the normal bundle of the circles that can actually be realised by a
diffeomorphism of W.

The key aspect we need to understand is when there exists a diffeomorphism of W that
induces a loop with non-trivial homotopy class in π1(GLd−1) as depicted in Figure 2. It is
clear that determining this image does not only depend on the orientability of W, as it was
for the case of points and discs, but it will also depend on the spinnability of W.

LEMMA 4·15. Let W be a simply-connected manifold of dimension d ≥ 5. Then the image
of ekS1 is

C∞� (S1, GLd−1)k � Diff(kS1),

where C∞� (S1, −) is equal to the subspace C∞
null(S

1, −) of nullhomotopic loops if W is
spinnable, and is equal to C∞(S1, −) otherwise.

Here we are not thinking of the spaces as pointed, so we consider a nullhomotopic loop
to be one that is homotopic to a constant loop, not necessarily at a base point.

Proof. Fix once and for all an embedding f : kD2 ↪→ W, and consider f (∂kD2) to be the kS1

decoration in W. Any diffeomorphism φ ∈ Diff+(kS1) can be extended to φ ∈ Diff+(kD2)
[15, chapter 8, theorem 3·3], so it is sufficient to find a diffeomorphism ψ of W such that
ψ ◦ f = f ◦ φ. But this can always be done, by Lemma 4·12. Hence any diffeomorphism of
Diff(kS1) can be realised by an element in DiffkS1(W). Without loss of generality, we assume
from now on that k = 1.

Since eS1 is surjective on path components, we know that C∞
null(S

1, GL+
d−1) � Diff(S1) is

contained in the image of eS1 because it is the path component of eS1(Id).
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By Lemma 4·12 there exists an orientation preserving diffeomorphism φc ∈ DiffS1(W)
that restricts to complex conjugation along the marked circles. This implies that φc induces
an orientation reversing diffeomorphism on the normal bundle of S1. Since the marked circle
bounds an embedded 2-disc, we can define such a φc by taking an embedded disc Dd in W
containing the marked circle in its equator, and applying a rotation that flips the circle. By the
Isotopy Extension Theorem, such a rotation can be extended to an isotopy in W. Then eS1(φc)
is contained in C∞

null(S
1, GLd−1) � Diff(S1). Since eS1 is surjective on path-components, we

conclude that

C∞
null(S

1, GLd−1) � Diff(S1) ⊂ Im eS1 .

We now show that a smooth curve γ /∈ C∞
null(S

1, GLd−1) is in the image of eS1 if, and only
if, W is not spin.

First, assume W is spin, and choose φ ∈ DiffS1(W). We know that any diffeomorphism
of the circle is isotopic either to the identity or to complex conjugation, so without loss of
generality, we can assume that φ restricts to one of these two maps on the marked circle. Start
by assuming that φ restricts to the identity on the marked circle. Then using the embedding
f : D2 ↪→ W bounding the marked circle, we can define a continuous function g : S2 → W by
sending the bottom hemisphere D2− to f (D2), and the top hemisphere D2+ to φ ◦ f (D2). Since
we assume W to be spin, we know that w2(g∗(TW)) = g∗(w2(TW)) = 0. Since d ≥ 5, the
class w2 detects the only obstruction to lifting to ESO(d) the map S2 → BSO(d) classifying
the bundle g∗(TW). Since w2(g∗(TW)) = 0, this implies that g∗(TW) is a trivial bundle, and
in particular, its clutching function S1 → GL+

d is nullhomotopic. But note that Dφ along
the marked circle is a clutching function of g∗(TW), and therefore eS1 (φ) is contained in
C∞

null(S
1, GL+

d−1) � Diff(S1).
On the other hand, if φ restricts to complex conjugation on the marked circle, then com-

posing with the map φc constructed above, we get a map restricting to the identity. By the
same arguments as above, we can conclude that eS1(φ) ∈ C∞

null(S
1, GLd−1) � Diff(S1).

