
ANZIAM J. 65 (2023), 135–154
doi:10.1017/S1446181123000081

FLIGHT LIMITATIONS IMPOSED ON SINGLE ROTOR AND
COAXIAL HELICOPTERS BY THE LIFT EQUATION

B. MALDON 1 and MICHAEL H. MEYLAN �1

(Received 28 February, 2023; accepted 23 May, 2023; first published online 17 July, 2023)

Abstract

To compute the maximum speed threshold for helicopters, we model the lift produced
by the rotor blades. Using this model, we derive limits for each method traditionally
used to alleviate dissymmetry of lift. Additionally, we find the minimum rotor angular
velocity required to produce a prescribed lift at a given forward velocity. We derive
conditions on the coefficient of lift for helicopter airfoils that maintain altitude. Further
considerations are also made with regard to the properties of the air and its effect on
helicopter dynamics.
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1. Introduction

Helicopters remain a vital component of aviation technology, first realised in Igor
Sikorsky’s VS300 model, which was the first successful helicopter to feature a main
rotor and tail rotor [1]. La Mantia and Dabnichki calculated optimal airfoil thicknesses
based on the standard NACA airfoil shapes [4]. Kulchenko et al. applied mathematical
models for single-rotor helicopters for autopilot technology in 2014 [3]. Finally,
Romani and Casalino elucidated the influence of rotor-induced vortices on the overall
production of lift on the helicopter blades [10]. The theory of helicopter dynamics
encompasses the study of the complex aerodynamic and mechanical principles that
govern the flight of helicopters. Helicopters are unique aircraft that rely on the inter-
action between components, including the main rotor, tail rotor, fuselage and various
control systems, to achieve controlled vertical takeoff, landing and manoeuvrability
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in the air. The aerodynamics of helicopter rotors involve lift, drag, induced flow
and rotor wake, which are influenced by blade geometry, airfoil design and rotor
speed. Understanding the dynamic behaviour of helicopters requires knowledge of
key concepts such as cyclic and collective pitch control, autorotation, ground effect
and gyroscopic precession. Numerous scientific studies and engineering advancements
have contributed to the development and refinement of helicopter dynamics, many of
which can be found in [2, 5].

Perdomo and Wei studied blade flapping in their paper [9], providing a
time-dependent truncated Fourier series to calculate the flapping angle for an airfoil
across the rotor disk. Majhi and Ganguli studied dynamic stall and the efficacy of
assuming small flapping angles in mathematically modelling helicopters [7].

Applications for airfoils extend beyond aviation technology for helicopters. Liu
et al. recently used a dynamic stall model to study wind turbines for renewable energy
applications [6]. Rozhdestvinsky and Ryzhov completed a survey for flapping-wing
propulsors as they apply to aerohydrodynamics in 2003 [11].

We define a helicopter’s fundamental components to capture the limiting factors
arising from flying helicopters at high forward velocities. Primarily, this paper will
study the lift equation as a model for the thrust collectively produced by the helicopter
blades.

1.1. Helicopter rotor blades During operation, helicopter rotor blades spin about
the rotor shaft at a typically constant speed ΩR (usually measured in RPM). We will
assume all rotor blades rotate anticlockwise, with the exception of the second rotor
disk of a coaxial helicopter or when otherwise noted. Each blade, therefore, has an
angular velocity Ω of

Ω =
πΩR

30
.

Given a helicopter rotor disk of n blades, the azimuth angle θ for blade k of n at time t
is given by

θ(t) = Ωt +
2π(k − 1)

n
,

so that at time t = 0, the first helicopter blade in the rotor disk is in the advancing
position. Using the azimuth angle, the tip Btip of blade k of n at time t is therefore
given by

Btip = R[cos(θ), sin(θ), 0],

where R is the length of the helicopter blade (and, therefore, the radius of the rotor
disk).

