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A CHARACTERIZATION OF PROXIMAL SUBGRADIENT 
SET-VALUED MAPPINGS 

R. A. POLIQUIN 

ABSTRACT. In this paper we tackle the problem of identifying set-valued mappings 
that are subgradient set-valued mappings. We show that a set-valued mapping is the 
proximal subgradient mapping of a lower semicontinuous function bounded below by 
a quadratic if and only if it satisfies a monotone selection property. 

1. Introduction. In nonsmooth analysis, where one works with functions that are 
not differentiable in any classical sense, many types of subgradients have been intro­
duced, e.g. (Clarke) generalized subgradients (see [1], [2], [13]), approximate subgradi-
ents (see [3]),proximal subgradients (see [6], [7], [10]), and lower subgradients (see [4]). 
The (Clarke) generalized subgradients are probably the best known among these differ­
ent flavors of subgradients. To obtain the set of all (Clarke) generalized subgradients of 
a locally Lipschitzian function one takes the convex hull of the set of limiting proximal 
subgradients; for an arbitrary function one needs to consider in addition the singular 
limiting proximal subgradients; see [10]. For a lower semicontinuous extended-real-
valued function/ on IRn (i.e. f:Rn —-> R U {oo}), we say that a vector u is a proximal 
subgradient t o / at x if, for some positive t, 

f(x) >/(•*) + (u,x — x) — (f/2)||jc — x\\2 in a neighborhood of x. 

The set of all proximal subgradients at x is denoted by dpf(x), the set of (Clarke) gener­
alized gradients is denoted by df(x). 

The expression proximal, comes from an equivalent characterization in terms of the 
proximal normal cone. For a closed set C of Rn and an element x of C, we say that y 
is a proximal normal to C at x if, for some positive t, x is the unique closest point of C 
to x + ty. The proximal normal cone is the set of all proximal normals, and is denoted 
by PNc(*). The relationship between the set of proximal subgradients and the proximal 
normal cone is the following: 

y e dpfÇx) «=> (y, - 1 ) G PNep i /(x,/W). 

(where epi/ = {(je, a) G Rn x R | a >/(*)}). 
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A CHARACTERIZATION OF PROXIMAL SUBGRADIENTS 117 

When the function/ is convex then the set of (Clarke) generalized subgradients t o / 
at x is equal to the subdifferential t o / at x. (the same can be said for the set of proximal 
subgradients, in fact for the set of all subgradients mentioned previously). Recall that the 
subdifferential t o / at JC, written df(x), is given by 

#(*) = {y I fix) >f(x) + &x ~ x), for all x}. 

It is well known that a set valued mapping T is the subdifferential of a lower semi-
continuous proper (i.e. there exists x with/(x) < oo) convex function/ if and only if T 
is maximal cyclically monotone; see [9]. Recall that a set-valued mapping T: Rn =t Rn 

is cyclically monotone if given (JC;, yfi G gphT, / = 0, . . . , m, where m is arbitrary and 
gph r is the graph of T, we have 

(xi -x0,y0) + (x2 -x\,y\) + •• • + (x0 -xm,ym) < 0, 

where (JC, y) is the usual dot product. The set-valued mapping T is monotone if given 
fayi) G gphT, i = l , 2 we have (x\ - x2,y\ - yi) > 0. 

The next contribution in this area of identifying set-valued mappings that are sub-
gradient mappings is due to Janin in 1984. In [5] he showed that a mapping T is cycli­
cally submonotone if and only if T is the (Clarke) generalized subgradient mapping of a 
lower-Cl (locally Lipschitzian) function; see [11] for lower-Cl functions. A set-valued 
mapping T is cyclically submonotone if for all x in the domain of T (i.e r(Jc) ^ 0) we 
have 

r • f(xi -x2,y\ -yi) . n hminf -—n n—- > 0 
xi^x2 11̂ 1 - ^ 2 | | 
Xi—>X 

Vitrei) 

This is not the definition given by Janin, but rather the equivalent one given in Spin-
gam [14]. 