Now assume W is not spin. Since W is simply-connected, by Hurewicz theorem, all its
second homology classes are represented by maps S2 → W and by [31, theorem II.27] we
can always pick a representative given by an embedding. Since W is not spin, there exists an
embedding h : S2 → W such that w2(h∗(TW)) �= 0, and since d ≥ 5, we can pick one such h
not intersecting f (D2) by the Transversality Theorem (see [19, corollary 12·2.7]). By Lemma
4·12, we know there exists a diffeomorphism φh of W taking φh ◦ h|D2− to h|D2+ , and which

restricts to the identity on the image of f (D2). By definition, Dφh|h(S1) is a clutching function
for h∗(TW) and therefore is not nullhomotopic as h∗(TW) is non-trivial.

Let ψ be a diffeomorphism taking f (D2) to h|D2− . Then ψ−1 ◦ φh ◦ψ is a diffeomorphism

of W whose image through eS1 is not in C∞
null(S

1, GL+
d−1) � Diff(S1). Since eS1 is surjective

on path components, we conclude that the image of eS1 contains C∞(S1, GL+
d−1) � Diff(S1).

Analogously, looking at the composition ψ−1 ◦ φf ◦ψ ◦ φc, we conclude that the image of
eS1 is C∞(S1, GLd−1) � Diff(S1).

Remark 4·16. Lemma 4·15 can be generalised for dimension 4 assuming the manifold is
spin, using exactly the same argument as above.

Now that we have analysed the image of ekS1 we will apply Theorem 4·8. It will be
convenient to have a specific geometric model for the image of the evaluation map EkS1
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defined in Proposition 4·6, which appears in Theorem 4·8. As discussed in Section 1·1,
the space Emb(Sg,b, R∞) is a model for EDiff(Sg,b), and therefore it is also a model for
EDiffkS1(Sg,b). With this model, the elements of BDiffkS1(Sg,b) are oriented submanifolds of
R∞ diffeomorphic to Sg,b with k marked unlinked circles. With this model, the forgetful
map

FkS1 : BDiffkS1(Sg,b) −→ BDiff(Sg,b) (4·7)

simply forgets the marked circles.
To interpret the evaluation map EkS1 in this model, we recall a definition that will also be

useful for the interpretation of the evaluation map for the moduli space in higher dimensions
with general tangential structures.

Definition 4·17. Let W be a manifold and X be a space with an action of Diff(S1), the
space of k-unlinked circles in W with labels in X is defined to be

CkS1(W;X) := Embunl(kS1, W) × Xk/Diff(kS1),

where Embunl denotes the space of unlinked embeddings.

Note that if W is a simply connected manifold of dimension d ≥ 5, all embeddings of kS1

into W are unlinked.
A model for BDiff+(kS1) � BSO(2)k is the configuration space CkS1(R∞;{±1}) of k cir-

cles in R∞ with labels in {±1}, and the evaluation map EkS1 simply takes an oriented
decorated submanifold S in R∞, to the configurations given by the marked k oriented circles.
Hence, using the homotopy equivalence BDiffkS1(Sg,b) � BDiffk(Sg,b), we get the following:

COROLLARY 4·18. Let Sg,b be the oriented surface of genus g and b ≥ 1 boundary
components. Then for all 3i ≤ 2g

Hi(BDiffkS1 (Sg,b)) ∼= Hi(BDiff(Sg,b) × CkS1(R∞;{±1})).
Analogous results for other tangential structures can be obtained by the same arguments.

We now look at how the result above generalises for higher dimensions.

Notation 4.19. We let L( − ) := Map(S1, −) denote the free loop space.

COROLLARY 4·20. Let W be a compact simply-connected manifold of dimension 2n ≥ 6,
ρW an n-connected �-structure on W, and denote by g the stable genus of W. Then for all
i ≤ g−4

3 , the decoupling map DkS1 induces an isomorphism

Hi(M�
kS1(W, ρW )) ∼= Hi

(M�(W, ρW ) × CkS1(R∞;(L(�)//L�(GLd−1))0)
)

,

where ( − )0 is the path component of the image of ρW, L�( − ) is equal to the subspace
Lnull( − ) of nullhomotopic loops if W is spinnable, and is equal to L( − ) otherwise.

