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Viscoplastic flow between hinged plates
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The incompressible motion of viscoplastic fluid between two semi-infinite rigid plates,
hinged at their ends and rotating towards one another at constant angular velocity,
generates self-similar flow fields because there is no externally imposed length scale in
the absence of inertia. The magnitude of the strain rate scales with the angular velocity
of the plates and the dimensionless deviatoric stresses are functions only of the polar
angle and a dimensionless measure of the yield stress; they are independent of the radial
distance from the corner. These flows feature unyielded regions adjacent to the boundaries
for sufficiently large angles between the plates. Moreover, when the dimensionless yield
stress is large, there are viscoplastic boundary layers that are attached to the boundary or
the plug, the asymptotic structures of which are constructed.
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1. Introduction

We investigate the incompressible flow of a Herschel–Bulkley viscoplastic fluid between
two rigid, semi-infinite plates, hinged at the origin and rotating towards one another
with angular velocity, Ω (see figure 1a), thus extending the classical problem of
viscous Newtonian fluid flow in this configuration (see, for example, Moffatt (1964)).
Recent studies of viscoplastic fluids in converging and recirculating corner flows have
demonstrated how the existence of a yield-stress changes the structure of the Newtonian
solutions significantly, leading to the occurrence of rigid unyielded regions of fluid, or
‘plugs’, and the development of viscoplastic boundary layers when the dimensionless
yield-stress is large (Taylor-West & Hogg 2021, 2022). In both of these previous studies,
the magnitude of the strain rate varies with the distance from the vertex, resulting in
viscously and yield-stress dominated behaviour in different regions of the wedge. In
contrast, it will be shown that the flow driven by hinged plates is self-similar, with the
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Figure 1. (a) Schematic of problem geometry. Only half of the geometry is shown, with the other half given
by symmetry in θ = 0. The shaded region indicates unyielded material. (b) Strain-rate (colour-plot) and
streamlines (black) from numerical integration as described in § 3, with α = 60◦, Bi = 1000 and N = 1. The
solid blue region shows the unyielded plug.

dimensionless strain rate and deviatoric stresses varying only with the polar angle. This
flow configuration has application to coating (Davard & Dupuis 2000), lubrication (for
example in the biomechanics of synovial joints (Hou et al. 1992)) and extrusion flows of
viscoplastic fluid (Ahuja, Luisi & Potanin 2018). In sensory evaluation of foods, Chen
(1993) suggests that squeeze flow in a wedge more accurately models the flow between
the tongue and roof of mouth than the flow between parallel plates, which has been used
as a model to predict oral sensory response (for example, Demartine & Cussler (1975)
and Elejalde & Kokini (1992)). In addition, albeit with different boundary conditions, the
flow in a closing wedge could be used to understand the local flow near a moving contact
line in a drop of yield-stress fluid (see, for example, Jalaal, Stoeber & Balmforth (2021)).
Beyond its direct relevance to applications, the flow configuration under consideration
in this study also offers a rare example of a quasianalytical solution for non-Newtonian,
non-parallel flow. As such it is a useful problem for bench-marking computational codes
and for determining the validity of constitutive models beyond simple-shear flows in which
they are typically defined and experimentally determined.

The flow between rotating hinged plates has been studied for a number of different
non-Newtonian constitutive laws. Phan-Thien (1984) studied the case of a viscoelastic
fluid, showing that exact similarity solutions exist for a general viscoelastic constitutive
law, and analysing in detail the time evolution for the specific examples of the Oldroyd-B
and Phan-Thien and Tanner (PTT) models, with a prescribed exponential closing rate
of the hinged plates. They showed that the velocity fields do not deviate significantly
from the Newtonian solution, but that viscoelasticity can have a significant impact on
the evolution of the stresses in the wedge, with the Oldroyd-B model, in particular,
predicting unbounded extensional stresses above a critical Weissenberg number (the
ratio of typical elastic and viscous stresses), while stresses in the PTT model remain
bounded but can become oscillatory. Phan-Thien & Zheng (1991) further explored the
existence of this critical Weissenberg number, by focussing on the steady-state solution
at a given hinge half-angle (of π/4) and showing that, for an Oldroyd-B fluid, the
critical Weissenberg number corresponds to a limiting point above which the steady-state
solution ceases to exist. Chen (1993) studied the problem for a power-law fluid, using an
assumed approximate form for the radial velocity field in the cases of slip and no-slip
at the walls, with the aim of providing more easily calculated solutions than the exact
similarity solutions derived by Phan-Thien (1984). Wilson (1993) investigated the flow of
a biviscosity fluid in a closing wedge of half-angle less than π/4. Under this rheological
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Viscoplastic flow between hinged plates

model the fluid is assumed to be Newtonian with relatively high viscosity up to an imposed
transitional shear stress (or equivalently a transitional strain rate) and then exhibits a
Bingham-like constitutive law for high shear stresses and strain rates; by construction the
constitutive law is continuous. In the limit where the ratio of the viscosities above and
below the transitional strain rate vanishes, the Bingham law is retrieved. Often with this
model, a ‘yield surface’ is defined as a location at which the flow attains the transitional
strain rate and changes its rheological model from Newtonian to Bingham-like. Evidently
this surface does not demark the boundary of an unyielded rigid plastic region, since
deformation is still permitted, albeit with a potentially high viscosity. Wilson (1993)
determined the existence of the ‘yield surface’ and its dependence upon the dimensionless
transitional shear stress and the ratio of the viscosities. He showed that the material close
to the symmetry line of the wedge could be ‘unyielded’ (i.e. its strain rate falls below
the transitional value), but that this region vanished when the viscosity ratio became
sufficiently small for any fixed dimensionless transitional shear stress, in which case the
entire fluid was ‘yielded’. As we demonstrate below (see §§ 3 and 4), for wedge angles
less than π/4, the fluid is indeed yielded throughout, and is plastically dominated and
only weakly yielded when the dimensionless yield stress is large. It is also possible to
explore the dynamical behaviour under other regularised rheologies within the wedge.
For example, Al Khatib (2006) considered the problem for a regularised version of
the Herschel–Bulkley constitutive law, deriving the governing similarity equations for
the time evolution of the flow under a prescribed exponential closing rate, utilising the
Papanastasiou regularisation. They found that the radial velocity distribution was very
close to the Newtonian solution for the range of parameters explored, and showed how the
pressure load on the plates varied with time and depended on the shear thinning and yield
stress of the fluid. They also considered the existence of unyielded regions in the wedge
and found that no such region exists, however, their analysis is for just a single choice
of the hinge angle and constitutive parameters and, moreover, the regularisation of the
constitutive law precludes the occurrence of any true plugs (as for the biviscosity model).

