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1. Introduction

The aim of this paper, which is a sequel of the papers [21] and [22], is to study the Picard
group of the moduli stack of (principal) G-bundles BunG(C/S), which parametrizes G-
bundles, where G is a connected and smooth linear algebraic group over a field k = k,
over an arbitrary family π : C → S of (connected, smooth and projective) k -curves of
genus g = g(C/S) ≥ 0.
The moduli stack BunG(C) of (principal) G-bundles, where G is a complex reductive

group and C is a complex curve, has been deeply studied because of its relation to
the Wess–Zumino–Witten (=WZW) model associated to G, which form a special class
of rational conformal field theories, see [3], [41] and [4] for nice surveys. In the WZW-
model associated to a simply connected group G, the spaces of conformal blocks can be
interpreted as spaces of generalized theta functions, that is spaces of global sections of
suitable line bundles (e.g. powers of determinant line bundles) on BunG(C), see [5, 16,
28, 31, 37]. The above application to conformal field theory leads naturally to the study
of the Picard group of BunG(C) (for G reductive over k = k), which was computed in
increasing degree of generality, thanks to the effort of many mathematicians: the case of
SLr dates back to pioneering work of Drezet–Narasimhan in the late eighties [15]; the
case of a simply connected, almost simple G is dealt with in [11, 17, 29, 31, 42]; the
case of a semisimple almost simple G is dealt with in [6, 30, 43]; the case of an arbitrary
reductive group was finally established by Biswas–Hoffmann [7].
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2 R. Fringuelli and F. Viviani

Motivated by the long-term project of generalizing the study of the vector bundle of
conformal blocks (also known as Verlinde bundle) behind the simply connected case, the
authors in [21] and [22] have computed the Picard group of BunG(Cg,n/Mg,n), for the
universal family Cg,n → Mg,n over the moduli stack of n-pointed curves of genus g, as well
as the restriction homomorphism to the Picard group of the fibres of BunG(Cg,n/Mg,n) →
Mg,n, generalizing the previous works of Melo–Viviani [33] for G = Gm and Fringuelli
[18] for G = GLr.
In this follow-up paper, we study the Picard group of BunG(C/S) for an arbitrary

family C/S of curves over an algebraic stack S (which, for technical reasons, it is often
assumed to be an integral and regular quotient stack), in which case very little was known
before. A remarkable exception is the work of Faltings [17], which provides a functorial
identification PicBunG(C/S) ∼= Z for a simply connected and almost simple group G
and an arbitrary family C/S admitting a section. Our Theorem B can be seen as a
generalization of Faltings’ result (see Corollary C and the discussion following it).
We can now explain our main results focusing, in this introduction, on families C/S

of positive genus g(C/S) > 0 and referring to the body of the paper for the slightly
different, and easier, case g(C/S) = 0.
Recall that the stack BunG(C/S) is an algebraic stack, locally of finite type and smooth

over S and its relative connected components are in functorial bijection with the funda-
mental group π1(G) (see Fact 2.6). We will denote the connected components and the
restriction of the forgetful morphism by

ΦδG : BunδG(C/S) → S for any δ ∈ π1(G).

The pull-back morphism at the level of the Picard groups is injective, so will often focus
onto the relative Picard group

RPicBunδG(C/S) :=
PicBunδG(C/S)

(Φδ)∗(PicS)
.

We proved in [21, Thm. A] that if red : G � Gred is the reductive quotient of G,

i.e. the quotient of G by its unipotent radical, then for any δ ∈ π1(G)
π1(red)−−−−−→∼=

π1(G
red),

the pull-back homomorphism

red∗# : Pic(Bunδ
Gred(C/S)

)
∼=−→ Pic(BunδG(C/S))

is an isomorphism. Hence, throughout this paper, we will restrict to the case of a reductive
group G.
A first source of line bundles on BunδG(C/S) comes from the determinant of coho-

mology dπ̂(−) and the Deligne pairing 〈−,−〉π̂ of line bundles on the universal curve
π̂ : C ×S BunδG(C/S) → BunδG(C/S). To be more precise, any character χ ∈ Λ∗(G) :=
Hom(G,Gm) gives rise to a morphism of S -stacks

χ# : BunδG(C/S) → Bun
χ(d)
Gm (C/S),
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The line bundles on the moduli stack of principal bundles 3

and by pulling back via χ# the universal Gm-bundle (i.e. line bundle) on the universal

curve C×SBunχ(δ)Gm (C/S) → Bun
χ(δ)
Gm (C/S), we get a line bundle Lχ on C×SBunδG(C/S).

Then, using these line bundles Lχ and the line bundles {p∗1(M) : M ∈ Pic(C)} pull-
backed from the family C/S, we define the following line bundles, that we call tautological
line bundles, on BunδG(C/S)

{dπ̂(Lχ(M)) : χ ∈ Λ∗(G),M ∈ Pic(C)} ,
{〈Lχ(M),Lµ(N)〉π̂ : χ, µ ∈ Λ∗(G),M,N ∈ Pic(C)} ,

where we set Lχ(M) := Lχ(p∗1(M)) for simplicity.
Note that since any character of G factors through the abelianization of ab : G→ Gab

of G, the tautological line bundles lie in the subgroup

PicBunδ
ab

Gab(C/S)
ab∗]
↪→ PicBunδG(C/S),

where δab := π1(ab)(δ).
The next theorem describes, for an arbitrary torus T and an arbitrary d ∈ π1(T )

(which includes the case T = Gab and δab = d), the structure of the tautological subgroup

Pictaut BundT (C/S) ⊆ PicBundT (C/S)

generated by the tautological line bundles (or, in other words, it encodes all the relations
among tautological line bundles), and it describes when it coincides with the full Picard
group.

Theorem A. (see Theorems 3.8 and 3.9) Let C→ S be a family of curves of genus
g> 0 on a regular and integral quotient stack. Let T be a torus and fix d ∈ Λ(T ) = π1(T ).

(1) The relative tautological Picard group of BundT (C/S) sits in the following exact
sequence, functorial in S and T:

0 → Λ∗(T )⊗ RPic(C/S)
idT−→ RPictaut BundT (C/S)

γdT−−→ Bils(Λ(T )) → 0,

where RPic(C/S) is the relative Picard group of C/S, and the homomorphisms idT
and γdT are defined by

idT (χ⊗M) = 〈Lχ,M〉π̂ and γdT (dπ̂(Lχ(M)) = χ⊗ χ.

(2) If End(JCη ) = Z for a geometric generic point η → S and the natural map Pic(C) →
PicC/S(S) is surjective, then

PicBundT (C/S) = Pictaut BundT (C/S).

Moreover, in Theorem 3.8, we give two alternative presentations of the relative
tautological Picard group of BundT (C/S).
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The case of families of genus zero curves is easier, and it is dealt with in Theorem 3.6.
In particular, we will show that the Picard group of BundT (C/S) is always generated by
tautological line bundles if g(C/S) = 0.
The above Theorem A was known:

• for a curve C over k = k by Biswas–Hoffmann [7] (see also [21, Prop. 4.1.1]), in
which case the hypothesis that End(JCη ) = Z is also necessary for part (2) to

hold (while the second assumption is always satisfied);
• for the universal family Cg,n/Mg,n over the stack of n-pointed curves of genus
g > 0 (which satisfies the assumption of part (2), see Remarks 2.3 and 2.5(1)), by
work of the authors [21, Thm. B] and [22, Thm. A], generalizing previous results
for T = Gm, g ≥ 2 and n =0 by Melo-Viviani [33].

The other source of line bundles on BunδG(C/S), for G non-abelian, is the transgression
map introduced in [21, Thm. 5.0.1, Rmk. 5.2.2]:

τ δG = τ δG(C/S) : (Sym
2 Λ∗(TG))

WG → PicBunδG(C/S),

which is the homomorphism, functorial in S and G, uniquely characterized the following
commutative diagram:

where ι : TG ↪→ G is a fixed maximal torus of G, d ∈ π1(TG) is any lift of δ ∈ π1(G),
WG := N (TG)/TG is the Weyl group of G and (Sym2 Λ∗(TG))

WG is identified with the
lattice Bils,ev(Λ(TG))

WG of WG-invariant even symmetric bilinear forms on the lattice
Λ(TG) of cocharacters of TG (see Lemma 3.13 for an explicit description).
The next theorem describes when the Picard group of BunδG(C/S) is generated by the

image of the transgression map and the pull-back of the line bundles on Bunδ
ab

Gab(C/S).

Theorem B. (see Theorems 3.14 and 3.16) Let C→ S be a family of curves of genus
g> 0 on a regular and integral quotient stack. Let G be a reductive group and denote by
ab : G→ Gab its abelianization. Fix δ ∈ π1(G) and set δab := π1(ab)(δ) ∈ π1(G

ab).
If one of the following two hypothesis is satisfied:

(a) the derived subgroup D(G) of G is simply connected;
(b) End(JCη ) = Z for a geometric generic point η → S, the natural map Pic(C) →

PicC/S(S) is surjective and RPic0(C/S) is torsion-free;

then the following diagram, which is functorial in G and S,
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is a push-out diagram.
In particular, there exists an exact sequence, functorial in S and G,

0 → PicBunδ
ab

Gab
(C/S)

ab∗]−−→ PicBunδG(C/S) → Bils,ev(Λ(TD(G))|Λ(TGss))WG → 0,

where Bils,ev(Λ(TD(G))|Λ(TGss))WG is the lattice of WG-invariant symmetric even bilin-
ear form on Λ(TD(G)) that are integral on Λ(TD(G)) ⊗ Λ(TGss), where Gss is the
semisimplification of G.

For a family of curves C/S of positive genus such that End(JCη ) = Z, the map

Pic(C) → PicC/S(S) is surjective and satisfying one of the two assumptions of
Theorem B, we give two alternative presentations of the relative Picard group of
BunδG(C/S) in Theorem 3.18.
The case of families of genus zero curves is easier, and it is treated in detail in

Theorem 3.20 and Corollary 3.21. In particular, we will show that Theorem B holds true
for families of genus zero curves under the assumption that D(G) is simply connected
(see Theorem 3.14).
For a semisimple group G, the above theorem gives the following:

Corollary C. Let C→ S be a family of curves of genus g> 0 on a regular and integral
quotient stack. Let G be a semisimple group and fix δ ∈ π1(G).
If one of the following two hypothesis is satisfied:

(a) G is simply connected,
(b) End(JCη ) = Z for a geometric generic point η → S, the natural map Pic(C) →

PicC/S(S) is surjective and RPic0(C/S) is torsion-free,

then the transgression map

τ δG = τ δG(C/S) : (Sym
2 Λ∗(TG))

WG
∼=−→ PicBunδG(C/S)

is an isomorphism, functorial in S and G.

Note that, for G semisimple, we have that (Sym2 Λ∗(TG))
WG ∼= Zs, where s is the

number of almost simple factors of the universal cover Gsc of G (see Lemma 3.13). In par-
ticular, if G is simply connected and almost simple (i.e. s =1), then the above Corollary
recovers (in the case where C/S has a section) the isomorphism PicBunδG(C/S)

∼= Z
established by Faltings [17].
The above Theorem B (and hence Corollary C) was known:
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• for G semisimple and simply connected and a family C/S admitting a section, by
Faltings [17];

• for a curve C over k = k if D(G) is simply connected, by Biswas–Hoffmann [7];
• for the universal family Cg,n → Mg,n (which satisfies the assumption (b) by
Remarks 2.3 and 2.5(1), and the Franchetta’s conjecture) by the work of the
authors [21, Thm. C(2)] and [22, Cor. 3.4], generalizing the work of the first
author for if G = GLr, g ≥ 2 and n =0 in [18, Thm. A].

Note that Theorem B does not (necessarily) hold for a curve C over k = k (which
clearly does not satisfies assumption (b)) if the group D(G) is not simply connected, as
it follows from the work of Biswas–Hoffmann [7].
In § 4 of the paper, we consider the rigidification

νδG : BunδG(C/S) → BunδG(C/S)[]Z (G) := BunδG(C/S)

of the stack BunδG(C/S) by the centre Z (G) of G, which acts functorially on any G-
bundle.
The Leray spectral sequence for the cohomology of the group Gm with respect to the

Z (G)-gerbe νδG gives the exact sequence

0 → Pic(BunδG(C/S))
(νδG)∗
→ Pic(BunδG(C/S))

wtδG−−−→ Λ∗(Z (G)) := Hom(Z (G),Gm),

where the weight homomorphism wtδG is given by restricting the line bundles on
BunδG(C/S) to the fibres of ν

δ
G, and its cokernel measures the triviality of the Z (G)-gerbe

νδG (see § 4 for more details).