Surprisingly enough very little is known beyond the cyclically monotone and the 
cyclically submonotone cases. How does one tell if a given set-valued mapping is a 
subgradient mapping? In this paper we give a necessary and sufficient condition for a 
set-valued mapping to be the proximal subgradient set-valued mapping of a lower semi-
continuous function bounded below by a quadratic. In Theorem 2.3, we show that a 
set-valued mapping T is a proximal set-valued mapping if and only if it satisfies a mono­
tone selection property, i.e. there exist t and for t > t, set-valued mappings Mt: R

n =5 W1 

with 
(a) Af,(JC) C T(X) for all JC. 
(b) Mt(x) Î T(JC) (i.e., if fi < t2, then Mt](x) C M,2(JC) and \Jt>fMt(x) = T(JC)). 
(c) Mt + tl is a monotone set-valued mapping (where / is the identity mapping). 
(d) The set-valued mapping M defined by 

[ con{(jc, - (1 /2) | | JC | | 2 ) : JC G (Mt + tl)~\z)} t > t 

M(zj)= < con{(x,-(l/2)||jc|i2):jcG(M,- + r/)-1a)} + {(0,-A) | A G R} t = t 
10 t<t 

(where con C is the convex hull of C) is maximal cyclically monotone. 
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2. Main result. In this section we will assume that the lower semicontinuous func­
tion/ is strictly bounded below by a quadratic, with quadratic part (7/2) > 0 i.e., there 
exist a, z and t, such that 

(2.1) f(x)>â + (z,x)-(t/2)\\x\\2. 

This occurs, for example, when domf is abounded set (where domf = {x \ f(x) < oo}), 
since in this case the function is bounded below (recall that/ is lower semicontinuous). 

In [8] the quadratic conjugate function was introduced as a tool for studying proximal 
subgradients; recall that for z in Rn and t > t, the quadratic conjugate t o / at (z, t) is given 
by 

(2.2) hf(z,t) = max{(z,x) - (t/2)\\x\\2 - / ( * ) } . 

We are justified in writing max, since/ is bounded below by a quadratic, with "quadratic 
part ?'. Let argmax hf(z, t) be the set of points where the maximum is attained in (2.2), 
i.e., 

argmaxhf(z,t) = {x : (z,x) - (t/2)\\x\\2 -f(x) = hf(z,t)}. 

NOTE. This is not the standard notation; to be more precise we have argmax hf(z, t) 
— argmaxhf(z,t,-) wherehf(z,t,x) — (z,x) — (t/2)\\x\\2 —f(x). 

The function hf is lower semicontinuous proper and convex, with domain Rn x [7, oo). 
We can express the subgradients of the quadratic conjugate function in the following way 
(please see [8] for details): For t > t, 

(2.3) dhf(z, t) = con j (x, - ^j- ) : x G argmax hf(z, t) \, 

where con(S) is the convex hull of 5, and for t — t 

(2.4) dhf(z, t) = con| (x, -^f-) : x G argmax hfat)} + {(0, -A) | A G R}. 

We recall here some of the important properties of the conjugate quadratic function 
(these were all established in [8]). 

THEOREM 2.1. (a) For z^Rn and t > I ifx G argmax hf(z, t), then z — txe dpf{x). 
(b)Ifu G dffix), then for t big enough, argmax hf(u + tx, t) = {x}. 
(C) / / ( JC, - (1 /2) | | JC | | 2 ) G dhf(zj) andt > I then x G argmax hf(z, t). 
(d) For all x, 

f(x) = sup{{z,x) - (t/2)\\x\\2 - hf(zj)}. 
(z,0 
t>t 

Hence, f(x) — h*f(x, —(l/2)||x||2), where hj is the convex conjugate of the function hf; 
see [91 

We now give a characterization of the quadratic conjugate function. It is remarkable 
that a simple differentiability property and an adequate domain identifies a convex func­
tion as the quadratic conjugate of a lower semicontinuous function which is bounded 
below by a quadratic. 
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THEOREM 2.2. Assume that h: Rn x R —-> 1RU {00} is a lower semicontinuousproper 
convex function and that for some positive t, the set {(z, t) : t > t} C domh. In addi­
tion, we assume that if h is differentiable at (z, /), then V/z(z, /) = (x, —(1/2) | |X| | 2 ) for 
some x in W. Under these assumptions, there exists a lower semicontinuous extended-
real-valued function on Rn, bounded below by a quadratic, with quadratic conjugate h. 
Moreover, the function is given by 

(2.5) sup{(z,x) - (t/2)\\x\\2-h(ZJ)}. 
(z,t) 
t>t 

PROOF. Let/(x) be given by (2.5). Clearly/ is lower semicontinuous, it is bounded 
below by a quadratic and we will show that hf(z, t) — /i(z, t) for all t > t. 