Compression between rotating hinged plates has also been widely studied for a plastic
material, under a range of different constitutive laws (Alexandrov & Lyamina 2003;
Alexandrov & Jeng 2009; Alexandrov, Pirumov & Chesnikova 2009; Alexandrov &
Miszuris 2015). A distinguished feature of the rigid plastic problem is the existence of
unyielded regions in rigid body rotation adjacent to the rotating plates, for sufficiently large
wedge angles. Of particular relevance to the current paper are the studies for a Bingham
viscoplastic (Alexandrov & Jeng 2009), and for a viscoplastic with a saturation stress
which the magnitude of the deviatoric stress approaches as the strain-rate tends to infinity
(Alexandrov & Miszuris 2015). In the former, Alexandrov & Jeng (2009) show that the
deviatoric stresses are functions of polar angle only, and hence derive governing ordinary
differential equations (ODEs) for the stress and velocity fields in the domain. Their results
do not exhibit plug formation or boundary layers in part due to the focus on relatively small
yield stresses and angles between the plates. In the latter, Alexandrov & Miszuris (2015)
show that a rigid zone can occur for wedge angles above some critical value but, in the
absence of a specific constitutive law, do not calculate this angle or evaluate how it depends
on the non-dimensional yield stress. The existence of typical viscoplastic boundary layers
in this case is precluded by the saturation stress which results in plastic behaviour when
the shear-rate is large. Herein, we revisit the solution of Alexandrov & Jeng (2009) for the
case of a Bingham fluid, which we generalise to the Herschel–Bulkley constitutive law,
demonstrating that the self-similar solution does in fact include the existence of unyielded
regions for sufficiently large angles between the plates, and elucidating the boundary-layer
structure that emerges in the regime of large non-dimensional yield-stress.
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We assume the constitutive law of a Herschel–Bulkley fluid, relating the deviatoric stress
tensor, τ , to the strain-rate tensor, γ̇ = ∇u + ∇uT, via

τ =
(

Kγ̇ N−1 + τY

γ̇

)
γ̇ when τ > τY , γ̇ = 0 otherwise, (1.1)

where K is the consistency, N is the flow index, τY is the yield-stress and τ ≡ (τijτij/2)1/2

and γ̇ ≡ (γ̇ijγ̇ij/2)1/2 are the second invariants of the deviatoric stress and strain-rate
tensors, respectively. This constitutive law reduces to the Bingham model for N = 1 and
K = μ, the viscosity. We adopt polar coordinates, (r, θ), centred on the hinge and with θ
measured from the line of symmetry between the two plates (see figure 1). We denote the
components of the velocity as u = (u, v). Assuming ρΩ2−Nr2/K � 1 (where ρ denotes
the density) in the region of interest, we can neglect inertia and search for a quasistatic
solution. In this case, the system of equations is given by

1
r
∂

∂r
(ru)+ 1

r
∂v

∂θ
= 0, (1.2)

∂p
∂r

= ∂τrr

∂r
+ 1

r
∂τrθ

∂θ
+ 2

r
τrr, (1.3)

1
r
∂p
∂θ

= ∂τrθ

∂r
− 1

r
∂τrr

∂θ
+ 2

r
τrθ , (1.4)

representing incompressibility, and the balance of momentum in the radial and azimuthal
directions, respectively. The boundary conditions arise from symmetry at θ = 0 and
no-slip at the rigid wall, and are given by

v = ∂u
∂θ

= 0 at θ = 0, and (u, v) = (0,−Ωr) at θ = α, (1.5a,b)

when the rigid plates are at θ = ±α.
We note that, in the absence of a length scale in the problem, the only velocity scale is

Ωr and so we write

(u, v) = Ωr
2

(
f ′(θ),−2f (θ)

)
, (1.6)

where f (θ) is a function to be determined, and then incompressibility is automatically
satisfied; the stream function is therefore given by Ψ = Ωr2f (θ)/2. We further scale
strain-rates byΩ/2, and pressure and stresses by the viscous stress scale K(Ω/2)N . Having
done so, the governing equations for the dimensionless variables are unchanged but the
constitutive law becomes

τ =
(
γ̇ N−1 + Bi

γ̇

)
γ̇ when τ > Bi, γ̇ = 0 otherwise, (1.7)

where the dimensionless parameter, Bi = 2NτY/(KΩN), is the Bingham number,
representing the ratio of the yield-stress to a typical viscous stress. Further, the boundary
conditions become f = f ′′ = 0 at θ = 0, and f = 1, f ′ = 0 at θ = α, representing
assumed symmetry at θ = 0 and no slip at θ = α.

As shown by Alexandrov & Jeng (2009), under the self-similar ansatz (1.6), the
governing equations reduce to ODEs. By careful analysis of these governing differential
equations we will show that a rigid zone adjacent to the boundary, in which the fluid is in
solid body rotation, does exist for angles above a critical angle, α ≥ αc (with αc ≥ π/4),
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Viscoplastic flow between hinged plates

and demonstrate how this critical angle depends on the Bingham number, in particular
reducing asymptotically to π/4 in the plastic limit Bi → ∞. We will also show that
viscoplastic boundary layers occur when Bi 	 1, demonstrating the dependence of the
width of these layers on the Bingham number.

