TENSOR PRODUCTS OF CLEAN RINGS

MASSOUD TOUSIbc and SIAMAK YASSEMIac*

^a Department of Mathematics, University of Tehran, Tehran, Iran
^b Department of Mathematics, Shahid Beheshti University, Tehran, Iran
^c Institute for Studies in Theoretical Physics and Mathematics, Tehran, Iran

(Received 26 January, 2005; accepted 9 June, 2005)

Abstract. A ring is called *clean* if every element is the sum of an idempotent and a unit. It is an open question whether the tensor products of two clean algebras over a field is clean. In this note we study the tensor product of clean algebras over a field and we provide some examples to show that the tensor product of two clean algebras over a field need not be clean.

2002 Mathematics Subject Classification. 13A99, 13F99.

1. Introduction. Throughout this paper, R is commutative ring and we use Min(R) to denote the set of minimal prime ideals of R. We say R is quasi-local (resp. semi-local) if the set of maximal ideals of R has only one element (resp. finitely many elements). An element in R is called clean if it is the sum of a unit and an idempotent. Following Nicholson, cf. [4], we call the ring R clean if every element in R is clean. Examples of clean rings include all zero-dimensional rings (i.e. every prime ideal is maximal) and local rings. Clean rings have been studied by several authors, for example [4], [2], and [1]. It is an open question whether the tensor product of two clean algebras over a field is clean, cf. [2, Question 3]. The main purpose of this note is to prove Theorem 1, while Theorem 2 and Proposition 3 are used in the proof of Theorem 1. As an application of Theorem 1 we use it to give an example of two clean algebras A and B over a field F where the tensor product $A \otimes_F B$ is not clean, see Example 4. In this paper all algebras are unital.

THEOREM 1. Let F be an algebraically closed field. Let A and B be algebras over F. If A and B have a finite number of minimal prime ideals (e.g. A and B Noetherian) then the following statements are equivalent:

- (i) $A \otimes_F B$ is clean.
- (ii) The following hold
 - (a) A and B are clean.
 - (b) A or B is algebraic over F.

To prove the above Theorem we first recall the following result from [1] and prove Proposition 3.

THEOREM 2. ([1, Theorem 5]) Let R have a finite number of minimal prime ideals (e.g., R is Noetherian). Then the following conditions are equivalent.

The research of the first author was supported by a grant from IPM (No. 84130214).

The second author was supported by a grant from IPM (No. 84130216).

^{*}Corresponding author. E-mail: yassemi@ipm.ir

- (i) R is a finite direct product of quasi-local rings.
- (ii) R is a clean ring.
- (iii) R/\mathfrak{p} is quasi-local for each prime ideal \mathfrak{p} of R.

PROPOSITION 3. Let A and B be algebras over a field F. Let $Min(A \otimes_F B)$ be a finite set and assume that $A \otimes_F B$ is clean. Then the following hold.

- (i) A or B is algebraic over F.
- (ii) A and B are clean.
- (iii) For any $\mathfrak{m} \in Max(A)$ and $\mathfrak{n} \in Max(B)$ the ring $A/\mathfrak{m} \otimes_F B/\mathfrak{n}$ is semi-local.
- *Proof.* (i) By Theorem 2 we know that $A \otimes_F B$ is semi-local and hence by [3, Theorem 6] A or B is algebraic over F.
- (ii) Assume that A is algebraic over F. Then $\dim(A) = \dim(F) = 0$ and so A is clean, cf. [1, Corollary 11]. We know that $\varphi : B \to (A \otimes_F B)$ is integral. Assume that $\mathfrak{p}_2 \in \operatorname{Spec}(B)$. Since φ is faithfully flat there exists $\mathfrak{q} \in \operatorname{Spec}(A \otimes_F B)$ such that $\mathfrak{q} \cap B = \mathfrak{p}_2$. Since $\tilde{\varphi} : B/\mathfrak{p}_2 \to (A \otimes_F B)/\mathfrak{q}$ is integral and $(A \otimes_F B)/\mathfrak{q}$ is quasi-local, B/\mathfrak{p}_2 is quasi-local. On the other hand, since φ is faithfully flat and $\operatorname{Min}(A \otimes_F B)$ is finite, $\operatorname{Min}(B)$ is finite too. Therefore, by Theorem 2, B is clean.
- (iii) By Theorem 2, $A \otimes_F B$ is semi-local and so $A/\mathfrak{m} \otimes_F B/\mathfrak{n} \cong (A \otimes_F B)/(\mathfrak{m} \otimes_F B + A \otimes_F \mathfrak{n})$ is semi-local.