1.2. Dissymmetry of lift Under static hover conditions, the lift is generated
uniformly across the rotor disk as the blades pass through the air. When helicopter
blades are subject to a relative wind (usually induced by the forward velocity of the
helicopter), more lift is generated on the advancing side of the rotor disk and less lift
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[3] Flight limitations due to the lift equation 137

FIGURE 1. Diagram showing the direction of rotation with the relative wind.

FIGURE 2. Diagram of the three angles of rotation for a helicopter rotor blade.

is generated on the retreating side. This dissymmetry of lift is detailed in Figure 1
and shows a fundamental problem encountered by single-rotor helicopters. Coaxial
helicopters amend this issue with their unique counter-rotating disks.

1.3. Helicopter rotor blade airfoils To combat the dissymmetry of lift, helicopter
rotor blades may rotate about three axes, as shown by Figure 2. The lead-lagging
angle ξ, flapping angle β and feathering angle ζ are all used to decrease the lift on
the advancing blades and increase lift on the retreating blades.

The primary limitations of these measures are found in retreating blade stall and
supersonic blade limitations. Figure 3 shows the effect of the retreating blade stall
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FIGURE 3. Plot of the coefficient of lift against the angle of attack for the NACA0012 airfoil for Reynolds
numbers from 5 × 105 to 106 [8]. The x-axis is in degrees.

coefficient of lift for a NACA0012 airfoil. Once the angle of attack α approaches its
critical value αc, the lift increase plateaus and leads to decreased lift if the angle of
attack exceeds the critical value.

In the problem of supersonic blade limitations, helicopter rotor blade tips cannot
exceed the speed of sound without encountering excessive drag and air resistance liable
to break the blades. Mathematically, the angular velocity Ω of the blades must satisfy

ΩR + u < ν,

where ν is the speed of sound. Rearranging for Ω, we have

Ω = η
ν − u

R
, (1.1)

where η < 1 is a tolerance factor. Unless otherwise stated, we will assume η = 1 for
theoretical calculations to obtain the maximum possible lift.

2. Mathematical model

In this section, we model the lift produced by helicopter blade k of n with the
standard lift equation


std =
1
2ρcv2CL, (2.1)

where 
std is the lift per unit length, ρ is the air density, c is the chord length, v is the
velocity of the blade and CL is the coefficient of lift. In this study, we will consider
the lift generated by one blade with azimuth angle θ = Ωt. We are assuming uniform
chord along blade, straight blades and uniform angle of attack.
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FIGURE 4. Lift distribution of the rotor disk in standard hover.

2.1. Assumptions and parameter values We will only consider the lift generated
on the disk with polar coordinates. For time-dependent effects during operation, we
will use the azimuth angle expression

θ(t) = Ωt +
2π(k − 1)

n
.

The coefficient of lift CL is regarded to be a function of angle of attack α only. We
will assume CL is either constant or linear with respect to α, based on Figure 3.

Throughout this paper, the rotor blades have a length 3 m and a chord length of 180
mm (or 0.18 m). The default mass of the helicopter is 1000 kg.

For reference, we will use the NACA0012 airfoil [8] for the coefficient of lift
computations. Other airfoils will also be compatible with these expressions, given the
lift coefficients as functions of the angle of attack and Reynolds number.

2.2. Standard lift equation Recall the standard lift equation is given by


std =
1
2ρcv2CL.

To study the effect of a relative wind, we model the linear velocity with the equation

ν = Ωr + u cos(θ),

where u is the relative wind speed and θ is the blade azimuth angle. The lift becomes
a function of the position on the blade r ∈ [0, R] and azimuth angle θ ∈ [0, 2π).

Figure 4 shows the lift distribution for a helicopter rotor blade in static hover using
equation (2.1). In the absence of relative wind, the lift is equal across the rotor disk.
The lift is maximized at the tip of the rotor disk due to the maximal linear velocity at
the blade tips.

Figure 5 shows the lift distribution for a helicopter rotor blade under the relative
winds u = 50 ms−1 and u = 120 ms−1, using equation (2.1). Without adjusting the angle
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FIGURE 5. Lift distribution of the rotor disk given a relative wind u = 50 ms−1 (left) and u = 120 ms−1

(right).

of attack, the relative wind decreases the lift produced on the retreating side of the rotor
disk.