The theory of viscoplastic boundary layers, in which shear becomes concentrated in a
thin layer, was first developed by Oldroyd (1947), who identified a distinguished limit in
which viscous and plastic stresses both enter the leading-order balance of momentum in
the boundary layer. For a Bingham fluid, this regime occurs for dimensionless boundary
layer widths of order Bi−1/3. Later, Piau (2002) proposed an alternative boundary layer
scaling, of order Bi−1/2, for which viscous stresses are dominant in the boundary layer.
These theories were generalised and put on a rigorous asymptotic footing by Balmforth
et al. (2017). Such boundary layers have also been observed in laboratory experiments,
in the penetration of a rigid plate into a bath of viscoplastic fluid (Boujlel et al. 2012),
and the injection of viscoplastic fluid into a bath of the same fluid (Chevalier et al.
2013). Chevalier et al. (2013) associates the existence of these boundary layers with
the flow becoming ‘frustrated’ when the yield stress character locks the fluid in place,
while boundary conditions necessitate motion of the fluid. Thus, when the yield stress
is large, boundary layers occur to break this frustration, by allowing for the motion of
the boundaries while the bulk of the fluid remains at the yield stress. For the current
problem we will show that boundary layers of this kind form at the rigid boundaries when
the Bingham number is large and the wedge half-angle is below π/4 (αc − α = O(1)).
Conversely, for α beyond this regime the flow can satisfy the velocity boundary conditions
without requiring a region of high strain rate, and so the strain rates remain O(1), and
the fluid remains at the yield stress to leading order throughout the wedge. In accord
with previous studies, the dimensionless width of the boundary layers scales with the
Bingham number via Bi−1/(N+1), reducing to the anticipated Bi−1/2 scaling for Bingham
fluids. We note that Wilson’s (1993) analysis of the biviscosity model in wedges with
α < π/4 in the regime of relatively high transitional shear stress also features boundary
layers attached to the wedge boundaries. They scale in accord with the Bingham case of
N = 1 with the dimensionless width being proportional to Bi−1/2. It will be shown in
§ 4.1 that our approach circumvents some of the difficulties of Wilson’s (1993) analysis
by a different choice of independent variable (see § 2) and explicitly matches between
a plastically dominated region in the bulk and viscously deforming region adjacent to
the wedge boundaries. This allows extension to both Herschel–Bulkley rheology and to
wider wedge angles (α > π/4) for which rigid plug regions exist adjacent to the wedge
boundaries.

We first derive the similarity equations, extending the methodology of Alexandrov &
Jeng (2009) in § 2, then detail the numerical integration of these ODEs in § 3 and set out
the boundary layer analysis in § 4. In § 5 we carry out full numerical simulations of the
problem, to show how the similarity solution is embedded in the full simulations, before
briefly concluding in § 6. There is also one Appendix in which we detail how the results
reduce to the Newtonian solution when Bi � 1 with N = 1, and determine the asymptotic
dependence of a thin unyielded region near the plates when α = π/2 in this regime.

2. Similarity equations

Given the assumed form of the velocity (1.6), the strain-rate components and magnitude
of the strain rate are given in dimensionless form by

γ̇rr = 2f ′(θ), γ̇rθ = f ′′(θ), γ̇ =
√

f ′′2 + 4f ′2, (2.1a–c)
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where a prime denotes differentiation with respect to θ . Importantly these are independent
of radial distance from the vertex and this underpins the solution that we develop in what
follows. An immediate consequence is that the components of the stress tensor are also
functions of only the polar angle and we can write(

τrr (θ)
τrθ (θ)

)
= k(θ)

(
cos 2ψ

− sin 2ψ

)
, (2.2)

where ψ = ψ(θ) is a variable representing the orientation of the deviatoric stress tensor
and the magnitude of the deviatoric stress, k(θ), is given by

k(θ) =
(

f ′′2 + 4f ′2
)N/2 + Bi, (2.3)

wherever the fluid is yielded. By symmetry ψ = 0 at θ = 0 and, since u vanishes on the
wall, τrr = 0 and so ψ = π/4 at θ = α. Furthermore, if there is a rigid region for θ ≥ αc
then ψ = π/4 and f ′′ = 0 at θ = αc (since the strain rate must vanish at the unyielded
plug). The azimuthal pressure gradient is found to be independent of r and thus the
pressure takes the form

p = 2ABi log r + g(θ), (2.4)

where A is a constant, and so the balance of radial and angular momentum reduce to

2BiA = − dk
dθ

sin 2ψ + 2k cos 2ψ
(

1 − dψ
dθ

)
, (2.5)

dg
dθ

= − dk
dθ

cos 2ψ − 2k sin 2ψ
(

1 − dψ
dθ

)
. (2.6)

The constitutive law implies

γ̇rθ

γ̇rr
= τrθ

τrr
=⇒ f ′′

f ′ = −2 tan 2ψ, (2.7)

and thus, from (2.3), k = (2f ′ sec 2ψ)N + Bi. Following Alexandrov & Jeng (2009) we
define F = df /dθ, and change independent variable to ψ . Using (2.5) and (2.7), and
substituting for k, we arrive at the system of ODEs,

dθ
dψ

=
(
N + (1 − N) cos2 2ψ

)
(2F sec 2ψ)N + Bi cos2 2ψ(

N + (1 − N) cos2 2ψ
)
(2F sec 2ψ)N + Bi cos2 2ψ − ABi cos 2ψ

, (2.8)

dF
dψ

= −2F tan 2ψ × dθ
dψ
, (2.9)

df
dψ

= F × dθ
dψ
, (2.10)

which are identical to the equations of Alexandrov & Jeng (2009) when N = 1. For hinge
half-angles below the critical value, α ≤ αc, the boundary conditions are

(a, b) f = θ = 0, at ψ = 0, and (c) f = 1, (d) θ = α at ψ = π/4. (2.11a–d)

This represents a third-order system of equations with an eigenvalue, A, and four boundary
conditions. Note that we no longer require the boundary conditions F′ = 0 at θ = 0
and F = 0 at θ = α since these are implied by −2 tan 2ψ = F′/F at ψ = 0 and π/4,
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Viscoplastic flow between hinged plates

respectively. Alternatively, if α > αc there is a rigid plug occupying αc ≤ θ ≤ α. At
ψ = π/4, instead of (2.11d), we impose θ = αc, with the additional condition dF/dψ = 0,
which enables the critical angle, αc, also to be calculated as part of the solution.