CLAIM. Assume h is differentiable at (zoJo) with t0 > t and Vh(zoJo) = 
(xo,-(l/2)||x0||2);then/Xx0) - (zo,x0}-(t0/2)\\x0\\

2-h(z0,t0)andh(zoJo) = hf(zo,to). 

PROOF OF CLAIM. Consider LXo(z, t) = (z,x0) - (//2)||x0||2 - /i(z, t). The function 
LXo is concave with VLXo(zoJo) — (0,0). Therefore, LXQ attains a global maximum at 
(zo,t0). This means that/(x0) = (zo,*o) - (t0/2)\\x0\\

2 - h(zoJo). For all x, h(zoJo) > 
(ZQ,X) - (r0/2)||x||2 - / ( * ) , therefore h(zoJo) > hf(zo,to). But, hf(zoJo) > (zo,xo) -
(£o/2)||xo||2 —f(*o) — Kzo, to). Hence, /i(zo, to) = hf(zo, to) and this completes the proof 
of the claim. 

By the previous claim and the fact that h is differentiable on a dense subset of the 
interior of its domain (see [9]) we conclude that h{z, t) — fy (z, t) for all t > t (a con­
vex function is continuous on the interior of its domain). Because a convex function is 
completely determined by the values it assumes on the interior of its domain (see [9]) we 
conclude that /i(z, 0 = fy(z, i) for all t > t. m 

We end this section by giving our characterization of the proximal subgradient set-
valued mapping of a function bounded below by a quadratic. For t > t (see (2.1)), let 

(2.6) Mt{x) = {z — tx:xe argmaxhf(z,t)}. 

It is clear that Mt + tl is a monotone set-valued mapping because (Mt + tl)(x) = dhj](x), 
where hfy. W1 -* R is defined by hfJ(z) = hf(z,t). In [8], it is shown that h*t(x)-(t/2)i||x||2 

(where h^t is the convex conjugate of hf/, see [9]) is the supremum of all quadratics 
functions majorized b y / with quadratic part — (t/2). 
In addition (Mt + tl) is a selection of (dpf + tl) in the sense that for all JC 

(Mt + tI)(x)C(dpf + tl)(x). 

(if (Mt + f/)(x) = z then x G argmax hf(z, t), this implies that z — tx e dpf(x) (Theo­
rem 2.1 (a)) i.e. z G dpf(x) + tx = (dpf + //)(x).) There are examples where (Mt + tl) is not 
a maximal monotone selection of (dpf + tl); one such example is 

r, x f — 1 x < — 1, x > 1 
/ ( x ) = (o -r<*<r • 
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The proximal set-valued mapping of this function is given by 

[0 i f j c ^ - 1 andjc^ 1, 
9 / W = { [0,oo) ifjt = - 1 , 

I (-oo,0] if JC = 1. 

So that 

I tx if x ^ —1 andx ^ 1, 

[-f,oo) i f j c = - l , 
(-oo,/1] i f x = 1. 

For t < 2 one easily calculates that 

I tx JC < — 1, JC > 1 

[-f,0] JC = —1 
[0,fl * = 1 . 

However, adjoining (0,0) to (Mt + f/) still yields a monotone selection of (dpf + tl). By 
definition of Mt(x), the set-valued mapping M defined on Rn x [F, co) by 

M(z,0 - con{(jc,-(l/2)||jc||2) : x G (Af, + tl)~\z)} 
for t>t and for t = t 

M(z,t) = con{(jc,-(l/2)||jc||2) : je G (Mj + tl)-\z)} + {(0,-A) | A G R} 

is maximal cyclically monotone (see [9]), because it is equal to 3/*/(z, t). Another property 
of the sets Mt(x) is that they increase and the limit set is dpf(x). The sets Mr(jc) are the 
key to the characterization of the proximal subgradient mapping. 