In the next theorem, we describe the Picard group of the rigidification BunδG(C/S) in
terms of the Néron–Severi group NS(BunδG) (see Definition 4.1) and the cokernel of the
weight homomorphism wtδG in terms of the cokernel of the evaluation homomorphism
evδD(G) (see Definition 4.1).

Theorem D. (see Theorems 4.2 and 4.3) Let C→ S be a family of curves of genus
g> 0 on a regular and integral quotient stack. Assume that both the following conditions
hold:

(i) End(JCη ) = Z for a geometric generic point η → Sand the natural map Pic(C) →
PicC/S(S) is surjective;

(ii) either RPic0(C/S) is torsion-free or D(G) is simply connected.

(1) We have an exact sequence, functorial in S and G:

0 → Λ∗(Gab)⊗ RPic0(C/S)
jδ
G−−→ RPic(BunδG(C/S))

γδ
G−−→ NS(BunδG),

such that
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Im(γδG) =

{
b ∈ NS(BunδG) :

b(δ ⊗ x) + (g − 1)b(x⊗ x) is a multiple of δ(C/S)

for any x ∈ Λ(TG)

}
.

(2) We have an exact sequence, functorial in S and G:

0 → coker(γδG)
∂δG−−→ Hom

(
Λ(Gab),

Z
δ(C/S)Z

)
Λ̃∗
ab−−→ coker(wtδG)

Λ̃∗
D−−→ coker(evδD(G)) → 0,

where δ(C/S) is the minimum relative degree of a relative ample line bundle on C/S
(and zero if such a line bundle does not exist).

The Néron–Severi group NS(BunδG) and the evaluation homomorphism evδD(G) are

defined in Definition 4.1. We make explicit Theorem D(2) in the special cases δ(C/S) = 1
or G =T a torus in Corollary 4.4.
The case of families of genus zero curves is easier, and it is treated in Theorem 4.5.
Theorem D(1) was known:

• for the universal family Cg,n → Mg,n (which satisfies the assumptions by
Remarks 2.3 and 2.5(1), and the Franchetta’s conjecture) by the work of the
authors [22, Thm. 1.3], generalizing [33, Thm. B(i) and 1.5] (see also [26]) for
G = Gm, n =0 and [18, Thm. B(i) and Thm. A.2] (see also [27]) if G = GLr and
n =0.

Theorem D(2) was known:

• for a curve C over k = k if D(G) is simply connected, by Biswas–Hoffmann [8]
(where also the case of an arbitrary reductive group is treated);

• for G = Gm and an arbitrary family C/S in [35];
• for the universal family Cg,n → Mg,n by the work of the authors [22, Thm. 1.4],
generalizing [33, Thm. 6.4] for G = Gm and n =0, [18, Cor. 3.3.2(i)] for G = GLr
and n =0 and [20, Thm. B(i)] for G = GLr.

The computation of the cokernel of the weight homomorphism wtδG (which coincides
with the kernel of the obstruction homomorphism, see Equation (4.1)) carried over in
Theorem D(2) will be used in our upcoming work [23], where we will compute the (coho-
mological) Brauer groups of BunδG(C/S) and BunδG(C/S) for certain reductive groups,
extending the work of Biswas–Holla [9] for a fixed curve and a complex semisimple
group, as well as the work of Fringuelli–Pirisi [20] for the universal family Cg,n/Mg,n

and G = GLr.

Notations.

1.1. We denote by k = k an algebraically closed field of arbitrary characteristic p ≥ 0.
An algebraic stack will always be assumed locally of finite type over k and quasi-separated,
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i.e. with quasi-compact and separated diagonal. In particular, all the schemes and alge-
braic spaces must be quasi-separated. Furthermore, any algebraic space is generically a
scheme (see [44, Proposition 06NH])

2. Preliminaries

In this section, we collect some definitions and preliminaries results that we will need
throughout the paper.

2.1. Family of curves

A curve is a connected, smooth and projective scheme of dimension one over an
algebraically closed field. The genus of a curve C is g(C) := dimH0(C,ωC).
A family of curves π : C → S is a proper, flat and representable morphism of algebraic

stacks whose geometric fibres are curves. If all the geometric fibres of π have the same
genus g, then we say that π : C → S is a family of curves of genus g (or a family of
curves with relative genus g) and we set g(C/S) := g. Note that any family of curves
π : C → S with S connected is a family of genus g curves for some g ≥ 0. For technical
reasons, we will often restrict to families of curves π : C → S over a regular and integral
quotient stack S over k.
Given g, n ≥ 0, we denote by Mg,n the algebraic stack parametrizing families of curves

of genus g with n ordered and pairwise disjoint sections and by Cg,n → Mg,n the universal
family of n-marked curves of genus g. We omit the n from the notation when it is zero.
Note that Mg,n is a DM (=Deligne–Mumford) stack if and only if 2g − 2 + n > 0.
A family of curves π : C → S is locally projective if, Zariski-locally on the base, it is

a closed subscheme of PnS for some n ≥ 1. Equivalently, π : C → S is locally projective
if there exists a π-relatively ample line bundle on C, or equivalently a line bundle on
C having π-relative positive degree. Note that a family of curves π : C → S is locally
projective if either g(C/S) 6= 1 (because the relative dualizing line bundle ωπ has relative
degree 2g(C/S)−2) or π has a section σ : S → C. However, there are examples of families
of genus one curves without sections that are not locally projective, e.g. the universal
family C1 → M1 of curves of genus one (see Remark 2.2(2), and also [39, XIII, 3.2] and
[46] for other examples).
In the results of this paper, an important role is played by the following invariant of

the family C/S:

Definition 2.1. For a family of curves C/S, we define

δ(C/S) :=

min{degπ(M) > 0 :M ∈ Pic(C)}, if πis locally projective;

0, otherwise.

Equivalently, if π is locally projective, then δ(C/S) is the non-negative generator of the
non-zero image of the relative degree map
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degπ : Pic(C) −→ Z,
M 7→ degπ(M).

(2.1)

Remark 2.2.

(1) Since the relative dualizing line bundle ωπ of π : C → S has relative degree equal
to 2g(C/S)− 2, it follows that

δ(C/S) divides 2g(C/S)− 2.

(2) It follows from the weak Franchetta conjecture (see [2], [40], [24]) that, for the
universal family Cg,n → Mg,n of n-marked curves of genus g, we have that

δ(Cg,n/Mg,n) =

|2g − 2| if n = 0,

1 if n > 0.

Note that δ(C1/M1) = 0, which implies that C1 → M1 is not locally projective.
(3) The invariant δ(C/S) has been computed for many interesting families of curves:

• If C/S is the universal family of (smooth) complete intersections curves in Pr of
type (d1, . . . , dr−1), then δ(C/S) = d1 . . . dr−1 (see [13, Thm. 4.4]). In particular, if
C/S is the universal family of (smooth) plane curves of degree d, then δ(C/S) = d
(see [13, Thm. 4.2]).

• If C/S is the universal family of hyperplanes sections of the universal family of
polarized genus g ≥ 3 K3 surfaces, then δ(C/S) = 2g − 2 (see [13, Prop. 4.5]).

• If C/S is the universal family of one of the following:
- the unique component with general moduli of the Hilbert scheme of curves

in Pr with r ≥ 3 of genus g and degree d ;
- the Severi variety of curves of genus g together with a birational embedding

as a nodal plane curve of degree d ;
- the Hurwtiz scheme of degree d covers of P1 of genus g ;
and we assume that ρ := g−(r+1)(g+r−d) ≥ 2, then δ(C/S) = gcd{2g−2, d}

(see [14, Thm. 1.1] and [13, Thm. 5.3]).
• If C/S is the universal family of hyperelliptic genus g curves, then (see [35, Thm.
3.5])

δ(C/S) =

4 if g is odd,

2 if g is even.

(4) If C/S is a family of curves of genus g =0, then

δ(C/S) =

1 if C/S is Zariski-locally trivial,

2 if C/S is not Zariski-locally trivial.

Note also that C/S is Zariski locally trivial if and only if C/S admits a section.
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We will denote by PicC/S the relative Picard functor of the family C →S, which is
an algebraic stack representable and locally of finite presentation over S (by Artin’s
representability theorem, see e.g. [10, § 8.3]). We have an exact sequence (see [10, § 8.1,
Prop. 4])

0 → Pic(S)
π∗−−→ Pic(C) → PicC/S(S) → Br(S)

π∗−−→ Br(C),

where Br(−) = H2(−,Gm) denote the cohomological Brauer group. In particular, we get
an injective homomorphism

RPic(C/S) :=
Pic(C)

Pic(S)
↪→ PicC/S(S). (2.2)

Several of our results are restricted to families such that the inclusion (2.2) is an equality,
or equivalently such that the natural map Pic(C) → PicC/S(S) is surjective. In the next
Remark, we describe several families where this assumption holds true.

Remark 2.3. The inclusion (2.2) is an equality in the following cases:

(1) if π : C → S admits a section (because π∗ : Br(S) → Br(C) is injective); in
particular, if C/S = Cg,n/Mg,n with n > 0. Therefore, equality in Equation (2.2)
can always be achieved after an étale cover of the base S.

(2) if Br(S) = 0, e.g. if S is the spectrum of a field k = k, or the spectrum of strictly
henselian valuation ring, or a smooth curve over k = k.

(3) if C/S = Cg/Mg and g ≥ 2 by the strong Franchetta’s conjecture (see
[34]).

(4) if the relative Jacobian JdC/S := PicdC/S → S in degree d admits a Poincaré line
bundle for every d ∈ Z.

(5) if δ(C/S) = 1 (see [35, Lemma 2.2]).

Several of our results are restricted to families of curves π : C → S over an integral
base S, which satisfy the following condition:

End(JCη ) = Z, (2.3)

where η is a geometric generic point of S.
In the next result, we collect some sufficient and necessary conditions for Equation (2.3)

to hold.

Proposition 2.4. Let π : C → S a family of curves over an integral base S (locally of
finite type over k = k) and let η → S be a geometric generic point.

(1) If End(JCs) = Z for some s ∈ S(k), then End(JCη ) = Z.
(2) If k is uncountable and End(JCη ) = Z, then End(JCs) = Z for s very general in

S(k).
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(3) If k 6⊆ Fp, then End(JCη ) = Z if and only if there exists s ∈ S(k) such that

End(JCs) = Z.

Note that part (3) is false if k = k = Fp, see [32, Rmk. 1.12].

Proof. Parts (1) and (2) follow from the well-known fact (see the proof of [32, Prop.
1.13]) that the jumping locus

S(k)jump = {s ∈ S(k) : End(JCη ) ↪→ End(JCs)is an isomorphism}

is the set of k -points of a union of countably many proper substacks of S.
Part (3) follows from the non-trivial result (proved in [32], [12], [1]) that S(k)jump 6=

S(k) if k 6= Fp. �

Remark 2.5.

(1) The condition End(JCη ) = Z is known to hold for several general families of curves,
e.g.
• the universal family Cg,n → Mg,n over an arbitrary field k = k by [25];
• the universal family of hyperelliptic curves over an arbitrary field k = k by [36,
Thm. 6.5];

• the family of smooth curves belonging to a linear system on a regular smooth
projective surface if k = C by [45].

(2) The condition End(JCη ) = Z implies that the Néron–Severi of JCη is equal to

NS(JCη ) = Z · [ΘCη ], (2.4)

where [ΘC ] is the class of a theta divisor JCη (using the fact that NS(JCη ) is

the subgroup of End(JCη ) consisting of elements that are invariant under the

Rosari involution). But the viceversa is false, e.g. for an elliptic curve with complex
multiplication.
Pirola has shown in [38] that condition (2.4) holds true for any family C →S of

genus g curves over k = C such that the image of S in Mg via the modular map
has codimension less than or equal to g − 2 (e.g. the universal families of k -gonal
curves of genus g ≥ 2 for any k ≥ 2). It would be interesting to know if for such
families also the stronger statement End(JCη ) = Z holds true.