A particular solution, for which α = π/4, A = 0, ψ = θ and f = sin 2θ has been noted
in previous work (e.g. Wilson 1993; Alexandrov & Jeng 2009). In fact, this solution exists
for any generalised Newtonian fluid for which the constitutive law is given by τ = μ(γ̇ )γ̇
(and hence in current notation k = k(γ̇ )), since the strain rate is spatially constant for this
solution, and so any strain-rate dependence in the rheology is irrelevant to the solution.
For this special case, since A = 0, the pressure is also independent of radial distance.
Furthermore, we note that, since the governing equations (1.2)–(1.4) are time-reversible
due to the omission of inertial terms, the resulting self-similar solutions can also be used
for the case in which the wedge is being opened slowly. However, for some viscoplastic
materials it may not be true that the fluid maintains adhesion to the plates as the wedge
is expanded, and so we have chosen to focus on the case of compression between the two
plates.

3. Numerical integration

We integrate the governing equations numerically using a shooting method. First, we note
that the governing ODEs (2.8)–(2.10) have a potential singular point at ψ = π/4 which
occurs at θ = α (or θ = αc if a rigid zone occurs), so it is helpful to expand the dependent
variables in terms of δ = π/4 − ψ � 1. When α < αc we have F = 0 and dF/dψ /= 0 at
δ = 0, so we can write

F = D0δ + D1δ
2 + · · · , (3.1)

with D0 /= 0. Using (3.1), substituting into (2.8)–(2.10) and equating powers of δ gives
θ = α − δ + · · · , f = 1 − D0δ

2/2 + · · · and D1 = 2ABiD1−N
0 /N. Using these local forms

of the dependent variables we can solve the ODEs numerically in the case α < αc (so no
rigid region occurs) by making a guess for A and D0, integrating from ψ = π/4 − δ to
ψ = 0 and iterating to satisfy the boundary conditions θ(0) = f (0) = 0.

We can determine αc by imposing D0 = 0, since dF/dψ = 0 at the yield-surface (ψ =
π/4). In this case, analysis of (2.8)–(2.10) gives a different form of the local expansions
with

F =
(

2(N + 1)ABi
N

)1/N

δ1+1/N + · · · , (3.2)

θ = αc −
(

1 + 1
N

)
δ + · · · , (3.3)

f = 1 − 1
2 + 1/N

(
2(N + 1)ABi

N

)1/N

δ2+1/N + · · · . (3.4)

Then the constants A and αc are determined by integrating from ψ = π/4 − δ and
requiring θ(0) = f (0) = 0. The complete solution for α > αc is given by the solution
for α = αc in the region θ ≤ αc and a rigid plug attached to the rotating boundary
(f = 1,F = 0) in the region αc ≤ θ ≤ α.

Using the approach detailed above we can integrate the equations numerically for all
α, Bi and N. Figure 1(b) shows streamlines and a colour-plot of the magnitude of the
strain-rate for α = 60◦, Bi = 1000 and N = 1 indicating the unyielded region adjacent to
the wall. Figure 2(a,b) shows the velocity profiles for Bi = 1/

√
3 (corresponding to the
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Figure 2. (a,c) Radial and (b,d) azimuthal velocities as functions of polar angle for (a,b) Bi = 1/
√

3 and
(c,d) Bi = 104 at various values of α (legend). Solid lines are for N = 1 and dotted lines for N = 0.5 (often
indistinguishable from the N = 1 curve).

value used by Alexandrov & Jeng (2009)) with N = 1 (solid) and N = 0.5 (dotted) at a
selection of wedge angles, α up to and including the critical value, αc, at which the plug
forms (for N = 1, αc = 86.4◦ and for N = 0.5, αc = 99.2◦). We note that the value of αc
exceeds the largest wedge half-angle, α, computed by Alexandrov & Jeng (2009) for Bi =
1/

√
3 and N = 1, contributing to their conclusion that no rigid zones occur. Figure 2(c,d)

shows the velocity profiles for Bi = 104 (and the same values of N) indicating that αc
is close to (but exceeds) 45◦ for Bi 	 1 and boundary layers occur for α < 45◦. These
boundary layers are most readily observed in figure 2(c) as the narrow angular range over
which the radial velocity is adjusted to satisfy no slip. They are also present in figure 2(d)
since the angular velocity must have vanishing angular gradient at the boundary; however,
this transition is more difficult to observe in these figures. These behaviours are explored
in the following section where we analyse the equations in the plastic regime Bi 	 1.

The inclusion of shear thinning (flow index N < 1) has a minor impact on the velocity
profiles in most cases, with the effect being most significant at small half-angles, α, since
the shear rate is largest for these hinge angles. The strain-rate is greatest at the rigid
boundary in this case, and hence the effect of shear-thinning is to reduce the effective
viscosity at the boundary relative to the centre of the wedge, resulting in an increased
strain-rate at the boundary and a reduced radial velocity at the centre.

The dependence on the Bingham number of the critical angle, αc (now returning to
radians), and the value of the constant A at this critical angle, denoted Ac, are shown in
figure 3 for N = 1 and N = 0.5. We see that αc → π/4 (as noted above) and Ac → 0 as
Bi → ∞, while αc → π/2 and Ac → ∞ in the Newtonian limit, Bi → 0 with N = 1,
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Viscoplastic flow between hinged plates
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Figure 3. (a) The critical angle for plug formation, αc, and (b) the corresponding eigenvalue, Ac, as functions
of Bi from numerical integration for N = 1 (solid blue) and N = 0.5 (solid red). The corresponding asymptotic
predictions for Bi 	 1 are given by dotted lines. The inset shows a close up of the region 105 < Bi < 106 with
the numerically determined values shown as stars. The black dashed line in (a) shows the asymptote αc = π/4.

which is a consequence of the choice to scale pressure by Bi in (2.4). The former is
analysed in the following section, while the latter is analysed in the Appendix (A). When
Bingham numbers are order unity (Bi = O(1)), shear thinning increases the critical angle
above which a plug first forms. The physical mechanism for this is that, for a shear-thinning
fluid, the shear-rate decays more rapidly as the plug is approached (see (3.2)) because the
lower strain rate near the plug results in a higher effective viscosity and a further hindrance
of shear there. This region of low strain rate means the velocity tends to zero more slowly
as the plug is approached from the bulk of the wedge, and so the true plug occurs at a larger
angle. Roughly speaking, we can think of the plugged region for the Bingham case (N = 1)
being replaced by a smaller plugged region plus a region in which the strain rate is very
low and the effective viscosity very high, but in which the fluid is nonetheless yielded.
In contrast, shear thinning results in a slightly smaller value of αc when the Bingham
number is large (see figure 3a inset). The reduction in strain rate near the plug due to
shear thinning becomes less significant when Bi 	 1 since αc ∼ π/4 and the solution in
the bulk of the wedge approaches the uniform strain-rate solution of α = π/4. Since the
dimensionless value of this uniform strain rate is γ̇ = 4 > 1, the effect of shear thinning
is to reduce the stress in the bulk of the wedge, θ < π/4, and hence we anticipate that the
fluid is yielded over a smaller region. Consequently, in this regime, αc is smaller for the
shear thinning case (although this effect is quite slight as shown in figure 3 and expounded
using asymptotics in § 4).