THEOREM 2.3. Let T: Rn =xRn be a set-valued mapping. For all x, T(x) = dpf(x), 
where f is a lower semicontinuous extended-real-valued function on Rn bounded below 
by a quadratic, if and only if there exist t > 0 and for t > t, Mt: R

n =t Rn with Mt(x) C 
T(x)for all x, such that 

(a)Mt(x) T r(jc) (Le., ift\ < t2, then Mh(x) C Af,2(jt) and(Jt>fMt(x) = T(x)). 
(b) If M is the set-valued mapping defined by 

[ con{(jc, - ( 1 /2)||JC||2) : JC G (M, + tl)-\z)} t > t 
M(z,t)= I con{(jc,-(l/2)|jjc||2) : JC G (Mj + tl)-\z)} + {(0,-A) | A G R} t = t 

10 t<t 

then for all t >t and z G IRn, M(z, 0 ^ 0 and M is maximal cyclically monotone. 

PROOF. = > See the discussion preceding the Theorem. 
< = There exists h: Rn x [t, oo) —> R U {oo}, lower semicontinuous proper convex with 
dh(z, t) = M(z, t) (see [9]). Assume h is differentiable at (z, t). This implies that dh(z, t) 
is a singleton, therefore M(z, t) = (JC, —(1 /2)| |JC||2) for some JC in Rn. By Theorem 2.2, if 

f(x) = SUP{(Z,JC) - (r/2)||jc||2 - ft(z,0}, 
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then hf(z, t) — h(z, t). In addition, 
(a) dpf(x) C T(x). To see this, let u G dpf(x). By Theorem 2.1 (b), for / big enough, 

(JC,-(1/2) | |JC| |2) = Vhf(u + tx,t). Therefore, 

M(u + tx,x) = (JC,-(1/2) | |JC| |2) , 

which implies that u G Mt(x) C T(x). 
(b) T(x) C dpf(x). To see this, if u G T(JC), then eventually u G M,(;c). Hence, 

(JC, - (1 /2 ) | | JC | | 2 ) G M(w + fcc, t) = dhf(u + tx, t). By Theorem 2.1(c), x G argmax fy(w + 
tx, x). By Theorem 2.1(a), we know that u G dpf(x), since w = (u + ta:) — /x • 

We now wish to characterize the proximal normal cone mapping. The following corol­
lary is an immediate consequence of Theorem 2.3 and the following obvious observation 

y£PNc(x)^yedpèc(x), 

where £>c is the indicator function 

,, , r 0 if JC G C, 
I oo ifxfC. 

COROLLARY 2.4. Let T: Rn =tRnbea set-valued mapping. For all x, T(x) = PNcW, 
where C is a closed nonempty subset of Rn, if and only if there exist, for t > 0, M,: Rn =4 Rw 

withMt(x) C T(x)forallx, such that 
(a) Mt(x) T T(x) (/.*, i/ri < t2, then Mt] (JC) C M,2(JC) and U,>0 M,(JC) = T(x)). 
(b) If M is the set-valued mapping defined by 

f con{(jc, - (1 /2)||JC||2) : JC G (Mt + f/T'fe)} f > 0 
M(z,0 - j con{(jc,-(l/2)|jjc|j2) : JC G (A/o)"^)} + {(0,-A) \XeR} f = 0 

U f <0 
then for allt > 0 a>id z G !Rn, M(z, f) 7̂  0 awd M w maximal cyclically monotone. 

We conclude this paper with a characterization of the generalized subgradient map­
ping of a locally Lipschitzian function. 

COROLLARY 2.5. Let f: Rn -^ R be locally Lipschitzian and bounded below by 
a quadratic. Under these conditions there exist t and for t > t, set-valued mappings 
Mt: R

n =4 Rn, where Mt is defined in (2.6), such that 
(1) Mt(x)CdFf(x)forallx. 
(2) Parts (a) and (b) of Theorem 2.3 are satisfied (with T(x) = df(x)). 
(3) Mt(x) T 3/(JC), where 

Mt(x) — con{y \ 3xt—> x andyt G Mt(xî) with v, —» y}. 

PROOF. Recall that the set of (Clarke) generalized subgradients is the convex hull 
of limiting proximal subgradients. 
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