2.2. Reductive groups

A reductive group (over k = k) is a smooth and connected linear algebraic group over
k (i.e. a closed algebraic subgroup of (GLn)k, or equivalently an affine group scheme
of finite type over k), which does not contain non-trivial connected normal unipotent
algebraic subgroups. To any reductive group G, we can associate a cross-like diagram of
reductive groups
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12 R. Fringuelli and F. Viviani

(2.5)

where

• D(G) := [G,G] is the derived subgroup of G ;
• Gab := G/D(G) is called the abelianization of G ;
• R(G) is the radical subgroup of G, which is equal (since G is reductive) to the
connected component Z (G)o of the centre Z (G) and

• Gss := G/R(G) is called the semisimplification of G.

In the above diagram, the horizontal and vertical lines are short exact sequences of
reductive groups, the morphisms D(G) � Gss and R(G) � Gab are central isogenies of,
respectively, semisimple groups and tori with the same kernel. Since the two semisimple
groups D(G) and Gss are isogenous, they share the same simply connected cover, which
we will denote by Gsc, and the same adjoint quotient, which we will denote by Gad.
Given a reductive groupG over k, we will denote by TG a maximal torus ofG and by BG

the positive Borel subgroup ofG containing TG. As usual, we denote by WG := N(TG)/TG
its Weyl group.
Given a torus T, we will denote by Λ(T ) := Hom(Gm, T ) its cocharacter lattice and

by Λ∗(T ) := Hom(T,Gm) its character lattice. Note that these lattices are dual to each
other via the bilinear map

Λ∗(T )× Λ(T ) −→ Hom(Gm,Gm) = Z,
(χ, d) 7→ χ ◦ d := χ(d).

The fundamental group of G is π1(G) :=
Λ(TG)

Λcoroots
, where Λcoroots is the sublattice of

Λ(TG), which is generated by integral linear combinations of coroots. The vertical exact
sequence in Equation (2.5) induces an exact sequence of finitely generated abelian groups

0 → π1(D(G)) → π1(G)
π1(ab)−−−−→ π1(G

ab) → 0, (2.6)

which identifies π1(D(G)) with the torsion subgroup of π1(G) and π1(G
ab) with the

torsion-free quotient of π1(G).

2.3. The stack of G-bundles on a family of curves

In this subsection, G will be a connected and smooth linear algebraic group over k = k.
Further restrictions on G, like reductiveness, will be specified when needed.
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For any family of curves π : C → S, we denote by BunG(C/S) the moduli stack of G-
bundles on C→ S, i.e. the algebraic stack over S whose fibre over V →S is the groupoid
of G-bundles E → CV := C×S V . By definition, we have a forgetful surjective morphism

ΦG = ΦG(C/S) : BunG(C/S) −→ S. (2.7)

The stack BunG(C/S) comes equipped with a universal G-torsor P on the universal
family π̂ : BunG(C/S)×S C → BunG(C/S).
The stack BunG(C/S) is functorial in S, i.e. for any V →S, we have that

BunG(CV /V ) = BunG(C/S)×S V.

In particular, the fibre of ΦG(C/S) : ΦG(C/S) → S over a k -point s ∈ S is the moduli
stack BunG(Cs) of G-bundles on the curve Cs.
In the special case where the family of curves is the universal family Cg,n → Mg,n over

the moduli stack of n-pointed curves of genus g, we set

BunG,g,n := BunG(Cg,n/Mg,n).

In particular, if the family C →S has constant relative genus g = g(C/S), then we have
that

BunG(C/S) = S ×Mg BunG,g,

with respect to the modular morphism S → Mg associated to the family C →S.
Any morphism of connected and smooth linear algebraic groups φ : G→ H determines

a morphism of stacks over S

φ] = φ](C/S) : BunG(C/S) −→ BunH(C/S)(
E → CV

)
7−→

(
φ](E) := E ×φ,G H = (E ×H)/G→ CV

)
,

(2.8)
where the (right) action of G on E ×H is (p, h).g := (p.g, φ(g)−1h).
We collect in the following fact the geometric properties of BunG(C/S) and of the

forgetful morphism ΦG(C/S).

Fact 2.6. Let G be a connected and smooth linear algebraic group and let π : C → S
be a family of curves.

(1) The morphism ΦG(C/S) is locally of finite presentation, smooth, with affine and
finitely presented relative diagonal.

(2) There is a functorial decomposition into a disjoint union

ΦG(C/S) :
∐

δ∈π1(G)

BunδG(C/S)
ΦδG(C/S)
−→ S (2.9)
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14 R. Fringuelli and F. Viviani

such that the morphism ΦδG(C/S) : Bun
δ
G(C/S) → S has geometric integral fibres

for every δ ∈ π1(G).
(3) If G is reductive, then for any δ ∈ π1(G), the morphism ΦδG(C/S) : Bun

δ
G(C/S) → S

is Stein, i.e. it is fpqc and cohomologically flat in degree zero (which means that
the natural morphism (ΦδG(C/S)

] : OS → ΦδG(C/S)∗(OBunδ
G
(C/S)

) is a universal

isomorphism), and of relative dimension equal to (g − 1) dimG.

Proof. Part (1): see [21, Thm. 3.1] and the references therein. Part (2): see [21, Thm.
3.1.1, Cor. 3.1.2] and the references therein. Part (3): see [21, Thm. 3.1.3] and the proof
of [21, Prop. 3.3.2]. �

Since the centre Z (G) of a reductive group G acts functorially on any G-bundle,
we have that Z (G) sits functorially inside the automorphism group of any T -point
(CT → T,E) of BunδG(C/S) for any δ ∈ π1(G). Hence, we can form the rigidification

νδG = νδG(C/S) : Bun
δ
G(C/S) → BunδG(C/S)[]Z (G) := BunδG(C/S), (2.10)

which turns out to be a Z (G)-gerbe, i.e. a gerbe banded by Z (G).

3. The Picard group of Bunδ
G(C/S)

We will assume throughout this section that:

? π : C → S is a family of smooth curves of genus g = g(C/S) over an integral
and regular quotient stack S (locally of finite type over k). We will denote by η → S
a geometric generic point of S and by Cη := C ×S η the corresponding geometric
generic fibre.

The aim of this section is to study the Picard group of BunδG(C/S) for a reductive
group G.

3.1. Recollection on PicBunδ
G(C/S)

In this subsection, we recall some facts from [21, 22] on the Picard group of BunδG(C/S),
for a reductive group G and a fixed δ ∈ π1(G). The case g =0 is slightly different from
the other cases, and for unifying the statements, we need the following definition:

Definition-Lemma 3.1. Let G be a reductive group and pick a maximal torus ι :
TG ↪→ G.

(1) We say that a cocharacter d ∈ Λ(TG) is generic if its image dss ∈ Λ(TGss) ⊂
Λ(TGad), into the cocharacter lattice of the adjoint group, satisfies one of the
following equivalent conditions (see [21, Lemma 2.2.3]):
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(i) The contraction homomorphism

(dss,−) :
(
Sym2 Λ∗(TGsc)

)WG = Bils,ev(Λ(TGsc))WG → Λ∗(TGsc)

b 7→ b(dss,−)

is injective.
(ii) Let Gad = Gad

1 × . . . × Gad
s be the decomposition of Gad into almost simple

factors (which are then automatically semisimple adjoint groups) and choose
maximal tori in such a way that TGad = T

Gad
1

× . . .× T
Gad
s
. Then, dss satisfies

the following condition:

dss = d1 + . . .+ ds ∈ Λ(TGad) = Λ(T
Gad
1
)⊕ . . .⊕ Λ(T

Gad
s
),

with di 6= 0 for every 1 ≤ i ≤ s.
(2) Any δ ∈ π1(G) admits a lift d ∈ π1(TG) = Λ(TG), which is generic.

We collect in the following Fact the main results proved in [21] for the Picard group of
BunδG(C/S).

Fact 3.2. Let G be a reductive group and fix δ ∈ π1(G).

(1) There exists an exact sequence

0 → Pic(S) → PicBunδG(C/S) → PicBunδG(Cη),

where the first map is the pull-back map and the second one is the restriction to the
fibre of C →S over a geometric generic point η of S.

(2) For any lift d ∈ π1(BG) = π1(TG) = Λ(TG) of δ (which is moreover generic if
g =0), the pull-back maps along the inclusions ι : TG ↪→ BG ↪→ G

ι∗] : PicBun
δ
G(C/S) ↪→ PicBundBG(C/S)

∼=−→ PicBundTG(C/S)

are such that the first map is injective and the second one is an isomorphism.
(3) There exists a unique homomorphism (called transgression map)

τ δG = τ δG(C/S) : (Sym
2 Λ∗(TG))

WG ↪→ PicBunδG(C/S) (3.1)

that is functorial in S and G and fits in the following commutative diagram for any
lift d ∈ π1(TG) (which is generic if g =0) of δ ∈ π1(G):
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16 R. Fringuelli and F. Viviani

(3.2)

where 〈−,−〉π is the Deligne pairing of the family π̂ : C ×S BundTG(C/S) ×
BundTG(C/S) and Lχ is the pull-back of the universal Gm-bundle (i.e. line bun-

dle) over C ×S BunGm(C/S) via the morphism id×χ# : C ×S BunδG(C/S) →
C ×S Bun

(δ,χ)
Gm (C/S).

Proof. Part (1) follows from [21, Prop. 5.1.1]. Part (2) follows from [21, Cor. 5.1.2,
Thm. 6.0.1]. Part (3) follows from [21, Thm. 5.0.1, Rmk. 5.2.2] (whose proof works also
for g =0). �

Using Fact 3.2(1), we will often restrict to study the relative Picard group

RPicBunδG(C/S) :=
PicBunδG(C/S)

Pic(S)
. (3.3)

3.2. The Picard group of Bund
T (C/S) for a torus T

The goal of this subsection is to determine the structure of the Picard group of
BundT (C/S), where

? T is a torus and d ∈ Λ(T ).

We first introduce some natural line bundles on BundT (C/S). For any character χ ∈
Λ∗(T ) and M ∈ Pic(C), we consider the following line bundle on C ×S BundT (C/S):

Lχ(M) := Lχ ⊗ p∗1M,

where p1 is the projection onto the first factor and Lχ is the pull-back of the universal
Gm-bundle (i.e. line bundle) over C ×S BunGm(C/S) via the morphism id×χ# : C ×S
BundT (C/S) → C ×S Bun

(d,χ)
Gm (C/S) induced by χ.

Definition 3.3. The tautological Picard group of BundT (C/S) is the subgroup
Pictaut BundT (C/S) of PicBun

d
T (C/S) generated by the pull-back of the line bundles on S

and the following line bundles (called tautological line bundles):
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{dπ̂(Lχ(M)) : χ ∈ Λ∗(T ),M ∈ Pic(C)} ,

where dπ̂ denotes the determinant of cohomology with respect to the family π̂ : C ×S
BundT (C/S) → BundT (C/S).
The relative tautological Picard group of BundT (C/S) is the subgroup

RPictaut BundT (C/S) ⊆ RPicBundT (C/S), which is the image of Pictaut BundT (C/S) into
the relative Picard group.

Remark 3.4. The tautological Picard group Pictaut BundT (C/S) contains all the line
bundles

{〈Lχ(M),Lµ(N)〉π̂ : χ, µ ∈ Λ∗(T ),M,N ∈ Pic(C)} ,

where 〈−,−〉π̂ is the Deligne pairing, since we have the following isomorphism:

〈Lχ(M),Lµ(N)〉π̂ ∼= dπ̂(Lχ+µ(M ⊗N))⊗ dπ̂(Lχ(M))−1 ⊗ dπ̂(Lµ(N))−1 ⊗ dπ̂(O). (3.4)

The Picard group of BundT (C/S) is endowed with a weight function

PicBundT (C/S)
wdT−−→ Λ∗(T ), (3.5)

which is defined as it follows. Let F be a line bundle on BundT (C/S)) and fix a k -point
ξ := (Cs, E) of BundT (C/S) over s ∈ S. The automorphism group of ξ acts on the fibre Fξ
of F over ξ. Since the torus T is contained in the automorphism group of ξ, this defines
an action of T on Fξ ∼= k, which is given by a character of T. This character, which is
independent of the chosen k -point ξ and on the chosen isomorphism Fξ ∼= k, coincides
with wdT (F). Note that wdT factors through the relative Picard group.
The weight function on the tautological Picard group is easily described.