4. Viscoplastic boundary layers: Bi � 1

The numerical results have demonstrated that when Bi 	 1, regions emerge with high
velocity gradient adjacent to the hinge boundary when α < αc (figure 2). Also the critical
angle, αc, is a function of Bi, which asymptotes to π/4 as Bi → ∞. In this section we
elucidate both of these phenomena mathematically by introducing matched asymptotic
expansions between the interior flow away from the boundary or the plug, and a relatively
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thin region within which the velocity and stress fields adjust to the conditions at the
boundary or the plug.

We first examine the leading-order solutions in the ‘bulk’ (π/4 − ψ = O(1)), which we
term the ‘outer’ region. We introduce regular series expansions for the dependent variables
and eigenvalue, (θ,F, f ,A) = (θ0,F0, f0,A0)+ o(1). Then to leading order

dθ0

dψ
= cos 2ψ

cos 2ψ − A0
,

dF0

dψ
= − 2F0 sin 2ψ

cos 2ψ − A0
and

df0
dψ

= F0 cos 2ψ
cos 2ψ − A0

. (4.1a–c)

Following Nadai (1924), we may integrate these equations subject to the boundary
conditions f0(0) = 0 and θ0(0) = 0 to find that

F0 = c1 (cos 2ψ − A0) , f0 = c1

2
sin 2ψ, (4.2a,b)

θ0 = ψ + A0

(1 − A2
0)

1/2
tanh−1

[(
1 + A0

1 − A0

)1/2

tanψ

]
≡ G(ψ,A0). (4.3)

The constant c1 and the eigenvalue A0 are yet to be determined; their values will follow as
part of the matching process, as shown below. When ψ = π/4 − δ (δ � 1), we find the
leading-order expressions

F0 = −c1A0 + · · · , f0 = c1

2
+ · · · and θ0 = G(π/4,A0)+ · · · . (4.4a–c)

Immediately we can see the need for a boundary layer because these leading-order
expressions cannot simultaneously satisfy the boundary conditions at ψ = π/4, namely
F(π/4) = 0, f (π/4) = 1 and θ(π/4) = α. The outer solutions were derived on the basis
that FN � ABi(cos 2ψ)N+1, and thus the size of the boundary layer is determined by
assessing when this regime becomes invalid. We further note that the matching condition
(4.4a–c) requires that F ∼ A and thus, when A is O(1), FN ∼ ABi(cos 2ψ)N+1 when
δN+1Bi ∼ 1.

If the eigenvalue, A, is smaller than order unity, then the outer solution takes a different
form. In particular, when A and δ are of the same order we will also need to include the
neglected Bi cos2 2ψ terms (see (2.8)) in the boundary layer equations. In this case, as
the boundary layer is approached we have F ∼ A ∼ δ and so FN ∼ ABi(cos 2ψ)N+1 when
δ2Bi ∼ 1. This regime therefore occurs when A = O(Bi−1/2), so we write A = aBi−1/2 +
· · · with a = O(1) and expand the governing equations up to O(Bi−1/2) to find the outer
solutions,

F = c1 cos 2ψ + 1
Bi1/2

(c2 cos 2ψ − c1a)+ · · · , (4.5)

f = c1

2
sin 2ψ + c2

2Bi1/2
sin 2ψ + · · · , (4.6)

θ = ψ + a
Bi1/2

tanh−1 (tanψ)+ · · · , (4.7)

where c2 is a constant. When π/4 − ψ = δ = O(Bi−1/2), expanding (4.5)–(4.7) up to
O(Bi−1/2) gives

F = c1

(
2δ − a

Bi1/2

)
+ · · · , f = c1

2
+ c2

2Bi1/2
· · · (4.8a,b)
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Viscoplastic flow between hinged plates

and

θ = π

4
+
(

−δ + a
2Bi1/2

log
(

1
δ

))
+ · · · . (4.9)

The requirement to include more than just the leading-order term in the outer solution in
this case is highlighted by the breaking of order in F, (4.5), within the boundary layer,
with contributions from leading- and first-order terms from (4.5)–(4.7) contributing to the
dominant term in the local expansion (4.8a,b).

In the following subsections we complete the asymptotic matching by deriving the inner
solutions in the two different regimes.

4.1. Below the critical angle: 0 < π/4 − α = O(1)
When the eigenvalue is of order unity (A = A0 + · · · ), we define a rescaled independent
variable within the boundary layer given by η = (π/4 − ψ)Bi1/(N+1), as anticipated by
the analysis above. We define the inner dependent variables as

φi = (θ − α)Bi1/(N+1), Fi = F, fi = ( f − 1)Bi1/(N+1). (4.10a–c)

Then to leading order the governing equations are given by

dFi

dη
= NFN+1

i

NFN
i η − 2A0η2+N

,
dφi

dη
= − η

F0

dF0

dη
and

dfi
dη

= −ηdFi

dη
. (4.11a–c)

Provided θi and fi remain order unity as η → ∞, which will be verified later, matching to
the outer field (4.4a–c) determines c1 = 2 and A0 is given implicitly by

α = G
(

π

4
,A0

)
= π

4
+ A0

(1 − A2
0)

1/2
tanh−1

[(
1 + A0

1 − A0

)1/2
]
. (4.12)

This relation implies A0 is of order unity and negative when 0 < π/4 − α = O(1).
Integrating (4.11a), with Fi(0) = 0 and Fi → −2A0 as η → ∞ (as required by matching

to (4.4a–c)), we find an implicit relation for Fi:

NFN+1
i − 2(N + 1)A0Fiη

N+1 = 4A2
0 (N + 1) ηN+1. (4.13)