Proof. The result follows from applying Corollary 4·9, taking G = Im ekS1 � Im ekS1 ,
which was identified in Lemma 4·15. Moreover, since TkS1 is orientable, it is a trivial bundle
and therefore the space MapGLd

(Fr(TkS1),�) is equivalent to the space of continuous maps
kS1 →�, which is precisely L(�)k.
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Then, by Corollary 4·9, for all i ≤ (g − 4)/3, the decoupling map DkS1 induces an
isomorphism

Hi(M�
kS1(W, ρW )) ∼= Hi

(
M�(W, ρW ) × (L(�)k//C∞� (S1, GLd−1)k � Diff(kS1))0

)
.

Moreover, the space (L(�)k//C∞� (S1, GLd−1)k � Diff(kS1))0 is homotopy equivalent to

(L(�)//C∞� (S1, GLd−1))k//Diff(kS1))0. (4·8)

Taking Emb(kS1, R∞) as the model for EDiff(kS1), we get a model for the space in
4.8, which is precisely the configuration space of k circles in R∞ with labels in (L(�)//
C∞� (S1, GLd−1))0, as required. Since the space of smooth loops is homotopy equivalent to
the free loop space, the result follows.

5. Decoupling for general tangential structures in higher dimensions

In this section we show how the decoupling results for higher dimensional manifolds
(Corollaries 3·12 and 4·9) can be generalised for all tangential structures, based on the tech-
niques used by Galatius and Randal–Williams in [7, section 9]. We start by showing in
Example 5·1 that the connectivity hypothesis for the decoupling result as stated in Corollary
3·12 is essential, by showing a case where the result does not hold in its absence. We then
recall the tools developed in [7] and use them to prove Proposition 5·3, a generalisation of
Corollary 3·12. We use this result to conclude Theorem 2 (Theorem 5·8) explicitly comput-
ing the stable cohomology of BDiff+,k

m (Wg,1) with rational coefficients, which is the main
technical result of this section.

Recall that the decoupling theorems (3·10 and 4·8) relied on the hypothesis that
the map

M�(W \ N, ρW\N) −→M�(W, ρW )

induces a homology isomorphism in a range. In even dimensions at least 6, this assumption
was shown to hold in several cases in [8, corollary 1·7] as recalled in Theorem 2·10, but
only when the �-structure ρW : Fr(TW) →� is n-connected. One could hope that for any
manifold W and any �-structure ρW , the decoupling map would still induce a homology
isomorphism, but this is not the case, as it is shown by the following example.

Example 5·1. Consider the manifold Wg = #gSn × Sn with one embedded disc as a decora-
tion. Let Wg,1 = #g(Sn × Sn) \ int(D2n) and recall there is an isomorphism

Diff+(Wg,1)
∼=−→ Diff+1 (Wg)

given by extending the diffeomorphism of Wg,1 by the identity on the marked disc (see
Lemma 3·6). Therefore, the decorated moduli space Mor

1 (Wg, ρW ) � BDiff+1 (Wg) is weakly
equivalent to Mor(Wg,1, ρW ) � BDiff+(Wg,1). In this case, the decoupling map

does not induce a homology isomorphism on integral coefficients in a stable range as was
shown in [9, sections 5·1 and 5·2]. This implies that the decoupling as stated in Corollary
3·12 is not true for general tangential structures.
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To generalise the decoupling for all tangential structures we use the techniques and results
developed in [8, section 9], which we briefly recall. Let W be a 2n-dimensional mani-
fold, 2n ≥ 6, with possibly non-empty boundary, and λW a �-structure on W. If the map
λW : Fr(TW) →� is not n-connected we will use an “intermediate” tangential structure �
which is better behaved. Precisely, let the following be the Moore–Postnikov n-stage of λW ,

λW : Fr(TW)
ρW−−→�

u−−→�. (5·1)

That is: � is a GLd-space, u is an n-co-connected (ie. the induced map on the ith homotopy
groups is an isomorphism for i> n and a monomorphism for i = n) equivariant fibration
and ρW an n-connected equivariant cofibration. Such a factorisation always exists and it is
unique up to homotopy equivalence.

Denote by ρ∂ and λ∂ the restriction of ρW and λW respectively to Fr(TW)|∂W . Any
�-structure on W induces a �-structure by postcomposition with u, giving us a map

Bun�(W, ρW ) −→ Bun�(W, λW ).

We now define a topological monoid that is crucial to the comparison between the moduli
spaces M�(W, λW ) and M�(W, ρW ).