Lemma 3.5. The weight function wdT is given on tautological line bundles by

wdT (dπ̂(Lχ(M))) = [χ(d) + degπ(M) + 1− g]χ. (3.6)

In particular, we have that

wdT (〈Lχ(M),Lµ(N)〉π̂) = [µ(d) + degπ(N)]χ+ [χ(d) + degπ(M)]µ. (3.7)

Proof. This is proved as in [21, Prop. 4.1.2(1)]. �

Using the weight function, we can now describe the structure of the Picard group of
BundT (C/S) for a family of curves of genus 0.

Theorem 3.6 Assume that g(C/S) = 0. Then,

(1) PicBundT (C/S) = Pictaut BundT (C/S).
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18 R. Fringuelli and F. Viviani

(2) the weight function

wdT : RPicBundT (C/S) ↪→ Λ∗(T )

is injective on the relative Picard group.
(3) The image of wdT is equal to

Im(wdT ) =

Λ∗(T ) if C/Sis Zariski-locally trivial,

{χ ∈ Λ∗(T ) : χ(d) is even} if C/Sis not Zariski-locally trivial.

The above Theorem was proved for the universal family C0,n → M0,n (which is Zariski-
locally trivial if and only if n > 0, see Remark 2.2) in [21, Thm. 4.2].

Proof. Part (2): since g(C/S) = 0, the rigidification BundT (C/S)[]T is isomorphic to
S. Hence, the Leray spectral sequence for Gm associated to the T -gerbe BundT (C/S) →
BundT (C/S)[]T gives the desired exact sequence

0 → Pic(S) = Pic(BundT (C/S)[]T ) → PicBundT (C/S)
wdT−−→ Pic(BT ) = Λ∗(T ).

Note that δ(C/S) = 1 or 2 according to whether C/S is Zariski-locally trivial or not
(see Remark 2.2(4)). Hence, using the above exact sequence, in order to prove parts (1)
and (3), it is enough to prove the two equalities

wdT (Pic
taut BundT (C/S)) = Im(wdT ) =

Λ∗(T ) if δ(C/S) = 1,

{χ ∈ Λ∗(T ) : χ(d) is even} if δ(C/S) = 2.

(3.8)
We will distinguish two cases.
Case 1: δ(C/S) = 1.
In this case, the relative degree map (2.1) is an isomorphism. Hence, given any χ ∈

Λ∗(T ), we can choose a line bundleMχ ∈ Pic(C) having relative degree equal to g−χ(d),
and then formula (3.6) implies that

wdT (dπ̂(Lχ(Mχ))) = χ.

This shows that

wdT (Pic
taut BundT (C/S)) = Λ∗(T ),

which gives the desired two equalities in Equation (3.8).
Case 2: δ(C/S) = 2.
In this case, the image of the relative degree map (2.1) is the subgroup 2Z ⊂ Z. We

will divide the proof of the equalities in Equation (3.8) into three steps.
• wdT (Pic

taut BundT (C/S)) ⊆ {χ ∈ Λ∗(T ) : χ(d) is even}.
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To prove this, since Pictaut BundT (C/S) is generated the tautological line bundles
dπ̂(Lχ(M)), it is enough to show, using formula 3.6, that

dπ̂(Lχ(M))(d) = [χ(d) + degπ(M) + 1]χ(d) is even

for any χ ∈ Λ∗(T ) and anyM ∈ Pic(C). This is obvious if χ(d) is even. Otherwise, if χ(d)
is odd, then it follows from the fact that χ(d) + degπ(M) + 1 is even because degπ(M)
is even.
• wdT (Pic

taut BundT (C/S)) ⊇ {χ ∈ Λ∗(T ) : χ(d) is even}.
Let χ ∈ Λ∗(T ) such that χ(d) is even. Then, we can choice a line bundle Mχ ∈ Pic(C)

such that degπ(Mχ) = −χ(d). We then have, using formula (3.6), that

dπ̂(Lχ(Mχ)) = [χ(d) + degπ(Mχ) + 1]χ = χ,

which shows that χ ∈ wdT (Pic
taut BundT (C/S)).

• Im(wdT ) ⊆ {χ ∈ Λ∗(T ) : χ(d) is even}.
Let L be a line bundle on BundT (C/S) and set χ := wdT (L) ∈ Λ∗(T ). We want to show

that χ(d) is even. Consider the following Cartesian diagram

(3.9)

The pull-back π∗
T (L) on BundT (C ×S C/C) verifies wdT (π

∗
T (L)) = χ, since the weight

function is functorial with respect to base change. Consider now the line bundle
〈Lχ,L0(O(∆))〉π̂2 = 〈Lχ,O(∆̃)〉π̂2 on BundT (C ×S C/C). By Equation (3.7) and the
fact that O(∆) has π2-relative degree equal to 1, we have that

wdT (〈Lχ,O(∆̃)〉π̂2) = χ.

Therefore, since π∗
T (L) and 〈Lχ,O(∆̃)〉π̂2 have the same weight, part (2) implies that

π∗
T (L) = 〈Lχ,O(∆̃)〉π̂2 ⊗ Φ∗

C(M)

for some M ∈ Pic(C). Taking the relative degree with respect to πT, we obtain that

0 = degπT (π
∗
T (L)) = degπT (〈Lχ,O(∆̃)〉π̂2) + degπT (Φ

∗
C(M)) =

= degπT ∆̃∗(Lχ) + degπ(M) = χ(d) + degπ(M),

where we have used the isomorphism 〈Lχ,O(∆̃)〉π̂2 ∼= ∆̃∗(Lχ) has πT-relative degree
equal to χ(d). This implies that χ(d) is even since degπ(M) is even because of the
hypothesis that δ(C/S) = 2. �
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We will now focus on families of curves of positive genus. In this case, the relative
tautological Picard group is endowed with the following homomorphism:

Lemma 3.7. Assume that g(C/S) > 0. There exists a homomorphism

γdT : RPictaut BundT (C/S) −→ Bils Λ(T ) = (Λ∗(T )⊗ Λ∗(T ))s,

dπ̂(Lχ(M)) 7→ χ⊗ χ.

In particular, we have that

γdT (〈Lχ(M),Lµ(N)〉π̂) = χ⊗ µ+ µ⊗ χ.

Proof. This is proved as in [21, Prop. 4.1.2(2)] (see also [22, Def./Lemma 3.5(2)]). �

Using the above homomorphism γdT , we can now describe the (relative) tautological

Picard group of BundT (C/S) for families of curves of positive genus.

Theorem 3.8. Assume that g = g(C/S) > 0.

(1) Then there exists a commutative diagram with exact rows, functorial in S and T

(3.10)

where
• RPic(C/S) is the relative Picard group of C/S and RPic0(C/S) is the subgroup
consisting of line bundles of relative degree 0;

• idT is defined by

idT (χ⊗M) = 〈Lχ,M〉π̂;

• jdT is the restriction of idT to Λ∗(T )⊗ RPic0(C/S);
• τdT is the transgression map (see Fact 3.2(3));
• γdT is the map of Lemma 3.7;
• ρdT is defined by

ρdT (dπ̂(Lχ(M)))(x) = χ(x)2 mod 2;

• ε is defined by

ε(b)(x) := b(x, x) mod 2.
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(2) The image of wdT ⊕ γdT is equal to

{(χ, b) ∈ Λ∗(T )⊕ Bils(Λ(T )) : δ(C/S)|χ(x)− b(d, x) + (g − 1)b(x, x)

for every x ∈ Λ(T )} .

Most of the results of the previous theorem were known for the universal family Cg,n →
Mg,n with g ≥ 1: the exactness of the first line in Equation (3.10) and part (2) were
proved in [21, Prop. 4.3.1]; the exactness of the second line in Equation (3.10) was proved
in [22, Thm. 3.6] (where it is also proved for an arbitrary reductive group); the exactness
of the third line in Equation (3.10) was proved for g =1 in [21, Thm. B] (while for genus
g ≥ 2, a different presentation is obtained in loc. cit.).

Proof. Let us first prove part (1). Observe that the diagram is commutative: the
commutativity of the two left squares and he upper right square are obvious; the
commutativity of the lower right square follows from the fact that (χ ⊗ χ)(x, y) =
χ(x)χ(y).
We now divide the rest of the proof of part (1) into three steps.
Step 1: The middle row is exact.
First of all, observe that idT is well-defined since the Deligne pairing 〈−,−〉π̂ is bilinear

and it is trivial on the pull-back of line bundle on BundT (C/S), and hence in particular
on those coming from S. Consider now the following diagram

where the vertical maps are restriction maps to the geometric generic fibre Cη of C/S
and the map idT (Cη) is the restriction of idT to the the geometric generic fibre. Since the
restriction maps are injective by Fact 3.2(1) and [21, Prop. 2.3.2] and the map idT (Cη) is
injective by [7, § 3], we deduce that idT is also injective.
Lemma 3.7 implies that Im(idT ) ⊆ ker(γdT ) and that γdT is surjective, using that (Λ∗(T )⊗

Λ∗(T ))s is generated by the elements {χ⊗ χ : χ ∈ Λ∗(T )} (see [21, § 2.2]).
It remains to prove that ker(γdT ) ⊆ Im(idT ). To this aim, we fix a basis {χ1, . . . , χr} of

Λ∗(T ). Then, RPictaut(BundT (C/S)) is generated by the line bundles

{dπ̂(Lχi), 〈Lχj ,Lχk〉π̂, 〈Lχh ,M〉π̂},

with 1 ≤ i, h ≤ r, 1 ≤ j ≤ k ≤ r and M ∈ RPic(C/S). The line bundles 〈Lχh ,M〉π̂
belong to Im(idT ) ⊆ ker(γdT ) as proved above. Suppose that we have a line bundle on

BundT (C/S)

K :=
⊗
i

dπ̂(Lχi)
ai
⊗
j≤k

〈Lχj ,Lχk〉
bjk
π̂ for some ai, bjk ∈ Z
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whose class in the relative tautological Picard group belongs to ker(γdT ). Then, Lemma 3.7
implies that

0 = γdT

⊗
i

dπ̂(Lχi)
ai
⊗
j≤k

〈Lχj ,Lχk〉
bjk
π̂

 =
∑
i

aiχi ⊗ χi +
∑
j≤k

bjk(χj ⊗ χk + χk ⊗ χj).

(3.11)

Since a basis of Bils(Λ(T )) = (Λ∗(T )⊗Λ∗(T ))s is given by {{χi⊗χi}i ∪{χj ⊗χk+χk⊗
χj}j<k}, the relation Equation (3.11) is equivalent tobjk = 0 for any j < k,

ai + 2bii = 0 for any i.

Hence, the line bundle K is equal to

K =
⊗
i

[dπ̂(Lχi)
−2

⊗
〈Lχi ,Lχi〉π̂]

bii =
⊗
i

[〈Lχi , ωπ̂〉π̂ ⊗ dπ̂(O)−2]bii ,

where the last equality follows from [21, Rmk. 3.5.1]. This implies that the class of K in
the relative Picard group belongs to Im(idT ), and we are done.
Step 2: The first row is exact.
Indeed, the map jdT is injective since it is the restriction of the injective map idT . Using

the exactness of the middle row, the kernel of wdT ⊕ γdT is equal to

ker(wdT ⊕ γdT ) =
{
idT (χ⊗M) : wtdT (i

d
T (χ⊗M)) = 0

}
.

By the definition of idT and Equation (3.7), we compute

wtdT (i
d
T (χ⊗M)) = wdT (〈Lχ,M〉π̂) = degπ(M)χ.

Hence, the kernel of wdT ⊕ γdT coincides with the image via idT (or equivalently via jdT ) of
Λ∗(T )⊗ RPic0(C/S), and we are done.
Step 3: The last row is exact.
Indeed, the composition γdT ◦ τdT is given by

(γdT ◦ τdT )(γ · γ′) = γdT (〈Lγ ,Lγ′〉π̂) = γ ⊗ γ′ + γ′ ⊗ γ.

