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TENSOR PRODUCTS OF CLEAN RINGS
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Abstract. A ring is called clean if every element is the sum of an idempotent and a
unit. It is an open question whether the tensor products of two clean algebras over a
field is clean. In this note we study the tensor product of clean algebras over a field and
we provide some examples to show that the tensor product of two clean algebras over
a field need not be clean.
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1. Introduction. Throughout this paper, R is commutative ring and we use
Min(R) to denote the set of minimal prime ideals of R. We say R is quasi-local
(resp. semi-local) if the set of maximal ideals of R has only one element (resp. finitely
many elements). An element in R is called clean if it is the sum of a unit and an
idempotent. Following Nicholson, cf. [4], we call the ring R clean if every element in
R is clean. Examples of clean rings include all zero-dimensional rings (i.e. every prime
ideal is maximal) and local rings. Clean rings have been studied by several authors, for
example [4], [2], and [1]. It is an open question whether the tensor product of two clean
algebras over a field is clean, cf. [2, Question 3]. The main purpose of this note is to
prove Theorem 1, while Theorem 2 and Proposition 3 are used in the proof of Theorem
1. As an application of Theorem 1 we use it to give an example of two clean algebras
A and B over a field F where the tensor product A ⊗F B is not clean, see Example 4.
In this paper all algebras are unital.

THEOREM 1. Let F be an algebraically closed field. Let A and B be algebras over F.
If A and B have a finite number of minimal prime ideals (e.g. A and B Noetherian) then
the following statements are equivalent:

(i) A ⊗F B is clean.
(ii) The following hold

(a) A and B are clean.
(b) A or B is algebraic over F.

To prove the above Theorem we first recall the following result from [1] and prove
Proposition 3.

THEOREM 2. ([1, Theorem 5]) Let R have a finite number of minimal prime ideals
(e.g., R is Noetherian). Then the following conditions are equivalent.
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(i) R is a finite direct product of quasi-local rings.
(ii) R is a clean ring.

(iii) R/p is quasi-local for each prime ideal p of R.

PROPOSITION 3. Let A and B be algebras over a field F. Let Min(A ⊗F B) be a finite
set and assume that A ⊗F B is clean. Then the following hold.

(i) A or B is algebraic over F.
(ii) A and B are clean.

(iii) For any m ∈ Max(A) and n ∈ Max(B) the ring A/m ⊗F B/n is semi-local.

Proof. (i) By Theorem 2 we know that A ⊗F B is semi-local and hence by [3,
Theorem 6] A or B is algebraic over F .

(ii) Assume that A is algebraic over F . Then dim(A) = dim(F) = 0 and so A
is clean, cf. [1, Corollary 11]. We know that ϕ : B → (A ⊗F B) is integral. Assume
that p2 ∈ Spec (B). Since ϕ is faithfully flat there exists q ∈ Spec (A ⊗F B) such that
q ∩ B = p2. Since ϕ̃ : B/p2 → (A ⊗F B)/q is integral and (A ⊗F B)/q is quasi-local,
B/p2 is quasi-local. On the other hand, since ϕ is faithfully flat and Min(A ⊗F B ) is
finite, Min(B ) is finite too. Therefore, by Theorem 2, B is clean.

(iii) By Theorem 2, A ⊗F B is semi-local and so A/m ⊗F B/n ∼= (A ⊗F B)/(m ⊗F

B + A ⊗F n) is semi-local. �

Proof of Theorem 1. (i) =⇒ (ii) First we show that A ⊗F B has a finite number of
minimal prime ideals. Assume q ∈ Min(A⊗F B ) and set q ∩ A = p1 and q ∩ B = p2.
Since A → A ⊗F B is a faithfully flat homomorphism we have that p1 ∈ Min(A)
and for the same reason p2 ∈ Min(B ). In addition, q ∈ Min(p1 ⊗F B + A ⊗F p2).
Since F is algebraically closed A ⊗F B/(p1 ⊗F B + A ⊗F p2) ∼= A/p1 ⊗F B/p2 is an
integral domain. Therefore q = p1 ⊗F B + A ⊗F p2. Now the assertion follows from
Proposition 3.

(ii) =⇒ (i). Assume that q ∈ Spec (A ⊗F B) and set q ∩ A = p1 and q ∩ B = p2.
Then p1 ⊗F B + A ⊗F p2 ⊆ q. Since A and B are clean and Min(A) and Min(B ) are
finite we have that A/p1 and B/p2 are quasi-local. Let m/p1 (resp. n/p2) be the unique
maximal ideal of A/p1 (resp. B/p2). Since one of A or B is algebraic over F we have
that one of A/p1 or B/p2 is algebraic over F . Since one of A/m or B/n is algebraic
over F we have dim(A/m ⊗F B/n) = 0. On the other hand, F is algebraically closed
so A/m ⊗F B/n is an integral domain. Therefore A/m ⊗F B/n is a field. Now by [5]
the ring A/p1 ⊗F B/p2 is quasi-local and hence A ⊗F B/(p1 ⊗F B + A ⊗F p2) is quasi-
local. Now the assertion follows from Theorem 2. �

EXAMPLE 4. Assume that F = � and A = B = �[|x|]. Then by [1, Proposition 12]
A and B are clean. We claim that A ⊗F B is not clean. Otherwise, since � is an
algebraically closed field and A(= B) is Noetherian, by Theorem 1, we have that A or
B is algebraic over � and hence A(= B) is equal to �. That is a contradiction.
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