Next, integrating (4.11b,c), with φi = fi = 0 when Fi = 0, we find

φi = (−2A0)
(N−1)/(N+1)

(
N + 1

N

)N/(N+1)
((

1 + Fi

2A0

)N/(N+1)

− 1

)
, (4.14)

fi = (−2A0)
2N/(N+1) N + 1

2N + 1

(
N + 1

N

)N/(N+1)

×
((

1 − NFi

2(N + 1)A0

)(
1 + Fi

2A0

)N/(N+1)

− 1

)
, (4.15)

and verify that both tend to a constant as η → ∞ and Fi → −2A0.
The composite solutions for F and θ , denoted by C{F} and C{θ}, respectively, are then

formed using the outer, (4.1a–c), and inner, (4.13)–(4.14), solutions, to give

C{F} = 2 cos 2ψ + Fi, C{θ} = G (ψ,A0)+ Bi−1/(N+1)φi. (4.16a,b)

These are compared with a numerically integrated solution for α = π/6, Bi = 104 and
N = 1 and 0.5 in figures 4(a) and 4(c), respectively, showing excellent agreement.
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Figure 4. The numerically computed solution, F ≡ 2u/(rΩ), as a function of the polar angle, θ , (solid line)
and the asymptotic composite, C{F} as a function of C{θ}, (dotted) for Bi = 104, α = π/6 (a,c) and α = αc
(b,d), and N = 1 (a,b) and N = 0.5 (c,d). The curves are plotted parametrically via the independent variable,
ψ , as (θ(ψ),F(ψ)).

4.2. Near the critical angle: π/4 − α = O(Bi−1/2)

When the half-angle of the hinge is close to π/4 (and hence, as we will show, close to αc),
the structure of the solution changes. The radial velocity, encoded through F, undergoes a
less extreme change across the boundary layer since when A = O(Bi−1/2), the matching
condition (4.8a,b) requires that F = O(Bi−1/2). Note that in this case the term ‘boundary
layer’ is used in the asymptotic sense but does not constitute a region where the velocity
gradient is large (rather a region where the gradient of the strain-rate is large) so that
the existence of a boundary layer is visibly non-obvious for α = αc in figure 2(c), but is
clearer in figure 1(b) where the strain-rate exhibits a sharp gradient in a region adjacent to
the unyielded plug.

In this regime we define the rescaled independent variable via η = (π/4 − ψ)Bi1/2 and
it is convenient to write the ‘inner’ dependent variables as

φc = (θ − π/4)Bi1/2, Fc = FBi1/2, fc = ( f − 1)Bi1/2, (4.17a–c)

while the eigenvalue A = Bi−1/2a + · · · . At O(1) we find

dFc

dη
= Fc

(
N(Fc/η)

N + 4η2)
N(Fc/η)Nη + 4η3 − 2aη2 ,

dφc

dη
= − η

Fc

dFc

dη
and

dfc
dη

= 0, (4.18a,b)

subject to Fc(0) = fc(0) = 0 and φc(0) = (α − π/4)Bi1/2. Thus, we find fc = 0 is
constant, and, matching with the outer solution, (4.8a,b), requires c1 = 2 (as in § 4.1) and
c2 = 0. On substituting a2V = N(Fc/η)

N into the first equation in (4.18a), we have

dV
dη

= 2aNV
a2V − 2aη + 4η2 , (4.19)
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Viscoplastic flow between hinged plates

and integrating yields the implicit solution

η =
a
√

V
(

c3Y1+1/N

(
2
N

√
V
)

+ J1+1/N

(
2
N

√
V
))

2
(

c3Y1/N

(
2
N

√
V
)

+ J1/N

(
2
N

√
V
)) , (4.20)

where c3 is a constant and Ji and Yi denote Bessel functions of order i of the first and
second kind, respectively. This expression automatically satisfies the boundary condition
Fc(0) = 0, since V(0) is finite and Fc = η(a2V/N)1/N , and the constant c3 is related to
the rescaled eigenvalue a through matching to the far-field.

The matching is most readily explained as follows. We suppose that V(0) = V0 and
this determines the constant c3 in terms of V0 by demanding that the numerator of (4.20)
vanishes. The denominator of (4.20) then vanishes at various values of V and we select
the values V−∞ and V+∞ (V−∞ < V0 < V+∞), such that the denominator is non-vanishing in
the range V−∞ < V < V+∞. From (4.20), we deduce that η → ∞ as V → V+∞ if a > 0 and
as V → V−∞ if a < 0.

Next, using (4.19), we deduce the far-field form of V(η) as

V = V∞ − NV∞a
2η

+ · · · and so F = Bi−1/2
(

a2V∞
N

)1/N (
η − a

2
+ · · ·

)
. (4.21)

Matching with the far-field (4.8a,b) then determines two values for a depending on its
sign, namely a+ = 2N

√
N/V+∞ and a− = −2N

√
N/V−∞.

The final step in the analysis is to integrate (4.18b), which gives

φc(η)− φc(0) = −η −
∫ η

0

η̂

NV
dV
dη̂

dη̂ (4.22)

= −η − a
2

log η −
∫ 1

0

η̂

NV
dV
dη̂

dη̂ −
∫ η

1

(
η̂

NV
dV
dη̂

− a
2η̂

)
dη̂. (4.23)

Matching to the outer solution (4.9) requires that

φc → −η − a
2

(
log η + log(Bi−1/2)

)
as η → ∞. (4.24)

Then, denoting V(1) = V1 we determine that

α − π/4 = Bi−1/2
(∫ V1

V0

η

NV
dV +

∫ V∞

V1

2aη − a2V
4NηV

dV + a
4

log Bi
)
. (4.25)

This final expression relates the half-angle of the wedge to properties of the inner solution,
all of which are determined as functions of V0. In other words this equation completely
determines the matched asymptotic expressions.