Hence, γdT ◦ τdT is injective, and its image is the subgroup Bils,ev(Λ(T )) ⊂ Bils(Λ(T )) of
even symmetric bilinear forms (see [21, § 2.2]). We now deduce the exactness of the last
row from the exactness of the second row and the fact that Bils,ev(Λ(T )) is the kernel of
the surjective map ε.
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Let us prove now part (2). We first observe that the image of wdT ⊕ γdT is contained in

I := {(χ, b) ∈ Λ∗(T )⊕ Bils(Λ(T )) : δ(C/S)|χ(x)− b(d, x) + (g − 1)b(x, x)

for every x ∈ Λ(T )} .

Indeed, for the generators of RPictaut BundT (C/S), we compute (using Equation (3.6) and
Lemma 3.7) that

(wdT , γ
d
T )(dπ̂(Lχ(M))) = (χ(d) + degπ(M) + 1− g)χ, χ⊗ χ).

Hence, for any x ∈ Λ(T ), we get

[χ(d) + degπ(M) + 1− g]χ(x)− χ(d)χ(x) + (g − 1)χ(x)2 = [degπ(M) + 1− g]χ(x)

+ (g − 1)χ(x)2 =

= degπ(M)χ(x) + (g − 1)[χ(x)2 − χ(x)] ≡ degπ(M)χ(x) mod 2g − 2

≡ 0 mod δ(C/S),

where in the last congruence relation we used the fact that degπ(M) is a multiple
of δ(C/S) (by definition of δ(C/S)) and that δ(C/S) is a multiple of 2g − 2 (by
Remark 2.2(1)).
Next, in order to show that the inclusion Im(wdT ⊕ γdT ) ⊆ I is an equality, we consider

the following commutative diagram with exact vertical columns:

We now conclude using that
• p2(Im(wdT⊕γdT )) = Bils(Λ(T )) as it follows from the right upper square of the diagram

(3.10);
• the inclusion

Im(wdT ⊕ γdT ) ∩ (Λ∗(T )× {0}) ⊆ I ∩ (Λ∗(T )× {0}) = δ(C/S) · Λ∗(T )

is an equality since it coincides with the boundary homomorphism coming from the snake
lemma applied to the first two horizontal lines of the diagram (3.10). �

After having obtained in Theorem 3.8, a complete description of the tautological Picard
group of BundT (C/S) for families of curves of positive genus, the next natural question is
to determine when the entire Picard group coincides with the tautological subgroup. A
sufficient condition is provided by the following:
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Theorem 3.9 Assume that g = g(C/S) > 0. If End(JCη ) = Z and RPic(C/S) =

PicC/S(S), then

PicBundT (C/S) = Pictaut BundT (C/S).

The above theorem was shown in [7] (see also [21, Prop. 4.1.1]) for a curve C over S =
Spec k, with k an algebraically closed field, in which case the second assumption is auto-
matic and the first assumption End(JCη ) = Z is also necessary for the theorem to hold.

Theorem 3.9 recovers the equality PicBundT (Cg,n/Mg,n) = Pictaut BundT (Cg,n/Mg,n),
which was shown in [21, Thm. 4.1] for the universal family Cg,n → Mg,n (with g ≥ 1),
since the assumption of the Theorem is known to hold for Cg,n → Mg,n (see Remarks 2.3
and 2.5(1)).

Proof. We will distinguish three cases.
Case I: d =0 and π : C → S admits a section σ.
Since d =0, we have the canonical identifications Bun0T (C/S) = J 0(C/S)⊗ Λ(T ),

Bun0T (C/S)[]T = J0(C/S)⊗ Λ(T ),

where J 0(C/S) is the Jacobian stack of C/S and J0(C/S) = J 0(C/S)[]T is the Jacobian
scheme of C/S. The theorem is implied in this case by the following commutative diagram
with exact rows:

(3.12)

where

• the first line is exact by Theorem 3.8 using that δ(C/S) = 1 since π : C → S has
a section by assumption;

• the second exact line comes from the fact that the rigidification Bun0T (C/S)[]T =
J0(C/S)⊗ Λ(T ) → S is an abelian scheme (see e.g. the proof of [19, Prop. 3.6]),
where (J0(C/S) ⊗ Λ(T ))∨ = J0(C/S)∨ ⊗ Λ∗(T ) is the dual abelian scheme and
the last map is the restriction homomorphism onto the geometric generic fibre;

• the left vertical isomorphism follows from the fact that RPic0(C/S) =
J0(C/S)∨(S);

• the right vertical isomorphism follows from the fact that (see [7, § 3.2])

NS(Bun0T (Cη)) = Λ∗(T )⊕Homs(Λ(T )⊗ Λ(T ),End(JCη )),
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where Homs(Λ(T ) ⊗ Λ(T ),End(JCη )) is the set of bilinear forms Hom(Λ(T ) ⊗
Λ(T ),End(JCη )) that are symmetric with respect to the Rosati involution,

together with the assumption that End(JCη ) = Z.
• the commutativity of the left square follows from the proof of [21, Lemma 4.2.1]1

together with formula (3.4);
• the commutativity of the right square follows from [21, Prop. 4.1.2]2.

Case II: π : C → S admits a section σ.
Fix an isomorphism T ∼= Grm, which induces a canonical isomorphism Λ(T ) ∼= Zr under

which d corresponds to (d1, . . . , dr). Then, we have an isomorphism

BundT (C/S)
∼= Bun

d1
Gm(C/S)×S . . .×S BundrGm(C/S).

Using the section σ, we define an isomorphism

t : Bun
d1
Gm(C/S)×S . . .×S BundrGm(C/S)

∼=−→ Bun0Gm(C/S)×S . . .×S Bun0Gm(C/S)

∼= Bun0T (C/S)

(L1, . . . , Lr) 7→ (L1(−d1σ), . . . , Lr(−drσ)).

By construction, we have that (t × id)∗(Lei) = Lei(−diσ), where {ei} is the canonical
basis of Zr ∼= Λ∗(T ). Hence, using the functoriality of the determinant of cohomology,
we deduce that the pull-back isomorphism

t∗ : PicBun0T (C/S)
∼=−→ PicBundT (C/S)

preserves the tautological subgroups. Hence, the conclusion is implied by Case I.
Case III: General case.
Let π : C → S be an arbitrary family of curves (i.e. possibly without a section). Fix

a smooth cover S′ → S such that the family C ′ := C ×S S′ → S′ admits a section (e.g.
C →S ). By Case II, we have the following morphism of exact sequences:

(3.13)

where (C ′′ → S′′) := (C ′ ×S S′ → S′ ×S S′) and p1, p2 : C ′′ → C ′ denotes the natural
projections.
Consider the following commutative diagram of abelian groups:

1the proof of loc. cit. for the universal family Cg,n/Mg,n extends mutatis mutandis to an arbitrary
family C/S.

2the proof of loc. cit. for the universal family Cg,n/Mg,n extends mutatis mutandis to an arbitrary
family C/S.
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where all the rows are exact: the first one by Theorem 3.8, the second one by definition
and the third one is obtained by taking the kernels of the vertical arrows in Diagram
(3.13).
By applying the snake lemma at the first and the third rows, and using the assumption

RPic(C/S) = PicC/S(S), we deduce that the central vertical arrows in the middle must
be equalities, and thus, we have the assertion. �

Remark. If we remove the hypothesis RPic(C/S) = PicC/S(S), Theorem 3.9 is false.
Indeed, from the proof of Case III, we may deduce the following exact sequence of abstract
groups:

0 → Λ∗(T )⊗ PicC/S(C) → Pic
Bund

T
(C/S)/S

(S) → Bils(Λ(T )) → 0,

where Pic
Bund

T
(C/S)/S

denotes the relative Picard sheaf of the relative moduli stack

BundT (C/S) → S. If we assume RPic(C/S) ( PicC/S(S) and RPic(BundT (C/S)) =

Pic
Bund

T
(C/S)/S

(S) (e.g. if d =0, because Bun0T (C/S) → S has sections), we get

RPictaut(BundT (C/S)) ( RPic(BundT (C/S)).

3.3. The Picard group of Bunδ
G(C/S) for G reductive

In this subsection, we study when the Picard group of BunδG(C/S) is generated by the
image of the pull-back along the abelianization map

ab] : Bun
δ
G(C/S) → Bunδ

ab

Gab(C/S),

where δab := π1(ab)(δ), and the image of the transgression map (3.1).
More precisely, we investigate when the following commutative diagram, which is

functorial in G and S :

(3.14)

is a push-out diagram, where τ δG and τ δ
ab

Gab are, respectively, the transgression maps for

G and Gab (see Fact 3.2(3)), Sym2 Λ∗
ab is the injective homomorphism induced by the
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inclusion Λ∗
ab : Λ∗(Gab) ↪→ Λ∗(TG), which is invariant under the WG-action on Λ∗(TG),

and ab∗] is injective by the following:

Lemma 3.11. The pull-back map

ab∗] : PicBun
δab

Gab
(C/S) → PicBunδG(C/S)

is injective.

Proof. The composition

φ : TG
ι
↪→ G

ab
� Gab

is a surjective homomorphism of tori, hence it admits a section. This implies that, for
any lift d ∈ π1(TG) of δ ∈ π1(G), the homomorphism

φ∗] : PicBun
δab

Gab
(C/S)

ab∗]−−→ PicBunδG(C/S)
ι∗]−→ PicBundTG(C/S)

is injective. Hence, also the homomorphism ab∗] must be injective. �

We will use the following easy lemma on push-out diagrams of abelian groups.

Lemma 3.12. Consider a commutative diagram of abelian groups

(3.15)

where i and j are injective homomorphisms. Then Equation ( 3.15) is a push-out diagram
if and only if the natural map coker i→ coker j is an isomorphism.

Proof. This is easy and left to the reader. �

Hence, the diagram (3.14) is a push-out diagram if and only if the induced homomor-
phism

coker(Sym2 Λ∗
ab) → coker(ab∗] )

is an isomorphism.
The cokernel of Sym2 Λ∗

ab is described explicitly as follows:

Lemma 3.13.

(1) We have an exact sequence of lattices, functorial in G,
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0 → Sym2 Λ∗(Gab)
Sym2 Λ∗

ab−−−−−−→ Sym2 Λ∗(TG)
WG resD−−−→ Bils,ev(Λ(TD(G))|Λ(TGss))WG → 0,

b 7→ b|Λ(TD(G))⊗Λ(TD(G))

(3.16)

where we identify Sym2 Λ∗(TG) with the lattice Bils,ev(Λ(TG)) of even symmetric
bilinear forms and the last group is defined by

Bils,ev(Λ(TD(G))|Λ(TGss))WG

:=

{
b ∈ Bils,ev(Λ(TD(G)))

WG : bQ|Λ(TD(G))⊗Λ(TGss )
is integral

}
,

where bQ is the extension of b to a rational bilinear symmetric form on Λ(TGss).
(2) If Gsc ∼= G1 × . . .×Gs is the decomposition of the universal cover Gsc of D(G) into

simply connected quasi-simple groups, then Bils,ev(Λ(TD(G))|Λ(TGss))WG is a finite
index sub-lattice of(

Sym2 Λ∗(TGsc)
)WG = Bils,ev(Λ(TGsc))WG = Z〈b1〉 ⊕ . . .⊕ Z〈bs〉,

where bi is the basic inner product of Gi.
(3) If D(G) is simply connected (i.e. D(G) = Gsc), then

Bils,ev(Λ(TD(G))|Λ(TGss))WG = Bils,ev(Λ(TGsc))WG .

Proof. Part (1) is proved in [22, Prop. 2.4]. Part (2) follows from the fact that we
have finite index inclusions of lattices

Λ(TGsc) ↪→ Λ(TD(G)) ↪→ Λ(TGss)

together with [21, Lemma 2.2.1]. Part (3) follows from [7, Lemma 4.3.4]. �

A first case where Equation (3.15) is a push-out diagram is provided by the following:

Theorem 3.14. Assume that G is a reductive group such that D(G) is simply
connected and fix δ ∈ π1(G). There exists an exact sequence functorial in S and G

0 → PicBunδ
ab

Gab
(C/S)

ab∗]−−→ PicBunδG(C/S) →
(
Sym2 Λ∗(TGsc)

)WG → 0 (3.17)

together with a (non-canonical) splitting functorial in S.
In particular, the commutative diagram (3.15) is a push-out diagram.

This theorem was proved: for G semisimple by Faltings [17], for a fixed curve C over
k = k by Biswas–Hoffmann [7] and for the universal family Cg,n → Mg,n for g ≥ 1 by
the authors in [21, Thm. C(2)] and [22, Cor. 3.4].

