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ON DISTINGUISHING SPACES NOT HOMOTOPY-EQUIVALENT

M.H. EGGAR

A non-pathological example is given of two topological spaces which have isomor-
phic homotopy groups, homology groups and cohomology ring and which cannot
be distinguished from each other by the Whitehead product structure. A family
of examples can be constructed likewise.

Homology groups, the cohomology ring and homotopy groups are usually the first
invariants that one meets in algebraic topology. Since for most spaces at least one
of these is difficult to determine (indeed all three are rarely known explicitly), a very
natural question is whether these invariants together suffice to distinguish between any
two spaces that are not homotopy-equivalent. The spaces S5 x S4 and the Stiefel
manifold of unit tangents to 5 s provide the standard example of two spaces that have
isomorphic homology groups, cohomology ring and homotopy groups. These spaces can
however be distinguished by the Whitehead product structure on the homotopy groups

[3]-
The purpose of this note is to present an example of two (non-pathological) spaces,

namely CP°°xS3 and (CP X S1)/(pt x S1) , which have isomorphic homology groups,
cohomology ring, homotopy groups and Whitehead product structure, but which are
not homotopy-equivalent. The loop spaces of the two spaces are homotopy-equivalent.
A family of examples can be constructed likewise. It should be remarked that in [2]
Brayton Gray produced an example of two spaces that cannot be distinguished by
an invariant carried by a finite skeleton and yet are not homotopy equivalent. His
interesting construction exploits limiting operations to form a phantom map and then
takes the reduced product of the mapping cone. Our example is not as powerful, but
has the advantage of using only commonly occurring spaces and maps.

Let 7r: 51 X CP°° -» CP°° denote projection to the second factor, and let E =
S1 X CP°°\jCSl denote the mapping cone of the inclusion S1 -» S1 x CP°° of one fibre.
Define p: E —> CP°° to be the extension of TT that is constant on CS1. The homotopy
fibre of p is homotopy-equivalent to S3 by [l]. The map p has a section a: CP°° —> E
defined by a(b) = (1, b), hence <r# +i# : nnCP°°®irnS

3 —* irnE is an isomorphism for
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each positive integer n , where i is the inclusion of the homotopy fibre of p into E (up
to the natural homotopy equivalences). The Puppe sequence S1 —> S1 x CP°° -* E
yields HnE ~ Z for n ^ 2. (Hence the l?2-term of the cohomology spectral sequence
for p , or strictly speaking for the map obtained when p is converted to a fibration by
the mapping path fibration construction [4], has zero differentials.)

The Whitehead products on TT,E all vanish. For u,v E TT«53 [i#{u), i#(v)] —
i#[u, v] = 0 by naturality of the Whitehead product and since S3 is an 17-space.
Let u> be a generator of ir2CP°°. We now show [o"#(w), i#(u)} — 0. Let / : S2 —>
CP°° denote the inclusion CP1 C CP°°. Naturahty of the mapping path fibration
construction and Ganea's result gives a homotopy commutative diagram

S2

\fl>
S1 x CP°° U CS1 > CP°°

» P

where / " = l s i * Clf, f \ S1 x S2 = l s , x / , / ' | CS1 = l c s i and i, p are denned
in the analogous way to i, p. Let W: S2 —> 51 x S2 U CS1 be the section of p denned
by ^(6) = (1, 6). We note that S1 * US2 is homotopy-equivalent to S3

 V 5 4
 VSS

 v • • •,
S1 x S2 U CS1 is homotopy-equivalent to S2

 VS3, f" | S3 = 1S3 and / " | 54
 VS5

 v ; • •
is null homotopic. Let To denote the generator of 7r25

2 such that /#(w) = u> and let j :
5 3 —• S3 vS* v? s

 v • • • denote the inclusion onto the first summand in the wedge. Then
/#J#(«) = u- When 7T«(52

 V53) is expanded as a#n,S2 ®i#j#ntS
3 © 5Z ^#^*Sn,

by the Hilton Milnor theorem [t#j#(u), ^ (w) ] lies in the latter summands. Since
/ " | 5 4 v? s v • • • • is null homotopic, f'g[i#j#(u), ^ (w)] = 0. Hence

k # M . *#(«)] = k#/#(w), »#/#i#(u)] - [/#F#(aJ), f'#i#j#(u)) = 0.

It is straightforward to show that S3 x CP°° has homotopy groups, Whitehead
product structure, homology groups and cohomology ring isomorphic to those for E. It
remains to show that E is not homotopy-equivalent to S3 x CP°°. This is easily done
by calculating the Steenrod square Sq2 on H3( —; Z2) • Alternatively one may proceed
as follows. Suppose there were a homotopy equivalence g — (gi, gi): E —> S3 X CP°°.
Then g{: H3(S3) -> H3(E) would be an isomorphism. Let q: Sn x Sm -» 5 n + m

denote the quotient map that identifies SnvSm to a point. Consider the composite map .
U j i o e o (l s i x / ) : S1 x S2 -» 5 1 x CP°° -» £ -» 5 3 , where e denotes the inclusion
of S1 X CP°° into E. Now fc*: ^ 3 ( 5 3 ) -> fr3(5J x 52) is an isomorphism, since each
of g*, ( l s i x / )* and e* is an isomorphism on H3. Also h \ S1

 V 5 2 is null homotopic,
so /i factors through the quotient map q: S1 X S2 —» 53 to give a map fc: S3 —» 5 s
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such that h = k o q. Since fc* is an isomorphism, A: is a homotopy equivalence. Let
TJ: S3 —» S2 denote the Hopf map. The composite map h o ( l s i x TJ): S1 x 5 s -»
5 1 x S2 -* S3 extends over S1 x D4, since h extends over S1 x (4-cell of CP°°), and
hence h o (lsi x 77) is null homotopic. On the other hand consider the commutative
diagram

51 xS3 ^ S'xS2-^ S3

, 1 I • / ,

S4 T S3

As & is a homotopy equivalence Jfc o 77: S4 —» S3 is not null homotopic, in contradiction
to

LEMMA. A map / : Sn+m -* Y is null homotopic if f o q: Sn x Sm -» Y is null
homotopic.

PROOF: The Puppe sequence Sn
 vS

m —• 5" x Sm —> Sn+m yields the exact

sequence

[SnvSm, Y] <— [SnxSm, Y] <— [Sn+m, Y] <— [S(SnvSm), Y) «— [S(Sn x Sm), Y].
? # 0 t#

Since [S(Sn x Sm), Y] = [ 5 n + 1
 V 5 m + 1

 v 5 B + m + 1 , Y] we have t# is onto, hence 9 = 0,
hence q# is injective. D
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