3. Results

3.1. Revised lift equation In this section, we compute the lift generated by a
helicopter rotor blade with the modified equation

Lmod(u, θ) =
∫ R

0

ρcCL

2
(Ωr + u cos(θ))|Ωr + u cos(θ)| dr.

Similar expressions can be found in [2, 5]. Expressing the velocity term as ν|ν| rather
than ν2 allows the term to become negative, as experienced by retreating blades at high
velocity. Upon explicit calculation,

Lmod(u, θ) =
ρcCL

6Ω
[(ΩR + u cos(θ))2|ΩR + u cos(θ)| − u3 cos2(θ)|cos(θ)|].

3.1.1. Retreating blade special case For retreating blades (θ = 180◦), the lift
generated simplifies to

Lmod, R(u) =
ρcCL

6Ω
[(ΩR − u)2|ΩR − u| − u3].

Given Ω = (ν − u)/R to ensure maximum RPM, the lift becomes

Lmod, R(u) =
RρcCL

6(ν − u)
[(ν − 2u)2|ν − 2u| − u3].

To find u such that LR(u) = 0, we solve

[(ν − 2u)2|ν − 2u| − u3] = 0.
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Given u < ν/2,

u =
ν

3
.

Given ν=343 ms−1, we see that traditional helicopters cannot exceed ν/3≈114.3 ms−1.
This limit is slightly higher than the known world speed record of 111.35 ms−1 by the
Westland Lynx set in 1986 [1].

3.1.2. Negative lift region If u > ν/3, a region of the rotor disk about the tip of
the retreating blade will produce negative lift when integrated. To find this region, we
solve L(u, θc) = 0 for θc given u > ν/3. That is, we solve

ρcCL

6Ω
[(ΩR + u cos(θc))2|ΩR + u cos(θc)| − u3 cos2(θc)|cos(θc)|] = 0.

Letting ε = cos(θc) and using Ω = (ν − u)/R,

(ν − u(1 − ε))2|ν − u(1 − ε)| − u3ε2|ε| = 0.

Since ε < 0, by expansion and factoring,(
ν − u

u

)
(2ε + ν)

(
ε − 2

ν − u
u

)
= 0.

Therefore, we have ε = (ν − u)/2u. Upon substitution,

θc = arccos
(
ν − u

2u

)
.

Therefore, the helicopter blades will produce negative lift for azimuth angles,
satisfying

θ ∈
[
π − arccos

(
ν − u

2u

)
, π + arccos

(
ν − u

2u

)]
.

3.2. Modified lift equation To recapture the loss of lift on the retreating rotor
blades, we modify the lift equation to be


mod =
1
2ρcv|v|CL, (3.1)

replacing v2 with v|v|. This allows the velocity of the blade to take negative values,
which will occur on the retreating side for sufficiently high relative wind speeds. The
lift distribution in static hover matches Figure 4 as v = Ωr. Given a relative wind u, we
set v = Ωr + u cos(θ) as before. Figure 6 shows that the relative wind greatly affects
the lift produced near the rotor shaft on the retreating side.

3.2.1. Modified integrated lift equation Using the same techniques as the standard
lift equation, we may calculate the total lift produced by a helicopter rotor blade by
integrating the lift over the blade. That is, we compute

L(α, u, θ) =
∫ R

0

1
2
ρc(Ωr + u cos(θ))|Ωr + u cos(θ)|CL(α) dr.
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FIGURE 6. Modified lift distribution of the rotor disk given a relative wind u = 50 ms−1 (left) and
u = 120 ms−1 (right).

FIGURE 7. Plot of the lift generated over time for several forward velocities.

Upon computation,

L(α, u, θ) =
ρcCL(α)

6Ω
[(ΩR + u cos(θ))2|ΩR + u cos(θ)| − u3 cos2(θ)|cos(θ)|].