An important consequence of this analysis is that we may determine asymptotically
the critical angle at which the rigid plug adjacent to the boundary first forms. As in
§ 2 this demands the additional condition that dFc/dη = 0 at ψ = π/4, which in terms
of the expansion developed here requires that V0 = 0 and hence c3 = 0. Then, V∞ =
(Nj1/N,1/2)2 and a = 2N+1/(

√
Nj1/N,1), where j1/N,1 is the first positive root of the Bessel
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N V∞ V1 a I

2 9.8696 2.6840 1.8006 0.0525
1.5 6.4095 2.5769 1.3683 0.3700
1 3.6705 2.1301 1.0439 0.7798
0.5 1.6484 1.3188 0.7789 1.4829
0.1 0.5239 0.5102 0.4683 4.0915

Table 1. Constants in the asymptotic prediction for the critical angle, (4.27)–(4.28), for different values
of the flow index, N. The magnitude of the dimensionless radial pressure gradient when α ≥ αc is given
asymptotically by 2aBi1/2/r when Bi 	 1.

function J1/N , and V1 is given by the first positive solution of

a
√

V1J1+1/N

(
2
N
√

V1

)
2J1/N

(
2
N
√

V1

) = 1. (4.26)

The asymptotic behaviour of αc with Bi is then given by

αc = π

4
+ aBi−1/2

(
1
4

log Bi + I
)

+ · · · , (4.27)

where I is determined from the integrals

I =
∫ V1

0

J1+1/N

(
2
N

√
V
)

2N
√

VJ1/N

(
2
N

√
V
) dV +

∫ V∞

V1

1
2NV

−
J1/N

(
2
N

√
V
)

2N
√

VJ1+1/N

(
2
N

√
V
) dV. (4.28)

A table of values of V∞, V1, a and I for various values of N, are given in table 1,
and figure 3 shows a comparison of the asymptotic and numerical results for αc and
Ac = aBi−1/2 + · · · , as a function of Bi for N = 1 and N = 0.5. Both αc and Ac are very
accurately captured by their asymptotic form in the regime Bi 	 1.

The composite solutions for F and θ are formed from the inner solutions determined
above, and the outer solutions (4.6) and (4.7), to obtain

C{F} = 2 cos 2ψ + Bi−1/2Fc − 4 (π/4 − ψ) , (4.29)

C{θ} = π

4
+ Bi−1/2

(
a tanh−1(tanψ)+ φc − a

2
log

(
1

π/4 − ψ

))
. (4.30)

These are compared with a numerically integrated solution for α = αc, Bi = 104, and
N = 1 and 0.5 in figure 4(b,d), again showing excellent agreement.

5. Comparison with full numerical simulations

The similarity solutions derived in this paper are planar and apply for hinged plates
of semi-infinite extent. We therefore anticipate that these solutions emerge sufficiently
close to the vertex of finite hinged plates and for sufficiently long plates in the third
dimension, but in general would be perturbed by out-of-plane flow and the outer radial
boundary condition. To explore the impact of the outer boundary condition and the
potential embedding of the similarity solution derived above within a more general flow,
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Viscoplastic flow between hinged plates

full two-dimensional numerical simulations were carried out for the compression of a
Bingham fluid (N = 1) between hinged plates, using a triangular domain with a ‘vertical’
stress-free boundary at x = r cos θ = 1. As for the analytical solutions, only the upper half
of the domain is considered, with solutions given in the bottom half by (anti)symmetry.
This problem models the extrusion of a finite quantity of viscoplastic fluid by squeezing
from between hinged plates. The plates are not force-free in the x-direction, and thus a
practical realisation of this problem would require that the hinge-point is fixed in place by
some external force. While we do not evolve the problem forwards in time by reducing the
hinge angle and evolving the stress-free surface, the solution provides the instantaneous
stresses and velocities (including of the free surface) at the moment at which the squeezing
begins.

The solution of the governing equations (1.2)–(1.4) and (1.7) was carried out using the
FISTA∗ algorithm proposed by Treskatis, Moyers-González & Price (2016), which has also
been used by Muravleva (2021) and Pourzahedi et al. (2022). The FISTA* algorithm is an
accelerated version of the widely used augmented-Lagrangian algorithm for viscoplastic
flows (for example, see Saramito (2016)), accurately resolving unyielded regions of the
flow and circumventing the singular nature of the constitutive law at the yield-surfaces via
the introduction of an additional tensorial field, D, representing the strain-rate tensor but
decoupled from the velocity field, u, along with a Lagrange multiplier, standing for the
deviatoric stress tensor, which enforces the equivalence of D and γ̇ (u) at convergence.
For the details of the algorithm we refer to Treskatis et al. (2016), in which there is
one free choice, namely at the step FISTA*.4, for which we make the choice given by
(3.6c) in the cited article. The algorithm was carried out using the finite element method
as implemented by FEniCS (Logg et al. 2012; Alnæs et al. 2015), using Taylor–Hood
elements for the velocity and pressure, and discontinuous piecewise linear elements for
the strain-rate and deviatoric stress tensors. The initial (triangular) meshes used for the
simulations have greater resolution at the vertex of the wedge and, in the case of α < αc,
for which we anticipate a boundary layer adjacent to the rigid boundary, also along the
rigid boundary. When an unyielded region occurs, a simple mesh refinement method was
used to increase the resolution at the yield-surface. Specifically, every 1000 iterations of
the FISTA∗ algorithm, any cells that have vertices lying in both yielded and unyielded
regions (according to the magnitude of the deviatoric stress for the current iteration) were
divided into four smaller cells. This refinement step was carried out five times or until
the number of cells became larger than 150 000. The convergence of the algorithm was
tracked by the residual, R,

R ≡
∥∥√(Dij − γ̇ij)(Dij − γ̇ij)

∥∥
L2∥∥√γ̇ijγ̇ij

∥∥
L2

, (5.1)

which measures the discrepancy between the additional tensor field, D, and the strain rate
tensor γ̇ (u). The given solutions converged to a residual of less than 10−5.

Figure 5 shows solutions for Bi = 1000 and α = 60◦ and 30◦. For α = 60◦ the unyielded
zone is observed adjacent to the wall as predicted by the similarity solution (for example
compare figure 1a with figure 1b), and the radial velocity profiles agree well with the
similarity solution but deviate with increasing distance from the vertex, as anticipated.
Similarly, for α = 30◦ the viscoplastic boundary layer, in which the strain-rate becomes
large, is visible adjacent to the rigid boundary (note the logarithmic colour-scale for the
strain-rate in this case) and again the radial velocity profiles agree well with the similarity
solution close to the vertex of the wedge. In fact, in both cases the deviation between the
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Figure 5. (a) Dimensionless strain-rate, γ̇ , (colour-plot) and streamlines (black) from a numerical simulation
with α = 60◦ and Bi = 1000. (c) Here log10(γ̇ ) (colour-plot) and streamlines (white) from a numerical
simulation with α = 30◦ and Bi = 1000. (b,d) Scaled radial velocity, F = 2u/(rΩ), as a function of θ for
the numerical simulations shown in (a,c), respectively, at different radial distances from the vertex (see legend)
compared with the similarity solution detailed in § 3 (black).

numerical simulation (on the domain bounded at x = 1) and the similarity solution is quite
small even up to r = 0.8.