Proof. The second assertion follows from the first one using Lemmas 3.12 and 3.13,
and the assumption that D(G) is simply connected. Hence, it is enough to prove the first
assertion.
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Let η be a geometric generic point of S. The family π : C → S sits in the following
Cartesian diagram of families of curves:

The above diagram gives rise to the following commutative diagram with exact rows:

(3.18)

where

• the first line is exact by [22, Cor. 3.4] for g ≥ 1 and by Lemma 3.15 for g =0,
where BunδG,g := BunδG(Cg/Mg) and similarly for Gab;

• Q is the cokernel of ab∗] (C/S), so that the second line is exact by definition;
• the third line is exact as it follows by applying [7, Thm. 5.3.1] to the morphism
ab and using [7, Prop. 5.2.11] together with our hypothesis that D(G) is simple
connected;

• the vertical morphisms in the left and central columns are injective by Fact 3.2(1);
• the composition σ ◦ ρ is the identity, which implies that ρ is injective and σ is
surjective.

It remains to show that σ is injective (or, equivalently, that ρ is surjective), and that
the exact sequence Equation (3.17) admits a functorial splitting.

To this aim, consider the surjective morphisms of tori TG ↪→ G
ab−→ Gab and pick a

section ι̃ : Gab ↪→ TG. The composition ι : Gab ι̃
↪→ TG ↪→ G is a section of ab. The

induced morphism

ι](C/S) : Bun
δab

Gab(C/S) ↪→ BunδG(C/S)

is a section of the morphism ab](C/S). By taking the pull-back at the level of the Picard
groups, we deduce that the inclusion

ab∗] (C/S) : PicBun
δab

Gab
(C/S) ↪→ PicBunδG(C/S)

admits a splitting, which is functorial in S, namely

ι](C/S)
∗ : PicBunδG(C/S) � PicBunδ

ab

Gab
(C/S).
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This shows that the exact rows in Equation (3.15) admit compatible splittings, which
implies that σ is injective, and we are done. �

The following lemma extends [22, Cor. 3.4] to genus zero, for the reductive groups with
simply connected derived subgroup.

Lemma 3.15. Let G be a reductive group such that D(G) is simply connected. For
every n ≥ 0, there exists an exact sequence, functorial in G

0 → PicBunδ
ab

Gab,0,n

ab∗]−−→ PicBunδG,0,n →
(
Sym2 Λ∗(TGsc)

)WG → 0. (3.19)

Proof. We will use the notation and results from [21, § 5]. Since the map π1(ab) :

π1(G)
∼=−→ π1(G

ab) = Λ(Gab) is an isomorphism by the hypothesis that D(G) is simply
connected (see Equation (2.6)), we can pick a lift d ∈ Λ(TG) of δ ∈ π1(G), which is
generic (see Definition/Lemma 3.1) and such that the following condition holds:

δabis 2-divisible in Λ(Gab) =⇒ dis 2-divisible in Λ(TG). (*)

By [21, Thm. 5.2], there exists a commutative diagram

(3.20)

where ι : TG ↪→ G.
By the definition of Ωd(TG) and the fact that d is generic (see Definition/Lemma 3.1),

the contraction homomorphism defines an isomorphism

(dss,−) :
(
Sym2 Λ∗(TGsc)

)WG ∼=−→ Ωd(TG)

Λ∗(Gab)
⊆ Λ∗(TG)

Λ∗(Gab)
= Λ∗(TGsc),

b 7→ b(dss,−).

(3.21)

Now, if n ≥ 1, then the maps ωδ
ab

Gab and ωδG are isomorphisms by [21, Thm. 5.2(2)],

and we conclude by putting together Equations (3.20) and (3.21). On the other hand, if
n =0, then [21, Thm. 5.2(2)] gives that Im(ωδ

ab

Gab) = {χ ∈ Λ∗(Gab) : χ(δab) ∈ 2Z},

Im(ωδG) = {χ ∈ Ω∗
d(TG) : χ(d) ∈ 2Z}.

(3.22)

This implies that the commutative diagram of abelian groups is a pull-back diagram

https://doi.org/10.1017/S0013091524000622 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091524000622


The line bundles on the moduli stack of principal bundles 31

since if χ ∈ Λ∗(Gab), then χ(d) = χ(δab). Hence, we get an injective homomorphism

α :
Λ∗(Gab)

Im(ωδ
ab

Gab)
↪→ Ω∗

d(TG)

Im(ωδG)
. (3.23)

Now if δab is not 2-divisible, then

Λ∗(Gab)

Im(ωδ
ab

Gab)
∼= Z/2Z ∼=

Ω∗
d(TG)

Im(ωδG)
.

If, instead, δab is 2-divisible, then condition (*) implies that

Λ∗(Gab)

Im(ωδ
ab

Gab)
= 0 =

Ω∗
d(TG)

Im(ωδG)
.

In any case, the morphism α of Equation (3.23) is an isomorphism, which implies, by the
snake lemma applied to Equation (3.22), that

Im(ωδG)

Im(ωδ
ab

Gab)

∼=−→ Ω∗
d(TG)

Λ∗(Gab)
.

Hence, we get the conclusion using again Equations (3.20) and (3.21). �

A second case where Equation (3.15) is a push-out diagram is described in the following:

Theorem 3.16. Let G be a reductive group and fix δ ∈ π1(G). If the family C/S has
genus g(C/S) > 0 and satisfies the following properties:

(1) End(JCη ) = Z and RPic(C/S) = PicC/S(S);

(2) RPic0(C/S) is torsion-free;

then the commutative diagram (3.15) is a push-out diagram.

This theorem was proved for the universal family Cg,n → Mg,n with g ≥ 1 (which
satisfy the assumptions, by Remarks 2.3 and 2.5(1) and the Franchetta’s conjecture) in
[21, Thm. C(2)].

Proof. The proof follows the same lines of the proof of [21, Thm. C(2)], as we now
indicate.
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First of all, because of the assumptions, the Picard group of BundTG(C/S) (where

d ∈ π1(TG) is a fixed lift of δ ∈ π1(G)) is generated by tautological classes by
Theorem 3.9. Hence, using Theorem 3.8, we can define an action of the Weyl group
WG on Picd(BundTG(C/S)) by setting

w · dπ̂(Lχ(M)) := dπ̂(Lw·χ(M)) for any χ ∈ Λ∗(T ) and any M ∈ Pic(C/S),

in such a way that the diagram (3.10) for RPicd(BundTG(C/S)) is WG-equivariant.

Now, using the bottom exact sequence of Equation (3.10) and arguing as in the proof
of [21, Lemma 5.3.3] for the case m =2, we get that the subgroup of invariants of the
above action of WG sit in the following push-out diagram:

(3.24)

Therefore, it remains to show that the natural inclusion

ψ :
(
PicBundTG(C/S)

)WG
↪→ PicBunδG(C/S) (3.25)

induced by the push-out diagram (3.24) and the commutative diagram (3.14) is an
isomorphism. This will be achieved in two steps:
Step 1: cokerψ is torsion.
Indeed, consider the two inclusions

ab∗] : PicBun
δab

Gab
(C/S)

(ab◦ι)∗]
↪→

(
PicBundTG(C/S)

)WG ψ
↪→ PicBunδG(C/S).

We get an induced exact sequence

0 →

(
PicBundTG(C/S)

)WG

PicBunδ
ab

Gab
(C/S)

→ PicBunδG(C/S)

PicBunδ
ab

Gab
(C/S)

→ cokerψ → 0.

By the push-out diagram (3.24) and using Lemmas 3.12 and 3.13, we get that

(
PicBundTG(C/S)

)WG

PicBunδ
ab

Gab
(C/S)

∼= Zs,
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where s is the number of quasi-simple factors of Gsc. Moreover, arguing as in the proof
of [21, Lemma 5.3.4], we deduce that

rk
PicBunδG(C/S)

PicBunδ
ab

Gab
(C/S)

≤ s.

By putting everything together, we deduce that cokerψ is a finite group.
Step 2: cokerψ is torsion-free.
Indeed, the natural inclusion of the subgroup of WG-invariants of PicBundTG(C/S)

factors is

(
PicBundTG(C/S)

)WG ψ
↪→ PicBunδG(C/S)

ι∗]
↪→ PicBundTG(C/S),

where ι∗] is injective by Fact 3.2(2). Therefore, cokerψ injects into the quotient

Q :=
PicBundTG(C/S)(

PicBundTG(C/S)
)WG

=
RPicBundTG(C/S)(

RPicBundTG(C/S)
)WG

Because of our three assumptions on the family C/S, Theorems 3.9 and 3.8 imply that
RPicBundTG(C/S) is torsion-free. Hence, the quotient Q is torsion-free by [21, Lemma

5.3.6], which implies that cokerψ is torsion-free. �

We now explain how to obtain two alternative presentations of the relative Picard group
of BunδG(C/S), for a family of curves C/S of positive genus and such that End(JCη ) = Z
and RPic(C/S) = PicC/S(S), assuming that Equation (3.14) is a push-out diagram.
We first need the following:

Definition 3.17. (see [ 22, Cor. 2.6, Def. 3.9]) Let G be a reductive group with
maximal torus TG and Weyl group WG, and fix δ ∈ π1(G).

(1) Bils,D−ev(Λ(TG))
WG :=

{
b ∈ Bils(Λ(TG))

WG : b|Λ(TD(G))×Λ(TD(G))
is even

}
.

(2) The Néron–Severi group of BunδG is the subgroup

NS(BunδG) ⊆
Λ∗(TG)

Λ∗(TGad)
⊕ Bils,D−ev(Λ(TG))

WG

consisting of all the elements ([χ], b) such that

[
χ|Λ(TD(G))

]
= b(δ ⊗−)|Λ(TD(G))

:=
[
b(d⊗−)|Λ(TD(G))

]
∈

Λ∗(TD(G))

Λ∗(TGad)
, (3.26)

where d ∈ Λ(TG) is any lift of δ.
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For a more detailed study of the Néron–Severi group NS(BunδG), see [22, Prop. 3.11].

Theorem 3.18. Assume that the family C/S has genus g(C/S) > 0 and satisfies the
following conditions:

(1) End(JCη ) = Z and RPic(C/S) = PicC/S(S);

(2) either RPic0(C/S) is torsion-free or D(G) is simply connected.

Then, there exists a commutative diagram, functorial in S and G,

(3.27)

where the rows are exact, the left vertical morphism is injective and the right vertical
morphism is surjective.
Moreover, the image of ωδG ⊕ γδG is equal to

Im(ωδG ⊕ γδG) =

{
([χ], b) ∈ NS(BunδG) :

[χ(x)− b(δ ⊗ x)] + (g − 1)b(x⊗ x)

is divisible by δ(C/S), for any x ∈ Λ(TG)

}
.

This theorem was proved for the universal family Cg,n → Mg,n for g ≥ 1 (and an
arbitrary reductive group) in [22, Thm. 1.1], and it can be deduced for a fixed curve C
over k = k (in the case g(C) > 0, End(JCη ) = Z and D(G) simply connected) from [7,

Thm. 5.3.1].

Proof. Observe that our assumptions imply that Equation (3.14) is a push-out dia-

gram (by Theorems 3.14 and 3.16), and that PicBunδ
ab

Gab(C/S) = Pictaut Bunδ
ab

Gab(C/S)
by Theorem 3.9.
Let us first describe the maps appearing in the above diagram (3.27):
• the map ιδG is defined by

iδG(χ⊗M) := 〈Lχ,M〉π̂

and jδG is the restriction of iδG.
• the morphism ωδG is induced by the weight homomorphism

wtδG : PicBunδG(C/S) → Λ∗(Z (G)) =
Λ∗(TG)

Λ∗(TGad)

coming from the exact sequence Equation (4.1).
• the morphism γδG is uniquely determined, using that the diagram (3.14) is a push-out,

by
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(1) The composition γδG ◦ τ δG is the inclusion

α :
(
Sym2 Λ∗(TG)

)WG ∼= Bils,ev(Λ(TG))
WG ↪→ Bils,D−ev(Λ(TG))

WG .