With Ω = (ν − u)/R, the lift becomes

L(α, u, θ) =
RρcCL(α)
6(ν − u)

[(ν − u + u cos(θ))2|ν − u + u cos(θ)| − u3 cos2(θ)|cos(θ)|].

Figure 7 plots the lift generated by the blade over time using the usual azimuth angle
θ(t) = Ωt. The lift oscillates as the blade transitions between advancing and retreating.
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FIGURE 8. Plot of the lift coefficient CL required for vertical hover against time.

As the forward velocity increases, the oscillation amplitude increases and the centre
decreases. As the velocity may take negative values with the expression ν|ν|, we see
the special case u = 120 ms−1 produces negative lift at the retreating side.

To ensure L = mg/n for vertical hover, the coefficient of lift must satisfy

CL(α) =
6Ωmg
ρcn

[(ΩR + u cos(θ))2|ΩR + u cos(θ)| − u3 cos2(θ)|cos(θ)|]−1.

With Ω = (ν − u)/R, the coefficient of lift becomes

CL(α) =
6η(ν − u)mg
ρRcn

× [(η(ν − u) + u cos(θ))2|η(ν − u) + u cos(θ)| − u3 cos2(θ)|cos(θ)|]−1.

Figure 8 is a plot of the coefficient of lift over time given the standard azimuth
angle θ(t) = Ωt. For static hover and the relatively low forward velocity 50 ms−1, we
see the coefficient of lift take reasonable values between 0 and 1. For the forward
velocity 120 ms−1, we see that the negative lift produced on the retreating side leads to
discontinuities the coefficient of lift cannot reconcile. The angle of attack is, therefore,
unable to balance the lift on the retreating side for forward velocities u > ν/3.

3.3. Average modified lift To better understand the lift performance of the heli-
copter blade over the entire rotor disk, we also compute the average lift produced over
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FIGURE 9. Plot of the average lift Lmod,T over time interval λ.

time λ with the expression

Lmod,λ =
1
λ

∫ λ
0

∫ R

0

1
2
ρc(Ωr + u cos(Ωt))|Ωr + u cos(Ωt)|CL(α) dr dt.

We compute this integral numerically with a standard midpoint Riemann sum with 300
evenly spaced intervals in Figure 9. As the forward velocity increases, the negative lift
produced by the retreating side lowers the average lift across the disk. A higher forward
velocity results in a more significant difference.

3.4. Average lift across rotor disk Since the helicopter rotor speed Ω is dependent
on u, the time interval required to consider one revolution is also dependent on u.
Therefore, for the standard lift equation, we compute the average value over one
particular revolution with the alternative integral

Lstd,T (u) =
1

2π

∫ 2π

0

∫ R

0

1
2
ρc
(
ν − u

R
r + u cos(θ)

)2
CL dr dθ.

Upon simplification,

Lstd,T (u) =
ρcRCL(α)

12
[5u2 − 4νu + 2ν2].

For the modified lift, we compute

Lmod,T (u) =
1

2π

∫ 2π

0

∫ R

0

1
2
ρc
(
ν − u

R
r + u cos(θ)

)∣∣∣∣∣ν − u
R

r + u cos(θ)
∣∣∣∣∣CL dr dθ.

https://doi.org/10.1017/S1446181123000081 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181123000081


[11] Flight limitations due to the lift equation 145

FIGURE 10. Plot of the normalized average lift over forward velocity for each model.

Finally, to reconcile the negative lift from the modified velocity model ν|ν|, we also
compute the integral

Lmax,T =
1

2π

∫ 2π

0

∫ R

0
max
(1
2
ρc
(
ν − u

R
r + u cos(θ)

)∣∣∣∣∣ν − u
R

r + u cos(θ)
∣∣∣∣∣CL, 0

)
dr dθ.

To better understand the lift differences, we scale the result by the lift obtained in
static hover. From Figure 10, we find the models produce similar average lifts for low
forward velocity as the effect of dissymmetry of lift is at its lowest influence.