6. Discussion and conclusions

We have solved for the viscoplastic flow of a Herschel–Bulkley fluid between hinged
plates, and have demonstrated that the flow is self-similar with the dimensionless
deviatoric stresses being functions only of the polar angle, the Bingham number and
the flow index, N. We have also shown that plugs and boundary layers form. The former
occur for half-angles, α, greater than a critical value, αc, which depends on the Bingham
number and the flow index, and which decreases to π/4 as Bi → ∞. A complicated
boundary layer structure, dependent on the value of α, occurs in the plastic regime, Bi 	 1.
Classical ‘viscoplastic boundary layers’, in which the strain-rate becomes large to enforce
the no slip boundary condition, occur when 0 < π/4 − α = O(1) and have an angular
width which scales like Bi−1/(N+1). This structure is modified somewhat as the half-angle
approaches π/4, in which case the boundary layer features logarithmic corrections to a
Bi−1/2 dependence and only adjusts the strain-rate, not the velocity, over the thin layer. In
the Newtonian regime, Bi � 1 with N = 1, the solution reduces to the classical solution
described by Moffatt (1964) to leading order. In this regime, unyielded regions only exist
when the wedge angle is within O(Bi) of π/2.
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Figure 6. (a) Here F as a function of θ for α = π/2 and Bi = 10−3, determined by asymptotic predictions
(black/red dotted) and numerical integration (blue solid). The asymptotic solution in black retains only the
leading-order terms in F and αc, while the solution in red retains terms up to O(Bi). The inset shows the thin
unyielded region (F = F′ = 0) near the plate, predicted by the first-order asymptotic solution. (b) Here Ac and
(c) αc as functions of Bi from the asymptotic predictions (A8a,b) (red) and numerical integration (blue).

The similarity solutions derived in this paper are planar and apply for an infinite
wedge. We therefore anticipate that, in general, these solutions would be perturbed by
out-of-plane flow and the outer radial boundary condition. To briefly explore the impact
of the outer boundary condition, two-dimensional numerical simulations were carried out
with a stress-free boundary at r cos θ = 1. In this case the similarity solution is observed
close to the vertex of the wedge but becomes altered at larger radial distances from the
vertex, as anticipated. In addition to further elucidating the impact of these non-planar
and finite-wedge effects, future work could involve the solution of the governing equations
with constitutive laws that allow for elastic or thixotropic effects or with the inclusion
of non-negligible inertial stresses. Furthermore, many examples of viscoplastic materials
have been shown to exhibit wall slip as opposed to the no-slip boundary condition applied
at the rigid boundaries in this work (Barnes 1995; Cloitre & Bonnecaze 2017). Thus,
further work could also consider the impact of such wall slip on the flow of a viscoplastic
fluid between hinged plates.
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Appendix A. The Newtonian regime: Bi � 1, N = 1

In the Newtonian regime, Bi � 1 and N = 1, it is easiest to carry out the analysis without
the change of independent variable from θ to ψ . Writing p = 2ABi log r + g(θ), and
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making the additional substitution θ = αΘ , the conservation of momentum in the radial
direction is expressed as

2α2BiA = F′′ + 4α2F + 4α2Bi

(
F′′ + 4α2F

)
F2(

F′2 + 4α2F2
)3/2 , where F(Θ) = f ′(Θ)/α (A1)

and primes now represent differentiation with respect to Θ . We expand the dependent
variables and the eigenvalue via

F = F0 + BiF1 + · · · , f = f0 + Bif1 + · · · and A = A−1Bi−1 + A0 + · · · .
(A2a–c)

The case of no unyielded region is then given by solving (A1) with boundary conditions
f (0) = F′(0) = 0, f (1) = 1 and F(1) = 0, with leading-order solution

F0 = 2 (cos 2αΘ − cos 2α)
sin 2α − 2α cos 2α

, f0 = sin 2αΘ − 2αΘ cos 2α
sin 2α − 2α cos 2α

(A3a,b)

and

A−1 = −4 cos 2α
sin 2α − 2α cos 2α

, (A4)

which recovers the Newtonian solution given by Moffatt (1964).
To consider the case in which an unyielded region occurs for θ ≥ αc, we substitute

αc = α0 + Biα1 + · · · for α in (A1), and solve with the additional boundary condition
F′(1) = 0, which is sufficient to determine αc. At leading order this gives

F0 = 2
π
(1 + cos πΘ) , f0 = 1

π
(πΘ + sin πΘ) , A−1 = 4

π
and α0 = π

2
,

(A5a–d)
while at O(Bi) we find

F1 = 1
6π

(4 + 4 cos πΘ + πΘ sin πΘ)− 1
3

cos
πΘ

2
, (A6)

f1 = 1
12π

(3πΘ + 4 sin πΘ − πΘ cos πΘ)− 1
3

sin
πΘ

2
, (A7)

and A0 = 4/(3π), α1 = −π/24. Thus, the asymptotic solutions for Ac and αc in this
regime are given by

Ac ∼ 4
π

Bi−1 + 4
3π

+ · · · , and αc ∼ π

2
− π

24
Bi + · · · . (A8a,b)

Figure 6(a) shows the asymptotic solution, F = F(θ/αc), compared with a numerically
determined solution for α = π/2 and Bi = 10−3. This figure confirms that the asymptotic
solution accurately reproduces the numerical computation and that two terms are required
in the asymptotic solution (F = F0 + BiF1, αc = α0 + Biα1) to capture the required
behaviour close to the plates. Figure 6(b,c) compare the asymptotic predictions for Ac
and αc with numerical results, strongly supporting the validity of the asymptotic analysis.
Indeed the asymptotic predictions remain accurate up to relatively large values of Bi.
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