(2) The composition γδG ◦ ab∗# is equal to the following composition:

RPictaut Bunδ
ab

Gab(C/S)
γδ

ab

Gab−−−→ (Λ∗(Gab)⊗ Λ∗(Gab))s ∼= Bils(Λ(Gab))

B∗
ab−−−→ Bils,D−ev(Λ(TG))

WG ,

where γδ
ab

Gab is the homomorphism of Lemma 3.7 and B∗
ab is obtained by pull-back.

Now the proof is deduced from Theorems 3.8, 3.9 and 3.14, arguing as in the proofs of
[22, Thm. 3.6, Thm. 3.12]. �

We end this subsection by describing the relative Picard group of BunδG(C/S), for a
family of curves C/S of genus zero and an arbitrary reductive group G. We first need
the following:

Definition 3.19. (see [7, Def. 5.2.1]) Let G be a reductive group and let δ ∈ π1(G).
Define

NSBunδG(P1) := {(χ, b) : l + b(dss,−) ∈ Λ∗(TG)} ⊆ Λ∗(Z (G))×
(
Sym2 Λ∗(TGsc)

)WG ,

where dss is the image in Λ(TGss) of any lift d ∈ Λ(TG) of δ and l+b(d
ss,−) is interpreted

as an element of

Λ∗(Z (G))Q ⊕ Λ∗(TGsc)Q = Λ∗(TG)Q.

It is easily checked that the above definition does not depend on the choice of the
lifting d of δ (see [7, Lemma 5.2.2]) and that it is functorial in G (see [7, Def. 5.2.7]).

Theorem 3.20. Let C→ S be a family of curves of genus g= 0 on a regular and inte-
gral quotient stack. Let G be a reductive group, fix δ ∈ π1(G) and set δab := π1(ab)(δ) ∈
π1(G

ab). Fix a lift d ∈ Λ(TG) of δ and denote by dss its image in Λ(TGss).
There exists an injective homomorphism, functorial in S and G:

cδG(C/S) = cδG : RPicBunδG(C/S) → NSBunδG(P1)

such that

(1) if G=T is a torus, then cδG coincides with the weight homomorphism;
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(2) the image of cδG is equal to

Im(cδG) =


NSBunδG(P1) if C/Sis Zariski locally trivial,{
(l, b) ∈ NSBunδG(P1) : if C/Sis not Zariski locally trivial.

l(δab) + b(dss, dss)is even
}

(3.28)

In particular, if C/S is not Zariski locally trivial, then Im(cδG) is an index two

subgroup of NSBunδG(P1).

Note that the second subgroup in Equation (3.28) is well-defined since if d̃ ∈ Λ(TG)

is another lift of δ, then its image d̃ss in Λ(TGss) is such that d̃ss = dss + ε for some
ε ∈ Λ(TGsc), and we have

b(d̃ss, d̃ss) = b(dss, dss) + 2b(dss, ε) + b(ε, ε) ∈ b(dss, dss) + 2Z,

using that b(ε, ε) ∈ 2Z since b is an even symmetric bilinear form on Λ(TGsc), and that
b(dss, ε) ∈ Z by [7, Lemma 4.3.4].

Proof. Note that C/S is Zariski locally trivial if and only if C/S admits a section.
Therefore, for a choice of a geometric generic point η of S, we get the following diagram:

(3.29)

with Cartesian squares, where

n =

1 if C/Sis Zariski locally trivial,

0 if C/Sis not Zariski locally trivial.

The above diagram induces the following homomorphisms, functorial in S and in G :

RPicBunδG,0,n ↪→ RPicBunδG(C/S) ↪→ PicBunδG(P1
η)

cδG(P1η)−−−−→∼=
NSBunδG(P1), (3.30)

where the first two pullback homomorphisms are injective by Fact 3.2(1) (note that η is
also a geometric generic point of M0,n) and the last isomorphism is the one of [7, Thm.
5.3.1(iii)]. Therefore, we get our desired injective homomorphism, functorial in S and G

https://doi.org/10.1017/S0013091524000622 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091524000622


The line bundles on the moduli stack of principal bundles 37

cδG(C/S) : RPicBun
δ
G(C/S) ↪→ PicBunδG(P1

η)
cδG(P1η)−−−−→∼=

NSBunδG(P1),

which coincides with the weight homomorphism if G is a torus, because this is the case
for the isomorphism cδG(P1

η) (see the proof of [7, Thm. 5.3.1(iii)]).
It remains to prove part (2) by distinguishing the two cases C/S Zariski locally trivial

or not.
If C/S is Zariski locally trivial (and hence n =1 in the above diagram), then we get

that cδG(C/S) is surjective since the composite homomorphism in Equation (3.30)

cδG(C0,1/M0,1) : RPicBun
δ
G,0,1 → NSBunδG(P1)

is surjective by [21, Thm. 5.0.2].
If C/S is not Zariski locally trivial (and hence n =0 in the above diagram), then we

get that

{(l, b) ∈ NSBunδG(P1) : l(δab) + b(dss, dss)is even} ⊆ Im(cδG(C/S)),

since the same is true for the image of cδG(C0/M0) by [21, Thm. 5.0.2]. In order to
prove the other inclusion, consider the following commutative diagram (for a chosen lift
d ∈ Λ(TG) of δ):

where the bottom map is defined by (see [7, Def. 5.2.5])

ιNS,∗
] : NSBunδG(P1) → NSBundTG(P

1) = Λ∗(TG)

(l, b) 7→ l + b(dss,−).

The above commutative diagram, together with Theorem 3.6(2), implies that

Im(cδG(C/S)) ⊆ (ιNS,∗
] )−1(Im(cdTG(C/S)))

= {(l, b) ∈ NSBunδG(P1) : l(δab) + b(dss, dss)is even},

and we are done. �

Corollary 3.21. Same assumptions of Theorem 3.20. There exists an exact sequence
functorial in S and G

0 → PicBunδ
ab

Gab
(C/S)

ab∗]−−→ PicBunδG(C/S)
pδG−−→

 b ∈
(
Sym2 Λ∗(TGsc)

)WG :

bQ(dss,−)|Λ(TD(G))
is integral

 ,

(3.31)
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where the last homomorphism pδG has image of index at most two and it is surjective if
either D(G) is simply connected or C/S is Zariski locally trivial.

Note that if D(G) is simply connected, then the last group of Equation (3.31) is equal

to
(
Sym2 Λ∗(TGsc)

)WG by Lemma 3.13(3).

Proof. Theorem 3.20 implies that the following diagram

is Cartesian, where the map abNS,∗
] sends χ into (χ, 0). Therefore, we get that the cokernel

of ab∗] injects into the cokernel of abNS,∗
] , which is equal (by [7, Prop. 5.2.11]) to

coker(abNS,∗
] ) =

{
b ∈

(
Sym2 Λ∗(TGsc)

)WG : bQ(dss,−)|Λ(TD(G))
is integral

}
.

This proves the existence of the exact sequence Equation (3.31), as well as of the following
exact sequence:

0 → cokerwtδ
ab

Gab(C/S) → coker cδG(C/S) → coker pδG → 0.

Since coker cδG(C/S) is a finite group of order at most two by Theorem 3.20 and it is
trivial if C/S is Zariski locally trivial, we deduce that the same is true for coker pδG.
Moreover, coker pδG is trivial if D(G) is simply connected by Theorem 3.14. �

4. The rigidification of Bunδ
G(C/S) by the centre

The aim of this section is to study, for a reductive group G, the Z (G)-gerbe (see
Equation (2.10))

νδG = νδG(C/S) : Bun
δ
G(C/S) → BunδG(C/S)[]Z (G) := BunδG(C/S),

obtained by rigidifying the stack BunδG(C/S) by the centre Z (G) of the reductive
group G.
From the Leray spectral sequence

E2
p,q = Hp(BunδG(C/S), R

q(νδG)∗(Gm)) ⇒ Hp+q(BunδG(C/S),Gm),
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and using that (νδG)∗(Gm) = Gm and that R1(νδG)∗(Gm) is the constant sheaf
Λ∗(Z (G)) = Hom(Z (G),Gm), we get the exact sequence

Pic(BunδG(C/S))
(νδG)∗
↪→ Pic(BunδG(C/S))

wtδG−−−→ Λ∗(Z (G)) := Hom(Z (G),Gm)

obsδG−−−→ H2(BunδG(C/S),Gm)
(νδG)∗
−−−−→ H2(BunδG(C/S),Gm),

(4.1)

and an analogue one in which the Picard groups Pic are replaced by the relative Picard
groups RPic.
Recall (see [22, § 5]) the following geometric descriptions of the weight homomorphism

wtδG and the obstruction homomorphism obsδG:

• given a line bundle L on BunδG(C/S), the character wtδG(L) ∈ Λ∗(Z (G)) is such
that, for any E := (E → CV ) ∈ BunδG(C/S)(V ), we have the factorization

wtδG(V ) : Z (G)(V ) ↪→ Aut
Bunδ

G
(C/S)(V )

(E)
Aut(LV )
−−−−−−→ AutOV (LV (E)) = Gm(V ),

where the first homomorphism is given by the canonical action of Z (G) on every
G-gerbe and the second homomorphism is induced by the functor of groupoids

LV : BunδG(C/S)(V ) → {Line bundles on V }

determined by L.
• given any character λ ∈ Hom(Z (G),Gm), the element obsδG(λ) is the class in
H2(BunδG(C/S),Gm) of the Gm-gerbe λ∗(ν

δ
G) obtained by push-forwarding the

Z (G)-gerbe νδG along λ.

Recall also (see [22, § 2.1]) that the character group of the centre Z (G) is equal to

Λ∗(Z (G)) =
Λ∗(TG)

Λ∗(TGad)
,

and it sits into the following exact sequence induced by the vertical exact sequence of
Equation (2.5):

0 → Λ∗(Gab)
Λ∗
ab−−→ Λ∗(Z (G)) =

Λ∗(TG)

Λ∗(TGad)

Λ∗
D−−→ Λ∗(Z (D(G))) =

Λ∗(TD(G))

Λ∗(TGad)
→ 0.

(4.2)

Our goal is to determine the (relative) Picard group of the rigidification BunδG(C/S)
and the group

coker(wtδG)
∼= Im(obsδG) = ker(νδG)

∗, (4.3)

which is an obstruction to the triviality of the Z (G)-gerbe νδG.
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With this aim, we need to recall two crucial homomorphisms from [22].

Definition 4.1. (see [22, Definition/Lemma 2.8, Def. 5.3]) Let G be a reductive group
with fixed maximal torus TG and Weyl group WG, and fix δ ∈ π1(G).

(1) There is a well-defined homomorphism (called evaluation homomorphism)

evδD(G) : Bil
s,ev(Λ(TD(G))|Λ(TGss))WG −→

Λ∗(TD(G))

Λ∗(TGad)
,

b 7→ b(δss ⊗−) := [bQ(dss ⊗−)],

(4.4)

where dss ∈ Λ(TGss) is any lift of δss := π1(ss)(δ) ∈ π1(G
ss) =

Λ(TGss )

Λ(TGsc )
and dQ is

the rational extension of b to Λ(TGss).
(2) The Néron–Severi group of BunδG is the subgroup

NS(BunδG) ⊂ Bils,D−ev(Λ(TG))
WG

consisting of those b ∈ Bils,D−ev(Λ(TG))
WG such that

0 = b(δ ⊗−)|Λ(TD(G))
:=

[
b(d⊗−)|Λ(TD(G))

]
∈

Λ∗(TD(G))

Λ∗(TGad)
, (4.5)

where d ∈ Λ(TG) is any lift of δ.

Note that there is an injective homomorphism

νδ,NS : NS(BunδG) ↪→ NS(BunδG)

b 7→ ([0], b).

For a more detailed description of NS(BunδG), see [22, Prop. 5.4].

Example 1. If D(G) is simply connected, i.e. D(G) = Gsc, then the cokernel of evδGsc

can be computed explicitly as it follows:

(1) If Gsc = Gsc
1 ×· · ·×Gsc

r is the decomposition of Gsc into simply connected and almost
simple algebraic groups and δ = (δ1, . . . , δr) ∈ π1(G

ad) = π1(G
ad
1 )× · · · × π1(G

ad
r ),

then

coker evδGsc ∼= coker ev
δ1
Gsc
1
× · · · × coker evδr

Gsc
r
.