As the forward velocity increases, the lift produced by the blade decreases as the
rotor speed Ωmust decrease. Once the negative lift is produced by the retreating blade
at u = ν/3, we find the lift from the standard and modified model diverge. The standard
model increases lift as the forward velocity remains nonnegative. For the modified
model, the overall lift decreases as the negative lift on the retreating blades counteracts
the positive lift produced by the advancing sides. If the angle of attack can be set to 0◦,
the negative effect of the retreating blade diminishes and the lost lift begins to recover.

Since the retreating side of the rotor disk cannot produce any positive lift for
velocities above 114.3 ms−1, we find that only coaxial helicopters are able to rectify the
issue. We also note the lift produced in these velocities varies between 50% and 75%
of the lift generated in static hover. This is primarily a consequence of the decreased
rotor speed Ω as u increases.

3.5. Minimum rotor speed requirements To obtain the maximum lift attainable
from helicopter blades, we prescribe Ω with equation (1.1) to the lift equation (3.1). To
find the minimum requirements for Ω to hold a given lift L, we estimate (to enable us
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FIGURE 11. Plot of minimum Ω for various weights with the theoretical maximum against forward
velocity.

to give an approximate analytic formula) the average lift by

Lavg(u,Ω) =
1
4

[
L(u, 0,Ω) + 2L

(
u,
π

2
,Ω
)
+ L(u, π,Ω)

]
,

which simplifies to

Lavg(u,Ω) =
ρc

24Ω
[(ΩR + u)3 + (ΩR − u)2|ΩR − u| + 2Ω3R3 − 2u3].

Solving for Ω,

Ω(u, L) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2−2/3 27/3L − 21/3(Rcρu2) + ((Rcρu2)3/2 + K)2/3

R
√

Rcρ((Rcρu2)3/2 + K)1/3
, u <

√
3L

cρR
,

− 3u
2R
+

√
3cρR(16L + 3cρRu2)

2cρR2 , u ≥

√
3L

cρR
,

(3.2)

where K =
√
−128L3 + 96(Rcρu2)L2 − 24(Rcρu2)2L + 3(Rcρu2)3.

From Figure 11, we see that the minimum threshold for Ω decreases as forward
velocity u increases. While this will allow the rotor disk to spin at a lower RPM, the
maximum threshold imposed by equation (1.1) decreases at a faster rate. Consequently,
the interval between the maximum and minimum values forΩ decreases in length until
they coincide at some u = uM(L) dependent on the lift L required by the minimum
threshold.

By solving Ω(uM , L) = (ν − uM)/R, we are able to find the maximum allowable
speed limit as imposed by the minimum lift L that the rotor disk(s) must generate.
Assuming uM > 3L/cρR, we find the maximum speed limit is given by

uM(L) =
ν

4
+

√
3Rcρ(3Rcρν2 − 32L)

4Rcρ
. (3.3)
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FIGURE 12. Plot of maximum speed uM against lift L for several blade lengths.

In Figure 12, we plot the maximum speed limit as a function of lift required for a
variety of helicopter blade lengths. If the forward velocity of a helicopter should exceed
this limit (if u > uM), the rotor angular velocity Ωmust decrease, and the lift produced
will not be sufficient to maintain altitude. To compensate for this, other methods for
producing lift will be necessary, such as wings or a modified fuselage shape.

We note in equation (3.3) that uM attains its minimum at L = 3Rcρν2/32, where
uM = ν/4.

3.6. Lift on the advancing side of the rotor disk To study the effect of the relative
wind on the advancing side of the rotor disk, we calculate the integral

Ladv(u) =
∫ π/2
−π/2

∫ R

0

1
2π
ρc(Ωr + u cos(θ))|Ωr + u cos(θ)| dr dθ.

Since Ωr + u cos(θ) > 0 for advancing rotor blades and the integral is even, we may
simplify the expression to

Ladv(u) =
2
π

∫ π/2
0

∫ R

0

1
2
ρc(Ωr + u cos(θ))2 dr dθ.