Definition 5·2. If W is a closed manifold, denote by hAut(u) the group-like topological
monoid consisting of GLd-equivariant weak equivalences h :�→� over u, ie. such that
u ◦ h = u.

If W has non-empty boundary, let ρ∂ be the restriction of ρW to ∂W. Denote by hAut(u, ρ∂ )
the group-like topological monoid consisting of equivariant weak equivalences h :�→�

over u and under ρ∂ , ie. such that u ◦ h = u and ρ∂ = h ◦ ρ∂ .
The monoid hAut(u, ρ∂ ) acts on the space of�-structures on W by post-composition. The

crucial result we will use [7, lemma 9·2] states that the map induced by postcomposition
with u

Bun�ρ∂ (W)//hAut(u, ρ∂ )
�−−→ Bun�λ∂ (W) (5·2)

is a homotopy equivalence onto the path components which it hits. In particular, this implies
analogous homotopy equivalences between the moduli spaces with � and � structures. We
denote by hAut(u, ρ∂ )[W,ρW ] the components of hAut(u, ρ∂ ) that map Bun�(W, ρW ) to itself.

With these tools we can prove the following result, which should be interpreted as a
generalisation of Corollary 3·12 for an arbitrary tangential structure �.

PROPOSITION 5·3. Let W be a manifold of dimension d = 2n ≥ 6, λW a �-structure on
W and g = g(W, λW ). Let �, ρW, u, and hAut(u, ρ∂ )[W,ρW ] be as above. Then for all i ≤
(g − 4)/3, the group Hi(M�,k

m (W, ρW )) is isomorphic to the ith homology group of(
M�(W, ρW ) ×�m

0 //�m × (�//GL†
2n)k

0//�k

)
//hAut(u, ρ∂ )[W,ρW ], (5·3)

where GL†
2n equals to GL+

2n if W is decorated-chiral, and is GL2n otherwise. The Borel
construction is taken with respect to the diagonal action of hAut(u, ρ∂ )[W,ρW ] on the product.
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Proof. Since the map (5·2) is a homotopy equivalence on path components, the map
induced on the Borel constructions with the group Diffk

m(W) is also a homotopy equivalence.
This gives that

M�,k
m (W, ρW ) �M�,k

m (W, ρW )//hAut(u, ρ∂ ).

Since ρW is by assumption a n-connected �-structure, we can apply Corollary 3·12. We
finish the proof with the fact that the stable genus g(W, ρW ) is equal to g(W, λW ) as shown
in [7, lemma 9·4].

Remark 5·4. The proof above can be easily adapted to provide a generalisation for the result
of decoupling submanifolds (Corollary 4·9). We omit this for simplicity.

We can specialise this result to the manifolds of the type Wg,1 = #gSn × Sn \ D2n. Besides
being crucial examples in higher dimensions, these manifolds are particularly amenable to
the decoupling result because of the following:

LEMMA 5·5 ([9], lemma 4·15). If (W, ∂W) is c-connected for some c ≤ n − 1, then
the monoid hAut(u, ρ∂ ) is a non-empty (n − c − 2)-type. In particular, it is contractible if
(W, ∂W) is (n − 1)-connected.

The above lemma, together with (5·2) and Proposition 5·3 gives the following:

COROLLARY 5·6. Consider Wg,1 = #gSn × Sn \ D2n, for n ≥ 3, equipped with a
�-structure λW. Let g denote the stable genus g(W, λW ). For all i ≤ (g − 4)/3, the group
Hi(M�,k

m (Wg,1, λWg,1 )) is isomorphic to

Hi(M�(Wg,1, λW ) ×�m
0 //�m × (�//GL+

2n)k
0//�k),

where (−)0 denotes the path-component of E(ρW ), for ρW as in (5·1).

Note that in the above corollary, the decorations on M�,k
m (W) get decoupled into compo-

nents depending on�, the tangential structure that appeared in the Moore–Postnikov n-stage
factorisation of λW . This is quite different than what was obtained in Corollary 3·12 where
the decoupled components corresponding to the marked points and discs depended on the
original chosen tangential structure �.