(2) If Gsc is simply connected and almost simple, then the cokernel of evδGsc is equal to
(see [22, § 7]):
(a) If Gsc = SLn (and hence Gad = PSLn), then, for any δ ∈ π1(PSLn) = Z/nZ,

we have that

coker evδSLn =
Z

gcd(n, δ)Z
.
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(b) If Gsc = Spin2n+1 (and hence Gad = SO2n+1), then, for any δ ∈ π1(SO2n+1) =
Z/2Z, we have that

coker evδSpin2n+1
= Z/2Z.

(c) If Gsc = Sp2n (and hence Gad = PSp2n), then, for any δ ∈ π1(PSp2n) = Z/2Z,
we have that

coker evδSp2n =

Z/2Z if either δ = 0or nis even,

0 otherwise.

(d) If Gsc = Spin2n (and hence Gad = PSO2n), then, for any

δ ∈ π1(PSO2n) =

Z/4Z if n is odd,

Z/2Z× Z/2Z if n is even,

we have that

coker evδSpin2n =


Z/4Z if δ = 0 and n is odd,

Z/2Z× Z/2Z if δ = 0 and n is even,

Z/2Z if ord(δ) = 2,

0 if ord(δ) = 4.

(e) If Gsc = Esc
6 , then, for any δ ∈ π1(Ead

6 ) = Z/3Z, we have that

coker evδEsc6
=

Z/3Z if δ = 0,

0 if δ 6= 0.

(f) If Gsc = Esc
7 , then, for any δ ∈ π1(Ead

7 ) = Z/2Z, we have that

coker evδEsc7
=

Z/2Z if δ = 0,

0 if δ 6= 0.

(g) If Gsc is of type E8 or F4 or G2, then

coker evδGsc = 0.

We first describe the (relative) Picard group of the rigidification BunδG(C/S) for
families of positive genus, under certain assumptions.
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Theorem 4.2. Let C→ S be a family of curves of genus g> 0 on a regular and integral
quotient stack with geometric generic fibre Cη. Assume that the following two conditions
hold true:

(1) End(JCη ) = Z and RPic(C/S) = PicC/S(S);

(2) either RPic0(C/S) is torsion-free or D(G) is simply connected.

Then, for any fixed δ ∈ π1(G), we have the following exact sequence, functorial in S
and G:

0 → Λ∗(Gab)⊗ RPic0(C/S)
jδ
G−−→ RPic(BunδG(C/S))

γδ
G−−→ NS(BunδG), (4.6)

where jδG and γδG are uniquely determined by

(νδG)
∗ ◦ jδG = jδG and νδ,NS

G ◦ γδG = (ωδG ⊕ γδG) ◦ (νδG)∗,

see Theorem 3.18.
Moreover, the image of γδG is equal to

Im(γδG) =

{
b ∈ NS(BunδG) :

b(δ ⊗ x) + (g − 1)b(x⊗ x)is a multiple of δ(C/S)

for any x ∈ Λ(TG)

}
.

(4.7)

This theorem was proved for the universal family Cg,n → Mg,n for g ≥ 1 in [22,
Thm. 5.5].

Proof. This is deduced from Theorem 3.18, arguing as in the proofs of [22,
Thm. 5.5]. �

We now describe the cokernel of the weight homomorphism.

Theorem 4.3. Let C→ S be a family of curves of genus g> 0 on a regular and integral
quotient stack with geometric generic fibre Cη. Assume that the following two conditions
hold true:

(1) End(JCη ) = Z and RPic(C/S) = PicC/S(S);

(2) either RPic0(C/S) is torsion-free or D(G) is simply connected.

Then, for any fixed δ ∈ π1(G), we have the following exact sequence, There exists an
exact sequence

0 → coker(γδG)
∂δG−−→ Hom

(
Λ(Gab),

Z
δ(C/S)Z

)
Λ̃∗
ab−−→ coker(wtδG)

Λ̃∗
D−−→ coker(evδD(G)) → 0,

(4.8)
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where Λ̃∗
ab and Λ̃∗

D are the homomorphisms induced by, respectively, Λ∗
ab and Λ∗

D of
Equation (4.2) and ∂δG is defined as follows:

∂δG : coker(γδG) −→ Hom

(
Λ(Gab),

Z
δ(C/S)Z

)
[b] 7→ {x 7→ [b(δ ⊗ x̃) + (1− g)b(x̃⊗ x̃)]} ,

(4.9)

where b ∈ NS(BunδG,g,n) ⊂ Bils,D−ev(Λ(TG))
WG and x̃ ∈ Λ(TG) is any lift of x ∈ Λ(Gab).

This theorem was proved for the universal family Cg,n → Mg,n for g ≥ 1 in [22, Thm.
5.7] and for a curve C over k = k of genus g(C) ≥ 3 in [8, Thm. 6.8] (and in both results
the general case of an arbitrary reductive group is also treated).

Proof. This is deduced from Theorem 3.18, arguing as in the proofs of [22,
Thm. 5.7]. �

Corollary 4.4. Same assumptions as in Theorem 4.3.

(1) If δ(C/S) = 1, then there is an isomorphism

Λ̃∗
D : coker(wtδG)

∼=−→ coker(evδD(G)).

(2) If G=T is a torus and d ∈ Λ(T ), then there is an exact sequence

0 → coker(γdT )
∂dT−−→ Hom

(
Λ(T ),

Z
δ(C/S)Z

)
→ coker(wtdT ) → 0, (4.10)

Moreover, we have that

coker(γdT )
∼=

Z
δ(C/S)

gcd(δ(C/S),div(d)+1−g)Z
⊕

 Z
δ(C/S)

gcd(δ(C/S),g−1,div(d))Z

⊕(dim(T )−1)

coker(ωdT )
∼=

Z
gcd(δ(C/S),div(d) + 1− g)Z

⊕
[

Z
gcd(δ(C/S), g − 1, div(d))Z

]⊕(dim(T )−1)

,

where div(d) is the divisibility of d in the lattice Λ(T ), with the convention that

coker(γdT ) = {0} if δ(C/S) = 0 (when the above expression for coker(γdT ) is not
well-defined).

The above Corollary for G = Gm recovers the main result of [35]: a Poincaré line bundle
exists on BundGm(C/S)×S C (which is equivalent to the triviality of the Gm-gerbe νdGm)
if and only if gcd(δ(C/S), d+ 1− g) = 1, where d ∈ Λ(Gm) = Z.

Proof. Part (1) and the first part of (2) follow from Theorem 4.2.
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The second part of (2) follows by choosing a basis {e1, . . . , er} of Λ(T ) (with r = dimT )
such that d = div(d)e1 and computing the composition

∂dT : Bils(Λ(T )) � coker(γdT )
∂dT−−→ Hom

(
Λ(T ),

Z
δ(C/S)Z

)

on the basis
{
{e∗i ⊗ e∗i }i, {e∗i ⊗ e∗j + e∗j ⊗ e∗i }i>j

}
of Bils(Λ(T )):


∂dT (e

∗
1 ⊗ e∗1) = [div(d) + 1− g]e∗1,

∂dT (e
∗
i ⊗ e∗i ) = [1− g]e∗i for any i ≥ 2,

∂dT (e
∗
1 ⊗ e∗i + e∗i ⊗ e∗1) = div(d)e∗i for any i ≥ 2,

∂dT (e
∗
i ⊗ e∗j + e∗j ⊗ e∗i ) = 0 for any 2 ≤ i < j.

�

We end this subsection by computing the relative Picard group of BunδG(C/S) and the
group coker(wtδG) for families of genus zero, under certain assumptions.

Theorem 4.5. Let π : C → S is a family of smooth curves of genus g(C/S) = 0 over
an integral and regular quotient stack S. Assume that at least one of the following two
assumptions is satisfied:

(1) the family C/S is Zariski locally trivial;
(2) the derived subgroup D(G) is simply connected.

For a given δ ∈ π1(G), consider the homomorphism

êvδD(G) :

 b ∈
(
Sym2 Λ∗(TGsc)

)WG :

bQ(dss,−)|Λ(TD(G))
is integral

 −→
Λ∗(TD(G))

Λ∗(TGad)

b 7→ b(δss ⊗−) := [bQ(dss ⊗−)],

(4.11)

where dss ∈ Λ(TGss) is any lift of δss := π1(ss)(δ) ∈ π1(G
ss) =

Λ(TGss )

Λ(TGsc )
and dQ is the

rational extension of b to Λ(TGss).

(1) We have an isomorphism

RPic(BunδG(C/S))
∼= ker(êvδD(G)),

which is functorial in S and G.
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(2) The homomorphism Λ∗
D of Equation (4.2) induces a surjection

Λ̃∗
D : coker(wtδG) � coker(êvδD(G)), (4.12)

whose kernel is equal to

ker(Λ̃∗
D) =

0 if either δ(C/S) = 1 or δab is 2-divisible in Λ∗(Gab),

Z/2Z if δ(C/S) = 2 and δab is not 2-divisible in Λ∗(Gab).
(4.13)

This theorem can be deduced for the universal family C0,n → M0,n with n ≥ 1 (which
is Zariski locally trivial) from [22, Rmk. 5.10]. Note that if D(G) is simply connected, then

the homomorphism êvδD(G) coincides with the homomorphism evδGsc by Lemma 3.13(3).

Proof. Set

Q :=

 b ∈
(
Sym2 Λ∗(TGsc)

)WG :

bQ(dss,−)|Λ(TD(G))
is integral

 .

Consider the following diagram:

(4.14)

where the first row is exact by Corollary 3.21, the second row is exact by Equation (4.2)
and the diagram is commutative by the same proof of [22, Prop. 5.2, Prop. 5.4].

By applying the snake lemma and using that wtδ
ab

Gab is injective by Theorem 3.6(2), we
get an exact sequence

0 → RPic(BunδG(C/S)) → ker(êvδD(G)
∂−→ coker(wtδ

ab

Gab) → coker(wtδG)
Λ̃∗

D−−→ coker(êvδD(G))

→ 0.

Observe now that Theorem 3.6(3) implies that coker(wtδ
ab

Gab) is equal to the group in the

right-hand side of Equation (4.13). Hence, we conclude by the previous exact sequence
and the following:
Claim: the coboundary map ∂ is zero.

Indeed, assume that coker(wtδ
ab

Gab)
∼= Z/2Z; otherwise, the statement is trivially true.

In particular, C/S is not Zariski locally trivial, and hence D(G) = Gsc due to our

assumptions. This implies that êvδD(G) = evδGsc as observed above. Let b ∈ ker(evδGsc) ⊂(
Sym2 Λ∗(TGsc)

)WG . By Lemma 3.13(1), we can choose b̃ ∈
(
Sym2 Λ∗(TG)

)WG such that
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b̃|Λ(TGsc )×Λ(TGsc ) = b, which implies that the class of τ δG(̃b) ∈ RPic
(
BunδG(C/S)

)
is a

lift of b. By the same argument of [22, Def./Lemma 3.7, Prop. 5.2], we have that

wtδG(τ
δ
G(̃b)) = b̃(δ ⊗−) := [̃b(d⊗−)] ∈ Λ∗(TG)

Λ∗(TGad)
,

where d ∈ Λ(TG) is any lift of δ. Since b is in the kernel of evδGsc , the element wtδG(τ
δ
G(̃b))

lies in the image of Λ∗
ab, i.e. there exists χ ∈ Λ∗(Gab) such that

b̃(δ ⊗−) = χ(Λab(−)). (4.15)

By the definition of the boundary homomorphism, we have that

∂(b) = [χ(δab)] ∈ Z/2Z ∼= coker(wtδ
ab

Gab).

Since δab = Λab(d) for any lift d ∈ Λ(TG) of δ, Equation (4.15) implies that

χ(δab) = b̃(δ ⊗ b) = b̃(d⊗ d).

But b̃(d⊗ d) is even since b̃ ∈
(
Sym2 Λ∗(TG)

)WG ∼= Bils,ev(Λ(TG))
WG , which forces ∂(b)

to be zero, q.e.d. �
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(8) I. Biswas and N. Hoffmann, Poincaré families of G-bundles on a curve, Math. Ann.
352(1) (2012), 133–154.

(9) I. Biswas and Y. I. Holla, Brauer group of moduli of principal bundles over a curve, J.
Reine Angew. Math. 677 (2013), 225–249.

(10) S. Bosch, W. Lütkebohmert and M. Raynaud, Néron models, Ergebnisse der Mathematik
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