Upon simplification,

Ladv(u) =
Rρc
12π

[3πu2 + 12ΩRu + 2π(ΩR)2].

In Figure 13, we plot Ladv against u for the maximum theoretical Ω prescribed by
equation (1.1) and for the minimum values for Ω required to maintain altitude for
1000 kg, 2000 kg and 3000 kg helicopters. As the forward velocity increases, it reaches
the maximum allowable limit uM , at which point the lift generated coincides with the
lift obtained by the maximal rotor angular velocity Ω.
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FIGURE 13. Plot of the average lift over the advancing half of the helicopter rotor disk against forward
velocity.

FIGURE 14. Plot of the average lift over the advancing half of the helicopter rotor disk against forward
velocity for several angles of attack.

To elucidate the effect of the angle of attack on the advancing side of the blade, we
multiply the lift by the coefficient of lift using the maximal values for Ω. In Figure
14, we see lower angles of attack predictably produce less lift up to the stall threshold
αc ≈ 10◦. When the angle of attack exceeds this limit, the lift begins to decrease, as
expected with retreating blade stall.

To additionally incorporate the effect of drag, we alter the integral on the advancing
blades with the proportion (CL(α) − CD(α)). Given that drag increases sharply with
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FIGURE 15. Plot of the lift coefficient and the difference between lift and drag against the angle of attack.

FIGURE 16. Plot of the average lift over the advancing half of the helicopter rotor disk against forward
velocity for several angles of attack.

the angle of attack, we expect an optimal angle of attack that allows the greatest lift
coefficient under the drag coefficient, as shown in Figure 15.

Figure 16 shows the lift on the advancing side with the coefficient of drag included
in the computation. Though the effect of the drag is slight, the increased angle of attack
magnifies the gap between the lift at α = 9◦ and α = 12◦.
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FIGURE 17. Plot of the average lift over the retreating half of the helicopter rotor disk against forward
velocity.

3.7. Lift on the retreating side of the rotor disk To obtain the lift generated on
the retreating side of the rotor disk, we calculate

Lret(u) =
1
π

∫ 3π/2

π/2

∫ R

0

1
2
ρc(Ωr + u cos(θ))|Ωr + u cos(θ)| dr dθ.

Given that Ωr + u cos(θ) is not necessarily nonnegative nor nonpositive, there is
no simplification. To calculate this integral, we use MAPLE’s built-in numerical
integration with a partition of 100 points. In Figure 17, the retreating lift can be
seen to rapidly decrease. Without measures to nullify negative lift, the retreating side
continues to build negative lift as forward velocity increases. For coaxial helicopters,
Figure 13 shows us that the lift increase from the advancing side is more than capable
of balancing the lift loss on the retreating side.

3.8. Angle of attack considerations for coaxial helicopters In our previous
mathematical derivations for the lift across the rotor disk (or particular regions of the
rotor disk), we have assumed that the coefficient of lift constantly takes its maximum
value CL = 1. In this section, we relax this assumption to derive conditions on the
coefficient of lift that will enable the lift to be generated equally across the rotor disk.

For low forward velocities, we are able to apply the simple formula

CL(θ) =
L

Lstd(u, θ)
,
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where Lstd(u, θ) is the lift generated by the blade at forward velocity u and azimuth
angle θ, given by

Lstd(u, θ) =
ρc
6Ω

[(ΩR + u cos(θ))2|ΩR + u cos(θ)| − u3 cos2(θ)|cos(θ)|].

This expression remains valid until the lift generated on the retreating blade is no
longer capable of producing sufficient lift. That is, the first threshold is the forward
velocity u1 such that

Lstd(u1, π) = L.

Assuming the rotor angular velocity is at its maximum, as shown by equation (1.1), we
may simplify the above equation to show u1 satisfies

u3
1 −

4
3
νu2

1 −
2
3

(
ν2 +

L
ρcR

)
u1 −

ν

9

(
ν2 − 6L

ρcR

)
= 0.