We finish this section by using the above results to get explicit computations on the
stable cohomology of BDiff+,k

m (Wg,1) with rational coefficients, for n ≥ 3. In this case, a
GLd-equivariant map λW : Fr(TWg,1) → {±1} determines, up to a contractible choice, a map
�′W : Wg,1 → BSO(2n) fitting into the following homotopy pullback square

Then an equivariant Moore–Postnikov factorisation of λW can be obtained from a Moore–
Postnikov factorisation of �′W . Since Wg,1 is (n − 1)-connected and parallelisable, we know
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that the n-stage of this factorisation is given by maps

where BO(2n)〈n〉 is the n-connected cover of BO(2n). Taking the pullback of {±1} →
BSO(2n) along these maps, we get

where O[0, n − 1] is the (n − 1)-truncation of O. Note that a path-component of O[0, n − 1]
is homotopy equivalent to SO[0, n − 1], the (n − 1)-truncation of SO.

COROLLARY 5·7. Let Wg,1 = #gSn × Sn \ D2n, for n ≥ 3. Then for all i ≤ (g − 4)/3, the
group Hi(BDiff+,k

m (Wg,1)) is isomorphic to

Hi(BDiff+(Wg,1) × SO[0, n − 1]m//�m × BO(2n)〈n〉k//�k).

The proof is a direct application of Proposition 5·6 using the factorisation described above,
and the fact that for an orientation ρWg,1 : Fr(TWg,1) → {±1}, the stable genus g(Wg,1, ρWg,1 )
is equal to g (see [9, section 3·2]).

We now use the result above to explicitly compute the cohomology of BDiff+,k
m (Wg,1) with

rational coefficients, in the stable range.

THEOREM 5·8. The stable cohomology of BDiff+,k
m (Wg,1) with rational coefficients is

isomorphic to

Q[κc|c ∈B, |c|> 2n] ⊗
(⊗

m

∧
[y1, . . . , y� n−1

4 �]

)�m

⊗
(⊗

k

Q[p n+1
4 �, . . . , pn−1, e]

)�k

,

where pi and e are, respectively, the Pontryagin and Euler classes in H∗(BSO(2n), Q), B
denotes the set of monomials in the classes p n+1

4 �, . . . , pn−1, e, with |κc| = |c| − 2n, and yi

is the ith generator of H∗(SO(2n), Q), which has degree 4i − 1. The fixed points are taken
with respect to the action of the symmetric group that permutes the generators in the tensor
product.

Proof. By Corollary 5·7 and Kunneth Theorem, the elements of H∗(BDiff+,k
m (Wg,1);Q) of

degree i ≤ (g − 4)/3, are given by the elements of such degrees in the tensor product of the
cohomology rings of BDiff+(Wg,1), SO[0, n − 1]m//�m and BO(2n)〈n〉k//�k.

The first term in the tensor product of Theorem 5·8, is simply the stable cohomology of
BDiff+(Wg,1) with rational coefficients (see [8, corollary 1·8]).

Since we are taking coefficients in Q, the cohomology of a Borel construction with the
symmetric group is given by

H∗(Xk//�k) ∼= H∗(Xk)�k

the fixed points by the action of �k which permutes the factors of Xk. This follows directly
from E�k × Xk → Xk//�k being a finite cover (for details see [13, proposition 3G·1]).
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Now we simply analyse the Borel constructions in Corollary 5·7. Since H∗(BO(2n);Q) is
a polynomial algebra, taking the n cover simply eliminates generators of degree less or equal
to n in cohomology. Hence H∗(BO(2n)〈n〉k;Q)�k is isomorphic to(⊗

k

Q[p n+1
4 �, . . . , pn−1, e]

)�k

the fixed points by the action of �k which permutes the respective generators in the k-fold
tensor product.

Finally, we discuss the cohomology of the group-like topological monoid SO[0, n − 1].
The map BSO(2n)〈n〉 → BSO(2n) is a principal fibration for the group like topological
monoid SO[0, n − 1]. This is enough to show that

H ∗ (BSO[0, n − 1], Q) =Q[p1, p2, . . . , p� n
4 �]

(see [9, section 5·2·1] for details). Then the Serre spectral sequence for the universal bundle
of SO[0, n − 1] gives that

H∗(SO[0, n − 1];Q) ∼=
∧

[y1, . . . , y� n−1
4 �]

with |yi| = 4i − 1. As required
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