Proof of Theorem 1. (i) \Longrightarrow (ii) First we show that $A \otimes_F B$ has a finite number of minimal prime ideals. Assume $\mathfrak{q} \in \operatorname{Min}(A \otimes_F B)$ and set $\mathfrak{q} \cap A = \mathfrak{p}_1$ and $\mathfrak{q} \cap B = \mathfrak{p}_2$. Since $A \to A \otimes_F B$ is a faithfully flat homomorphism we have that $\mathfrak{p}_1 \in \operatorname{Min}(A)$ and for the same reason $\mathfrak{p}_2 \in \operatorname{Min}(B)$. In addition, $\mathfrak{q} \in \operatorname{Min}(\mathfrak{p}_1 \otimes_F B + A \otimes_F \mathfrak{p}_2)$. Since F is algebraically closed $A \otimes_F B/(\mathfrak{p}_1 \otimes_F B + A \otimes_F \mathfrak{p}_2) \cong A/\mathfrak{p}_1 \otimes_F B/\mathfrak{p}_2$ is an integral domain. Therefore $\mathfrak{q} = \mathfrak{p}_1 \otimes_F B + A \otimes_F \mathfrak{p}_2$. Now the assertion follows from Proposition 3.

(ii) \Longrightarrow (i). Assume that $\mathfrak{q} \in \operatorname{Spec}(A \otimes_F B)$ and set $\mathfrak{q} \cap A = \mathfrak{p}_1$ and $\mathfrak{q} \cap B = \mathfrak{p}_2$. Then $\mathfrak{p}_1 \otimes_F B + A \otimes_F \mathfrak{p}_2 \subseteq \mathfrak{q}$. Since A and B are clean and $\operatorname{Min}(A)$ and $\operatorname{Min}(B)$ are finite we have that A/\mathfrak{p}_1 and B/\mathfrak{p}_2 are quasi-local. Let $\mathfrak{m}/\mathfrak{p}_1$ (resp. $\mathfrak{n}/\mathfrak{p}_2$) be the unique maximal ideal of A/\mathfrak{p}_1 (resp. B/\mathfrak{p}_2). Since one of A or B is algebraic over F we have that one of A/\mathfrak{p}_1 or B/\mathfrak{p}_2 is algebraic over F. Since one of A/\mathfrak{m} or B/\mathfrak{n} is algebraic over F we have dim $(A/\mathfrak{m} \otimes_F B/\mathfrak{n}) = 0$. On the other hand, F is algebraically closed so $A/\mathfrak{m} \otimes_F B/\mathfrak{n}$ is an integral domain. Therefore $A/\mathfrak{m} \otimes_F B/\mathfrak{n}$ is a field. Now by [5] the ring $A/\mathfrak{p}_1 \otimes_F B/\mathfrak{p}_2$ is quasi-local and hence $A \otimes_F B/(\mathfrak{p}_1 \otimes_F B + A \otimes_F \mathfrak{p}_2)$ is quasi-local. Now the assertion follows from Theorem 2.

EXAMPLE 4. Assume that $F = \mathbb{C}$ and $A = B = \mathbb{C}[|x|]$. Then by [1, Proposition 12] A and B are clean. We claim that $A \otimes_F B$ is not clean. Otherwise, since \mathbb{C} is an algebraically closed field and A(=B) is Noetherian, by Theorem 1, we have that A or B is algebraic over \mathbb{C} and hence A(=B) is equal to \mathbb{C} . That is a contradiction.

ACKNOWLEDGMENT. It is a pleasure to acknowledge correspondence with W. K. Nicholson who pointed out that the question of Han–Nicholson, cf. [2, Question 3], had not been answered yet. This served to motivate the work reported here. The authors would like to thank the referee for his/her useful comments.

REFERENCES

- **1.** D. D. Anderson and V. P. Camillo, Commutative rings whose elements are a sum of a unit and idempotent, *Comm. Algebra* **30** (2002), 3327–3336.
- 2. J. Han and W. K. Nicholson, Extensions of clean rings, Comm. Algebra 29 (2001), 2589–2595.
- 3. J. Lawrence, Semilocal group rings and tensor products, *Michigan Math. J.* 22 (1975), 309–313.
- **4.** W. K. Nicholson, Lifting idempotents and exchange rings, *Trans. Amer. Math. Soc.* **229** (1977), 269–278.
- **5.** M. E. Sweedler, When is the tensor product of algebras local?, *Proc. Amer. Math. Soc.* **48** (1975), 8–10.