For velocities u > u1, we set the angle of attack on the retreating blades to maximum
and increase the angle of attack on the counterpart advancing blade to compensate for
the insufficient lift generation.

3.8.1. Lift compensation for retreating blades As the forward velocity u increases
above the first threshold u1 defined above, we must produce excess lift on the advancing
blades to compensate for the lack of lift produced on the retreating blades. Suppose
each blade must generate L lift. If u < u1, Lstd(u, π) < L. Therefore, the excess lift E
that the advancing blades must produce is given by

E = L − Lstd(u, π).

In Figure 18, we see the lift compensation E that the advancing blade must produce for
its counterpart retreating blade. The curves in Figure 18 are proportional to the max-
imum lift produced in hover that the highest weight helicopters may attain. Negative
values indicate the retreating blade is producing sufficient lift, and compensation is not
necessary. As the forward velocity increases, the critical values E(u) = 0 coincident
with u1(L) are found. The lift compensation required also increases up to the critical
value ν/3.

Therefore, in the case that u > u1(L), the coefficient of lift will take the form

CL(θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
2L −min

( L
Lstd(u, θ + π)

, 1
)
Lstd(u, θ + π)

Lstd(u, θ)
, θ ∈

[
0,
π

2

]
∪
[3π

2
, 2π
]
,

min
( L
Lstd(u, θ)

, 1
)
, θ ∈

[
π

2
,

3π
2

]
.

3.8.2. Speed limit imposed on transitioning blades Consider the lift produced by
the blades as they transition between the advancing and retreating halves of the rotor
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FIGURE 18. Plot of the average lift over the retreating half of the helicopter rotor disk against forward
velocity.

disk (at azimuth angles 90◦ and 270◦). The lift produced on these blades is equal and
unaffected by the forward velocity. That is,

Lstd

(
u,
π

2

)
= Lstd

(
u,

3π
2

)
=
ρcR3Ω2

6
.

Since the rotor angular velocity Ω decreases as forward velocity u increases, the lift
produced on the transitioning blades decreases. For a given lift L, with the maximal
rotor angular velocity Ω given in equation (1.1),

ρcR
6

(ν − u)2 = L.

Solving for u,

u = ν −

√
6L
ρcR

. (3.4)

We plot the maximum speed limit as a function of lift in Figure 19. As we increase
the amount of lift the blade must produce, the maximum forward velocity at which
the blades are able to maintain the lift decreases. Therefore, coaxial helicopters are
subject to an additional speed limit in equation (3.4) as imposed by the reduced lift
on the transitioning blades. Though using four blades per disk reduces the lift demand
for each blade, the problem of reduced lift on transitioning blades remains, as seen in
Figure 20.
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FIGURE 19. Plot of the maximum speed limit imposed by equation (3.4) against lift.

FIGURE 20. Plot of the maximum lift produced by the blades at θ = 90◦ and θ = 270◦.

4. Conclusion

From the various models for the lift equation, we conclude that replacing the ν2

term with ν|ν| is recommended to capture the effect of the stall region about the
rotor shaft on the retreating side (as seen in Figures 5 and 6). The lift dynamics at
higher forward velocities are also better modelled by the modified velocity term. In
the ideal lift situation, we find that the retreating blade produces no lift for the forward
velocity u = ν/3, regardless of R. This implies conventional helicopters with one main
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rotor cannot accelerate to ν/3 ≈ 114.3 ms−1, and struggle to handle dissymmetry of
lift at speeds close to ν/3. We use equation (3.2) to find the minimum rotor angular
velocity required to generate L lift. To avoid supersonic blade issues, the rotor speed
Ω must decrease when the forward velocity u increases. Because of this, the overall
lift is decreased, as shown in Figure 10. For the proposed coaxial design featuring two
counter-rotating blades, no lift will be produced on the retreating blades. This impacts
the lift generated by the helicopter, as shown in Figure 10.
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